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Education

Ph.D. Physics, California Institute of Technology 2016

Thesis: Naturalness confronts nature: Searches for supersymmetry with the CMS detector
in pp collisions at /s = 8 and 13 TeV
Advisor: Maria Spiropulu
M.S. Physics, California Institute of Technology 2015
S.B. Physics and Mathematics, Massachusetts Institute of Technology 2010
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Advisor: Janet Conrad

Professional Experience

Associate Professor of Physics at UC San Diego, La Jolla, CA 2023-Present

Assistant Professor of Physics at UC San Diego, La Jolla, CA 2019-2023

Lederman Fellow at Fermilab, Batavia, IL 2016-2019

Technical Instructor in Junior Lab at MIT, Cambridge, MA 20102011
Fellowships and Awards

¢ American Physical Society Henry Primakoff Award for Early-Career Particle Physics (2024)
UCSD Inclusive Excellence Award (2023)

Sloan Research Fellowship (2023)

Research Corporation For Science Advancement Cottrell Scholar Award (2023)
UCSD Undergraduate Research Hub Outstanding Mentor Award (2021)

DOE Early Career Award (2020)

William A. Lee Chancellor’s Endowed Junior Faculty Fellowship II (2019-Present)
LHC Physics Center Distinguished Researcher (2019)

Fermilab Lederman Fellowship (2016-2019) op

NSF Graduate Research Fellowship (2011-2014)

Gates Millenium Scholar sponsored by Hispanic Scholarship Fund (2006-2014)

Grants and External Funding

¢ Key Personnel for DOE Award U.S. CMS SPRINT—A Scholar Program for Research INTern-
ship (2023-2026)

* Key Personnel for DOE Award Western Advanced Training for Computational High-Energy
Physics (WATCHEP) (2022-2027).

¢ Key Personnel and Institute PI for NSF HDR Institute for Accelerated Al Algorithms for
Data Driven Discovery (A3D3) (2021-2026).

¢ Key Personnel for DOE Award for HEP Consortium for Advanced Training (HEPCAT) (2021-
2024).
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¢ Co-PI for DOE Award for Real-time Data Reduction Codesign at the Extreme Edge for Sci-
ence (2021-2024).

* PI of DOE Early Career Award for Real-Time Artificial Intelligence for Particle Reconstruc-
tion and Higgs Physics (2020-2025).

¢ Co-Plof DOE Award for FAIR Framework for Physics-Inspired Artificial Intelligence in High
Energy Physics (2020-2023).

¢ Co-PI of NSF Award for Exploring Neural Network Processors for Al in Science and Engi-
neering (2020-2021).

¢ Key Personnel for Investigating Heterogeneous Computing at the Large Hadron Collider
Phase-II sub-award of Internet2 NSF Grant Exploring Clouds for Acceleration of Science
(E-CAS) (2020-2021).

¢ DOE QuantISED Award Quantum Machine Learning and Quantum Computation Frame-
works for HEP (QMLQCF) (2018-2020).

¢ Fermilab LDRD Award for Graph Neural Networks for Accelerating Calorimetry and Event
Reconstruction (2019-2021).

¢ Fermilab LDRD Award for Accelerator Control with Artificial Intelligence (2019-2021).

Selected Research Experience
Higgs Boson Measurements & Combinations

¢ Author of CMS search for high-momentum (boosted) double Higgs boson production in
the four bottom quark final state [19] and CMS statistical combination of Higgs boson pair
searches [35] using full Run 2 data (2020-Present).

¢ Lead author of search for a highly boosted Higgs boson decaying to a bottom quark-antiquark
pair using full Run 2 data [74] and contributions to the charm quark-antiquark search [16]
and dedicated vector boson fusion search [14] (2017-Present).

¢ Co-author of first search for a highly boosted Higgs boson decaying to a bottom quark-
antiquark pair using 2016 data, published in Phys. Rev. Lett. [101]; Adapted analysis for
interpretation for differential gluon fusion Higgs boson pr measurement [91]; Combination
of this result with other channels led to an observation of H(bb) decay [94] and other mea-
surements [90] (2016-2018).

* Level-1 and high-level (software) trigger development for Higgs decaying to bottom quark-
antiquark pairs produced in association with a Z boson decaying to neutrinos [94] (2016~
2017).

Exotic Long-lived Particle and Dijet Searches

* Supervision of students and postdoctoral researchers performing searches for long-lived
particles [1, 17, 18, 48, 57] (2019—Present).

¢ Co-convener of CMS Exotica Jets+X subgroup (2018-2020).

¢ Co-leader of analysis group searching for exotic, light spin-1 and spin-0 particles decaying
to quarks [87, 88, 92, 102] (2017-2019).

* Co-leader of dijet resonance search group, including data scouting, wide resonance, and
b-tagged resonance searches [79, 81, 95-97, 104] (2016-2018).

Novel Machine Learning Algorithms for Physics
¢ Co-convener of CMS Machine Learning Group (2023-Present).
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Development of frameworks for sharing findable, accessible, interoperable, and reusable
(FAIR) data and models in high energy physics [4, 7, 15, 49] (2020-Present).

Development of anomaly detection algorithms for new physics searches [6, 21, 50-52, 56, 58,
76] (2019-Present).

Development of graph neural networks [44] for particle-flow reconstruction [10, 26, 29, 46,
61, 67], including explainable Al techniques [28, 53], and charged particle tracking [11, 43,
59, 71] (2019—-Present).

Supervision of students developing generative adversarial networks and autoencoders for
fast sparse data generation in high energy physics [5, 24, 38, 55, 66, 73] (2019-Present).
Contributor to the Snowmass 2022 Community Planning Exercise, including white papers
on machine learning for Higgs boson pair production [42], graph neural networks [45], fast
machine learning [47], and data science and machine learning in physics education [36];
Co-convenor of the CompF04 subgroup on Al Hardware [25] and contributor to EF01/EF02
Higgs Boson [33], CompF03 Machine Learning [34], and Muon Collider reports [32].
Studies of quantum machine learning and quantum computation frameworks for high en-
ergy physics, including charged particle tracking [60] (2018-Present). B
Development of deep neural networks for identifying boosted Higgs bosons decaying to bb
and cc for the CMS experiment and beyond [30, 78, 83, 85, 99] (2017-Present).

Fast Machine Learning Inference for Physics

Set- and graph-based neural networks for jet tagging on FPGAs in the level-1 trigger [2]
(2022—-Present).

Supervision of postdoctoral researchers and students developing an ASIC-based encoder
for data compression in the CMS HGCAL [63] and improving its training via a differentiable
Earth mover’s distance [3] (2020-Present).

¢ Fast machine learning scientific benchmarks [37] (2022-Present).
¢ Development of Quantized ONNX (QONNX) framework for representing arbitrary-precision

neural networks [40] (2022—-Present).

Real-time Al on FPGAs for accelerator control [62] (2018-2021).

Development of hl1s4ml for scientific low-power machine learning devices [12, 23, 27, 39,
54, 63, 65, 69] (2020—-Present).

Development of Services for Optimal Network Inference on Coprocessors (SONIC) [9, 22,
68, 75, 84, 89] (2018-Present).

Creation of h1s4ml tool for creating low-latency FPGA-based firmware implementations of
machine learning algorithms [41, 43, 50, 70-72, 80, 86, 98] (2017—-Present).

R&D, including firmware development and hardware demonstration, for the CMS Global
Correlator Trigger for the Phase-2 upgrade of the Level-1 trigger [82] (2017-Present).

Selected Publications, Reviews, Reports, Book Chapters, and Conference Proceedings
Selected publications, reviews, reports, book chapters, and conference proceedings to which I
made a substantial contribution are listed here.
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Teaching
Computational Physics
¢ Instructor for Physics 141/241: Computational Physics I: Probabilistic Models and Simula-
tions (Spring 2023, Winter 2022).
¢ Instructor for Physics 142/242: Computational Physics II: PDE and Matrix Models (Winter
2024, Spring 2022).

Machine Learning & Data Science

¢ Lecturer at SLAC Summer Instiute (Summer 2023).

¢ Lecturer at US ATLAS Machine Learning Training (Summer 2023).

¢ Creator of and instructor for Physics 139/239: Machine Learning in Physics (Winter 2023).

e NSF IAIFI Ph.D. Summer School Lecturer on “Representations, networks, and symmetries
for learning from particle physics data” and “Model compression and fast machine learning
in particle physics” (Summer 2022).

e Particle physics domain mentor for data science capstone DSC 180AB (Fall 2020, Winter
2021, Fall 2021, Winter 2022).

* Guest speaker for Purdue Physics 324: Big Data Science II (Spring 2021)

* Guest speaker for MIT 8.550: Computational Data Science in Physics (Winter 2021).

¢ Creator of the LHC Physics Center Machine Learning Tutorial (2017-2020).

Computer Science & Engineering
* Guest speaker for CSE 237C: Validation and Testing of Embedded Systems (Fall 2020, Fall
2021, Fall 2022, Fall 2023).

Particle Physics
e Creator of a HEPCAT Lab Module on ML/AI on FPGAs (Summer 2023).
¢ Co-instructor for Physics 239: Modern Collider Physics (Spring 2023).
* UCSD instructor of record for Physics 239: Statistics in Particle Physics at the LPC [Primary
instructor: Harrison Prosper, Florida State University] (Fall 2021).

Introductory Physics
¢ Lead instructor for Physics 2C: Fluids, Waves, Thermodynamics, and Optics for 300+ under-
graduate students (Winter 2020, Winter 2021, Spring 2021).
¢ Teaching assistant in statistical and quantum mechanics at Caltech (2011-2012).

Seminar Courses
¢ Organizer of Physics 191: Undergraduate Seminar on Physics (Fall 2020) and guest speaker

(Fall 2019).
* Guest speaker for Physics 261: Seminar on Physics Research at UC San Diego (Winter 2020,

Winter 2021).
* Guest speaker for Thurgood Marshall College 2: Transfer Year Experience. (Fall 2021).

12


https://arxiv.org/abs/1409.4466
https://arxiv.org/abs/1409.4466
https://indico.slac.stanford.edu/event/7540/
https://indico.cern.ch/event/1264566/
https://jduarte.physics.ucsd.edu/phys139_239
https://iaifi.org/phd-summer-school.html
https://jmduarte.github.io/capstone-particle-physics-domain
https://github.com/violatingcp/MIT_8.S50
https://github.com/FNALLPC/machine-learning-hats
http://kastner.ucsd.edu/ryan/cse237c/
https://hepcat.ucsd.edu/summer-schools/fast-ml-fpga-lab/
https://indico.cern.ch/event/1066958/
https://jduarte.physics.ucsd.edu/phys2c/index.html
https://indico.cern.ch/event/956641/

¢ Facilitator for Taking Research into Your Classroom Workshop at Waubonsee Comunity Col-
lege (2017).

Physics Lab
¢ Technical Instructor in MIT Junior Lab, teaching third-year undergraduate physics students
and maintaining the experiments (2010-2011).

Outreach
Community Outreach

* Presenter at “Career Exploration Event” at SAY San Diego Teen Leadership Connections
Camp at Lincoln High School on Tuesday, July 18 (2023).

* Speaker at “Meet a US CMS Professor” for US CMS Internship Program on Wednesday,
August 10 (2022).

* Exhibitor for UC San Diego Physics and Duarte Lab at the Barrio Logan Science & Art Expo
on Saturday, April 16 and Souteast Science & Art Expo on Saturday, August 13 (2022).

¢ Panelist on “Careers in STEM Teaching and Research in Higher Education Panel” for UC San
Diego Physical Sciences Division Student Success Center on Monday, November 15 (2021).

¢ Invited faculty speaker at UC San Diego Physics Graduate Student Diversity Initiative Grad
Recruitment Fair on Saturday, October 23 (2021).

* Speaker on “Undergraduate and graduate research opportunities” at UC San Diego SAC-
NAS Chapter’s Community College Workshop on Saturday, November 21 (2020).

¢ Invited faculty speaker for Young Physicists Program at UC San Diego (2020).

¢ Co-director of Saturday Morning Physics and lectuer on Symmetry, Antimatter, and Super-
symmetry at Fermilab (2018-2019).

* On-site coordinator for Saturday Morning Physics at Fermilab (2016-2018).

Mentoring
* Mentor for Cal-Bridge program (2021-Present).
* Mentor for APS National Mentoring Community (2021-Present).
* Mentor for ENLACE binational summer research program (2021-2022).
¢ Mentor for U.S. CMS Mentorship Program (2020-2022).

Advocacy
e U.S. LHC Users Association Annual Trip to U.S. Congress (2017, 2021).

Diversity Programs

¢ Co-lead faculty of local organizing committee for APS Conference on Undergraduate Women

in Physics (CUWiP) at UC San Diego (2023-2025).

¢ PATHS Scholar Program Faculty Advocate (2022-Present).

¢ Creator and coordinator of A3D3 Postbaccalaureate Fellowship Program (2021-Present).
UC San Diego Physics Department Equity, Diversity, and Inclusion Committee member
(2020-2023).
Faculty advisor for UC San Diego SACNAS Chapter (2022-Present).
Coordinator of A3D3 NSF Institute Equity & Career Committee (2022—Present).
US CMS Collaboration Diversity, Equity, and Inclusion Committee (2022-Present).
Faculty advisor for UC San Diego Physics Department Graduate Student Diversity Initiative
(2021).
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https://www.barriologansae.com/
https://www.southeastsdsteamexpo.com/
http://ypp.ucsd.edu/
http://saturdaymorningphysics.fnal.gov/
http://saturdaymorningphysics.fnal.gov/fall-session-2018/
http://saturdaymorningphysics.fnal.gov/fall-session-2018/
http://saturdaymorningphysics.fnal.gov/
https://www.cpp.edu/calbridge/index.shtml
https://aps.org/programs/minorities/nmc/
http://resilientmaterials.ucsd.edu/ENLACE
https://uscms-diversity-equity-inclusion.github.io/mentorship.html
https://paths.ucsd.edu/index.html

Mentor in the SIST internship program at Fermilab (2018)

Graduate student ambassador for the Fermilab SHPE chapter (2018).
Member of the TARGET program committee at Fermilab (2017-2019).
Residential Facilitator for MIT Interphase EDGE program (2010).

Selected Conference, Workshop, and Seminar Presentations

* Machine learning at the edge of particle physics. IAIFI Summer Workshop. August 14, 2023.
Northeastern University, Boston, MA, USA.

* Machine learning summary: From concept to practice. 15th International Workshop on
Boosted Object Phenomenology, Reconstruction, Measurements, and Searches at Colliders.
August 4, 2023. Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

* Building a better foundation: Teaching physicists and machines how to learn from data.
Cottrell Scholar Conference. July 19, 2023. Tucson, AZ, USA.

¢ Machine learning for triggering. Aspen Winter Conference: Prospecting for New Physics
through Flavor, Dark Matter, and Machine Learning. March 28, 2023. Aspen Center for
Physics, Aspen, CO, USA.

¢ Recent advances in machine learning for high energy physics. Dark Interactions: New Per-
spectives from Theory and Experiment. November 16, 2022.

* Measuring Higgs bosons using artificial intelligence. Physics Department Colloquium. Novem-
ber 3, 2022. University of California San Diego, La Jolla, CA, USA.

¢ Measuring Higgs bosons using artificial intelligence. The Human Side of Science Lecture
Series. November 1, 2022. University of San Diego, San Diego, CA, USA.

* Model compression and fast machine learning in particle physics. IAIFI Summer School.
August 2, 2022. Tufts University, MA, USA.

* Representations, networks, and symmetries for learning from particle physics data. IAIFI
Summer School. August 1, 2022. Tufts University, Medford, MA, USA.

¢ CompF3: ML for Data Analysis Summary. Community Summer Study Snowmass 2022.
July 19, 2022. University of Washington, Seattle, WA, USA.

¢ CompF4: Al-Hardware Summary. Community Summer Study Snowmass 2022. July 19,
2022. University of Washington, Seattle, WA, USA.

¢ A3D3 Postbaccalaureate Fellowship Program. Community Summer Study Snowmass 2022.
July 18, 2022. University of Washington, Seattle, WA, USA.

¢ Enabling the Higgs self-coupling measurement with highly energetic Higgs pairs in CMS.
Joint Experimental-Theoretical Physics Seminar (Wine & Cheese). June 3, 2022. Fermilab,
Batavia, IL, USA.

¢ Accelerated Graph Neural Network Inference. Mini-workshop on Graph Neural Networks
for Tracking Colocated with Connecting the Dots 2022. June 3, 2022.

¢ Fast Machine Learning for Science. ML Performance: Benchmarking Deep Learning Systems
(MLPerf-Bench) Tutorial at the 28th IEEE International Symposium on High-Performance
Computer Architectures (HPCA 2022). April 3, 2022.

¢ Al at the Edge of Particle Physics. HEP Seminar. November 17, 2021. Columbia University,
New York, NY, USA.

e Al at the Edge of Particle Physics. Al Distinguished Lecture Series. August 12, 2021. Ar-
gonne National Laboratory.

¢ Al-Hardware Codesign for Real-Time Science. Harnessing Data Science for Autonomous
Computing Materials Symposium. May 27, 2021. Ohio State University.

14


http://diversity.fnal.gov/sist/
http://diversity.fnal.gov/fshpe/
http://diversity.fnal.gov/target/
http://ome.mit.edu/programs-services/program-overview
https://iaifi.org/summer-workshop.html
https://indico.physics.lbl.gov/event/975/contributions/8195/
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https://indico.fnal.gov/event/21471/contributions/259113/
https://indico.cern.ch/event/1211501/contributions/5128872/
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https://indico.fnal.gov/event/55499/
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The Edge of Particle Physics. Department of Physics and Astronomy Colloquium. May 6,
2021. Cal State LA.

Graph Neural Networks for High Energy Physics. Elementary Particle Physics Seminar.
April 28, 2021. University of Minnesota.

hls4ml: An open-source codesign workflow to empower scientific low-power machine
learning devices. tinyML Research Symposium. March 26, 2021.

* Graph neural network tracking on FPGAs. IRIS-HEP Topical Meeting. October 21, 2020.

* Real-time Al in particle physics. ECE Graduate Seminar. October 16, 2020. Carnegie Mellon
University, Pittsburgh, PA, USA.

Recent highlights from CMS. 53rd Annual Fermilab Users Meeting. August 12, 2020. Fermi-
lab, Batavia, IL, USA.

Deep learning for Higgs and new physics at the LHC. High Energy Physics Division Semi-
nar. April 8, 2020. Argonne National Laboratory, Lemont, IL, USA.

Low-latency machine learning inference on FPGAs. 2nd Machine Learning and the Physical
Sciences Workshop at NeurIPS 2019. December 14, 2019. Vancouver, Canada.

Deep learning for Higgs and new physics at the LHC. Department of Physics and Astronomy
Colloquium. November 11, 2019. University of Kansas, Lawrence, KS, USA.

Deep learning for Higgs and new physics at the LHC. High Energy Experiment Seminar.
October 10, 2019. Boston University, Boston, MA, USA.

Machine learning on FPGAs for low-latency and high-throughput inference. eScience 2019.
September 24-27, 2019. San Diego, CA, USA.

Deep learning on FPGAs tutorial. 1st Real Time Analysis Workshop. July 15-26, 2019. Insti-
tute Pascal, Université Paris-Saclay, Saint Aubin, France.

Machine learning using CERN open data. LHCP 2019. May 20-25, 2019. Benemérita Univer-
sidad Auténoma de Puebla, Puebla, Mexico.

Dark sector searches in CMS. LHCP 2019. May 20-25, 2019. Benemérita Universidad Auténoma
de Puebla, Puebla, Mexico.

FPGA-accelerated machine learning inference for particle physics. Connecting the Dots
2019. April 2, 2019. Valencia, Spain.

Unlocking the potential of LHC data: boosted Higgs and deep learning. Particle Physics
Special Seminar. February 20, 2019. University of Chicago, Chicago, IL, USA.

Boosted Higgs couplings and dark mediators with deep learning in CMS. Joint Experimental-
Theoretical Physics Seminar (Wine & Cheese). December 14, 2018. Fermilab, Batavia, IL,
USA.

Heavy flavour identification for boosted resonances and large cone jets in CMS. Machine
Learning for Jet Physics (ML4Jets) 2018. November 14-16, 2018. Fermilab, Batavia, IL, USA.
Boosted Higgs, dark matter, and deep learning. High Energy Physics Seminar. October 3,
2018. University of Pittsburgh, Pittsburgh, PA, USA.

hls4ml: Deploying Deep Learning on FPGAs for L1 trigger and Data Acquisition. Topical
Workshop on Electronics for Particle Physics (TWEPP) 2018. September 17-21, 2018. KU
Leuven Campus Carolus, Antwerp, Belgium.

Searches for Dark Matter Mediators with the CMS Detector. Conference on the Intersections
of Particle and Nuclear Physics (CIPANP) 2018. May 29 - June 3, 2018. Hyatt Regency Indian
Wells Conference Center, Indian Wells, CA, USA.

Fast inference of deep neural networks in FPGAs for particle physics. Research Techniques
Seminar. April 24, 2018. Fermilab, Batavia, IL, USA.
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* Fast reconstruction and data scouting. Connecting the Dots 2018. March 20-22, 2018. Uni-
versity of Washington, Seattle, WA, USA.

* Boosted Higgs in CMS. Higgs Couplings 2017. November 6-10, 2017. Heidelberg University,
Heidelberg, Germany.

¢ Unlocking the potential of CMS data: boosted Higgs, low-mass dijet resonances, and data
scouting. High Energy Physics Seminar. October 30, 2017. Caltech, Pasadena, CA, USA.

* Search for low-mass dijet resonances. TeVPA 2017. August 7-11, 2017. Columbus, OH, USA.

¢ Inclusive search for boosted SM Higgs bosons using H to bb decays with the CMS detector
at 13 TeV. APS DPF 2017. July 31 - August 4, 2017. Fermilab, Batavia, IL, USA.

¢ Inclusive Higgs boson search using H — bb decays. Collider Cross Talk. July 20, 2017.
CERN, Geneva, Switzerland.

¢ Introduction to CMS open data for boosted object tagging with machine learning applica-
tions. Data Science at High Energy Physics (DS@HEP) 2017. May 8-12, 2017. Fermilab,
Batavia, IL, USA.

Service and Committee Work

¢ Scientific organizing committee for 2nd, 3rd, and 4th Fast Machine Learning for Science

Workshops and Accelerated Artificial Intelligence for Big-Data Experiments Conference(2020-

2023).

Program committee for Fast Machine Learning for Science Workshop at ICCAD (2023).

Reviewer for the Neural Information Processing Systems (NeurIPS) Conference (2023).

Local organizing committee for Multi-Boson Interactions Conference at UC San Diego (2023).

Organizer of NSF HDR Postbaccalaureate Workshop at UC San Diego (2023).

Referee for Physical Review Letters, Physical Review D, Physical Review Research, Journal of High

Energy Physics, Physics Letters B, European Physics Journal C, Computing and Software for Big Sci-

ence, Applied Optics, and Nuclear Instruments and Methods in Physics Research Section A (2019-

Present).

* Faculty advisor for UC San Diego SACNAS Chapter (2022-2023).

¢ Coordinator of A3D3 NSF Institute Equity & Career Committee, including Postbaccalaureate
Fellowship Program (2022-2023).

¢ US CMS Collaboration Annual Meeting Planning Committee (2021-2023).

¢ US CMS Collaboration Diversity, Equity, and Inclusion Committee (2022-2023).

¢ Reviewer for the 2022 Datasets and Benchmarks Track, and 3rd and 4th Machine Learning
for the Physical Sciences Workshops at the Neural Information Processing Systems (NeurIPS)
Conference (2020-2022).

¢ External reviewer for Swiss Data Science Center (SDSC), French National Research Agency
(ANR), US Department of Energy (DOE) Early Career Research Program, and European
Science Foundation (ESF) (2019-2022).

* M.S. Thesis Committee for Paul Yen Po Wang (UC San Diego) (2021).

* Faculty advisor for UC San Diego Physics Department Graduate Student Diversity Initiative
(2021).

* Guest Associate Editor for Efficient Al in Particle Physics and Astrophysics Research Topic
in Frontiers in Big Data and AI (2021-2022).

¢ UC San Diego Physics Department Equity, Diversity, and Inclusion Committee member
(2020-2022).

¢ UC San Diego Physics Department Graduate Admissions Committee member (2019-2022).
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https://indico.cern.ch/event/658267/contributions/2881127/
http://www.thphys.uni-heidelberg.de/~higgs/talks/duarte.pdf
https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confId=149
https://indico.hep.caltech.edu/indico/conferenceDisplay.py?confId=149
https://indico.cern.ch/event/615891/contributions/2666361/
https://indico.fnal.gov/contributionDisplay.py?sessionId=14&contribId=38&confId=11999
https://indico.fnal.gov/contributionDisplay.py?sessionId=14&contribId=38&confId=11999
https://indico.cern.ch/event/649575/
https://indico.fnal.gov/contributionDisplay.py?sessionId=6&contribId=54&confId=13497
https://indico.fnal.gov/contributionDisplay.py?sessionId=6&contribId=54&confId=13497
https://indico.cern.ch/e/fml2020
https://indico.cern.ch/e/fml2022
https://indico.cern.ch/e/fastml2023
http://www.ncsa.illinois.edu/Conferences/AcceleratedAINCSA/
https://fastmachinelearning.org/iccad2023/
https://indico.cern.ch/e/mbi2023
https://indico.cern.ch/e/hdrpostbac2023
https://ml4physicalsciences.github.io/2020/
https://ml4physicalsciences.github.io/2021/
https://www.frontiersin.org/research-topics/19095/efficient-ai-in-particle-physics-and-astrophysics

Supervision and Mentorship
Postdoctoral Researchers

Melissa Quinnan (UC San Diego). Schmidt Al in Science Postdoctoral Fellow. CMS level-1
trigger, Higgs boson searches (2022-Present).

Daniel Diaz (UC San Diego). LPC Distinguished Researcher. CMS level-1 trigger, long-lived
particle searches (2021-Present).

Doctoral Students

Daniel Primosch (UC San Diego). Higgs boson pair production searches in CMS (2023-
Present).

Hyeon Seo Yun (Purdue University). A3D3 Mentorship Program (2023-Present).

Zihan Zhao (UC San Diego). Self-supervised learning for jet tagging (2022-Present).

Russell Marroquin Solares (UC San Diego). CMS level-1 trigger long-lived particle tagger
(2022—-Present).

Haoyang (Billy) Li (UC San Diego). Higgs boson jet assignment, FAIR Al models (2022-
Present).

Olivia Weng (UC San Diego). Optimization of Al algorithms for FPGAs (2021-Present).
Jieun Yoo (UIC). U.S. CMS Mentorship Program (2021-2022).

Anthony Aportela (UC San Diego). Sloan fellow, HEPCAT fellow. Graph-based autoen-
coders for anomaly detection; Search for long-lived particles (2021-Present).

¢ Daniel Guerrero (University of Florida). U.S. CMS Mentorship Program (2020-2021).
¢ Farouk Mokhtar (UC San Diego). HDSI fellow, IRIS-HEP fellow. Machine learned particle-

flow reconstruction; Search for boosted H — WW (2020-Present).

Raghav Kansal (UC San Diego). IRIS-HEP fellow, LPC Al fellow, LPC graduate scholar.
Graph-based generative adversarial networks for particle physics simulation; Search for
boosted HH — bbWW (2019-Present).

Martin Kwok (Brown). Boosted Higgs boson search (2018-2020).

Michael Krohn (CU Boulder). Boosted Higgs boson search, coupling measurement, and
trigger development (2017-2018).

Sean-Jiun Wang (University of Florida). Development and monitoring of triggers for the
Higgs boson produced in association with a Z boson decaying to neutrinos (2017-2018).
Andrzej Novak (RWTH Aachen University). Development of deep neural networks for
boosted Higgs identification in CMS (2017-2019).

Jiajing Mao (Caltech). Data scouting trigger stream development (2016-2018).

Giulia D'Imperio and Federico Preiato (Sapienza University of Rome). Dijet searches (2016).

Masters Students

Rounak Sen (UC San Diego). Discretized GANSs for particle physics (2023-Present).
Prashant Krishnan Vaidyanathan (UC San Diego). Self-supervised learning for particle physics
(2023—Present).

Venkat Krishnamohan (UC San Diego). Graph GAN s for particle physics (2022-Present).
Selwyn Reis Gomes (UC San Diego). Xilinx Alveo coprocessor support in h1s4ml (2022-
2023).

Nirn)1al Thomas (UC San Diego). Ragged batching for graph neural network inference as a
service (2022-2023).

Postbaccalaureate Students
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Michael Miranda. US CMS Intern. CMS level-1 long-lived particle triggers (2023).

Andrew Skivington (UC San Diego). A3D3 Postbaccalaureate Fellow. Anomaly detection
for CMS level-1 trigger (2022-2023).

Undergraduate Students

Jet Yue (UC San Diego). ABCD neural network for background estimation in CMS. (2023-
Present).

Evelyn Lorenzo (UC San Diego). PATHS Program Scholar (2022-2023).

Zhaoyu Zhang (UC San Diego). Graphs GANSs for particle physics (2022—-Present).

Mengke Zhang (UC San Diego). Undergraduate Research Award. Machine-learned particle-
flow for the Compact Linear Collider (2022—Present).

Anni Li (UC San Diego). IRIS-HEP fellow. Conditional generation with graph networks
(2022-2023).

Ricardo Efrain Parra Payano (Universidad Nacional de Ingenieria, Peru). APS National
Mentoring Community (2022).

Parvat Sapkota (University of Texas at Arlington). APS National Mentoring Community
(2021).

Saloni Agrawal (UC San Diego). EXPAND program. JetNet (2022-2023).

Carlos Pareja (UC San Diego). EXPAND program. JetNet (2022—Present).

Thomas Sievert (UC San Diego). FMP program. Quantum machine learning for high energy
physics (2021-2023).

Brian Sheldon (UC San Diego). FMP program. Boosted Higgs boson searches at the Future
Circular Collider (hadron mode) (2021-Present).

John Choi (UC San Diego). FMP program. Long-lived particle identification for CMS level-1
trigger (2021-2023).

Ishaan Kavoori (UC San Diego). FMP program. FAIR4HEP cookiecutter FAIR Al template
(2021-2023).

Simon Poon (UC San Diego). FMP program. Machine-learned missing transverse momen-
tum for CMS level-1 trigger (2021-Present).

Sukanya Krishna (UC San Diego). IRIS-HEP fellow. Real-time anomaly detection for jets
(2021-Present).

Jason Liang (UC San Diego). tinyML with Brevitas and FINN. (2021-Present).

Tai Nguyen (UC San Diego). Undergraduate Research Scholarship. tinyML with Brevitas
and FINN. (2021).

Han Hiller (University of Washington). UM-CERN-REU program. Machine-learned missing
transverse momentum for CMS level-1 trigger (2021).

Rohan Shenoy (UC San Diego). Undergraduate Research Award. Improved autoencoder
training for HGCAL ASIC for data compression (2021-2023).

John Chen (UC San Diego). AEP program. Variable-sized-input generative graph networks
(2021).

Jevon Suharnoko (UC San Diego). Dream fellow. Transpilation of PYTORCH-based neural
networks to FPGA firmware with h1s4ml (2021-2022).

Rushil Roy (UC San Diego). FMP program. tinyML with h1s4ml (2021-Present).

Zichun Hao (UC San Diego). FMP program, Undergraduate Research Award. Lorentz-
equivariant generative neural networks and H — WW tagging (2021-2023).

Abdelrahman Elabd (University of Pennsylvania). IRIS-HEP fellow. Implementation of
graph neural networks on FPGAs and integration into hls4ml. (2021-2022).
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¢ Haifeng Ding (UC San Diego). FMP program. Higgs pair production sensitivity at future
colliders (Snowmass study). (2021).

¢ Steven Tsan (UC San Diego). TRELS program. Unsupervised or semi-supervised anomaly
detection algorithms for high energy physics. (2020-Present).

* Vesal Razavimaleki (UC San Diego). IRIS-HEP fellow. Implementation of graph neural net-
works on FPGAs. (2019-2021).

¢ Eric Moreno (Caltech). SURF program. Development of interaction and graph neural net-
works for boosted jet tagging with CMS open data. (2018-2020).

¢ Sydney Jenknins (University of Chicago). Compression and firmware implementation of
interaction and graph neural networks for charged particle tracking at the LHC (2018).

* Eric Scotti (Brown University). Development of deep neural networks for boosted Higgs
identification in CMS (2017-2018).

Press

¢ “Inside the hunt for new physics at the world’s largest particle collider” by Dan Garisto,
MIT Technology Review, February 20, 2024

¢ “From life experience to research experience” by Sarah Charley, Symmetry Magazine, Febru-
ary 6, 2024

¢ “LHC Physicists can’t save them all” by Laura Dattaro, Symmetry Magazine, November 14,
2023

e “SDSC, UC San Diego Physicist Receives 2024 Henry Primakoff Award” by Cynthia Dillon,
SDSC News, October 26, 2023

¢ “Javier Duarte Recognized for Inclusive Excellence” by Michelle Franklin, UC San Diego
School of Physical Sciences News, August 8, 2023

¢ “Will Al make MC the MVP of particle physics?” by R. M. Davis, Symmetry Magazine, July
18,2023

¢ “Four Early Career Professors at UC San Diego Awarded Sloan Research Fellowships” by
Michelle Franklin, Daniel Kane, Katherine Connor, UC San Diego Today, March 1, 2023

e “Two UC San Diego Faculty Named 2023 Cottrell Scholars” by Michelle Franklin, UC San
Diego Today, February 9, 2023

¢ “San Diego Supercomputer Center, UC San Diego Join Federal Effort to Train Next-Gen
Physics Workforce” by Cynthia Dillon, UC San Diego Today, February 7, 2023

¢ “Machine Learning Shaking Up Hard Sciences, Too” by Dan Garisto, IEEE Spectrum, Octo-
ber 7, 2022

e “How physicists are probing the Higgs boson 10 years after its discovery” by Emily Conover,
Science News Magazine, June 29, 2022

¢ “Probing Higgs self-coupling with boosted Higgs pairs” by Artur Apresyan and Si Xie, Fer-
milab News, June 9, 2022

¢ “MLPerf Results Show Advances in Machine Learning Inference Performance and Efficiency”,
MLCommons, June 4, 2022

¢ “MLPerf Results Highlight Advances in Machine Learning Inference Performance and Effi-
ciency”, Inside HPC, April 6, 2022

* “Double trouble Higgs” by Sarah Charley, Symmetry Magazine, April 26, 2022

¢ “Graph neural networks boost di-Higgs search”, CERN Courier, March 11, 2022

¢ “Physicists Apply FAIRness to Data Studies” by Kimberly Mann Bruch, UC San Diego
News, February 15, 2022

¢ “SDSC Builds Al-Focused “Voyager” Supercomputer”, Intel, November 9, 2021
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https://www.technologyreview.com/2024/02/20/1088002/higgs-boson-physics-particle-collider-large-hadron-collider/
https://www.symmetrymagazine.org/article/from-life-experience-to-research-experience
https://www.symmetrymagazine.org/article/lhc-physicists-cant-save-them-all
https://www.sdsc.edu/News%20Items/PR20231026_physics_award.html
https://physicalsciences.ucsd.edu/media-events/articles/2023/duarte-edi.html
https://www.symmetrymagazine.org/article/will-ai-make-mc-the-mvp-of-particle-physics
https://today.ucsd.edu/story/four-early-career-professors-at-uc-san-diego-awarded-sloan-research-fellowships
https://today.ucsd.edu/story/2023-cottrell-scholars
https://today.ucsd.edu/story/san-diego-supercomputer-center-uc-san-diego-join-federal-effort-to-train-next-gen-physics-workforce
https://today.ucsd.edu/story/san-diego-supercomputer-center-uc-san-diego-join-federal-effort-to-train-next-gen-physics-workforce
https://spectrum.ieee.org/machine-learning-in-physics
https://www.sciencenews.org/article/higgs-boson-particle-physics-standard-model-discovery-anniversary
https://news.fnal.gov/2022/06/probing-higgs-self-coupling-with-boosted-higgs-pairs/
https://mlcommons.org/en/news/mlperf-inference-1q2022/
https://insidehpc.com/2022/04/mlperf-results-highlight-advances-in-machine-learning-inference-performance-and-efficiency/
https://insidehpc.com/2022/04/mlperf-results-highlight-advances-in-machine-learning-inference-performance-and-efficiency/
https://www.symmetrymagazine.org/article/double-trouble-higgs
https://cerncourier.com/a/graph-neural-networks-boost-di-higgs-search/
https://ucsdnews.ucsd.edu/pressrelease/physicists-apply-fairness-to-data-studies
https://www.intel.com/content/www/us/en/customer-spotlight/stories/san-diego-supercomputer-customer-story.html

¢ “Muon detector probes long-lived particles”, CERN Courier, November 5, 2021

¢ “Hunting anomalies with an Al trigger”, CERN Courier, August 31, 2021

¢ “Anew window into the shadow world: Exotic particle decays in the muon detectors”, CMS
Physics Briefing, August 30, 2021

“Physics, Computation Experts Help Earn $15M to Advance Al, Data Analysis” by Cynthia

Dillon, UC San Diego News, September 28, 2021
“San Diego Supercomputer Center Teams Up with Habana to Power Voyager” by Cynthia

Dillon, UC San Diego News, April 9, 2021
“Live long and propser: Searching for the long-lived relatives of the Higgs boson”, CMS

Physics Briefing, August 16, 2021

“Long-lived particles gather interest” by James Beacham and Albert De Roeck, CERN Courier,
July 21, 2021

“National Science Foundation Awards SDSC $5 Million to Develop Innovative AI Resource”

by Jan Zverina, UC San Diego News, July 1, 2020
“Boosting into the unknown: The highest energy Higgs bosons”, CMS Physics Briefing, May

20, 2020
“UC San Diego Physicist Making a Mark” by Cynthia Dillon, UC San Diego Division of

Physical Sciences News, July 1, 2020
“Fermilab scientists help push Al to unprecedented speeds” by Javier Duarte, Sergo Jindar-

iani, Ben Kreis and Nhan Tran, Fermilab News, January 29, 2019

Last updated: February 21, 2024
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https://cerncourier.com/a/muon-detector-probes-long-lived-particles/
https://cerncourier.com/a/hunting-anomalies-with-an-ai-trigger/
https://cms.cern/news/new-window-shadow-world-exotic-particle-decays-muon-detectors
https://ucsdnews.ucsd.edu/pressrelease/physics-computation-experts-help-earn-15m-to-advance-ai-data-analysis
https://ucsdnews.ucsd.edu/pressrelease/san-diego-supercomputer-center-teams-up-with-habana-to-power-voyager
https://cms.cern/news/live-long-and-prosper-searching-long-lived-relatives-higgs-boson
https://cerncourier.com/a/long-lived-particles-gather-interest/
https://ucsdnews.ucsd.edu/pressrelease/national-science-foundation-awards-sdsc-5-million-to-develop-innovative-ai-resource
https://cms.cern/news/boosting-unknown-highest-energy-higgs-bosons
https://physicalsciences.ucsd.edu/media-events/articles/2020/uc-san-diego-physicist-making-a-mark.html
https://news.fnal.gov/2019/01/fermilab-scientists-help-push-ai-to-unprecedented-speeds/

