{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "Deep Sets\n", "===============================================================\n", "\n", "We will start by looking at Deep Sets networks using PyTorch. The architecture is based on the following paper: [DeepSets](https://papers.nips.cc/paper/2017/file/f22e4747da1aa27e363d86d40ff442fe-Paper.pdf)" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch\n", "\n", "device = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\n", "from tqdm.notebook import tqdm\n", "import numpy as np" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# For Colab\n", "\n", "!pip install wget\n", "import wget\n", "\n", "!pip install -U PyYAML\n", "!pip install uproot\n", "!pip install awkward\n", "!pip install mplhep\n", "!pip install torch_scatter" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import yaml\n", "import os.path\n", "\n", "# WGET for colab\n", "if not os.path.exists(\"definitions_lorentz.yml\"):\n", " url = \"https://raw.githubusercontent.com/jmduarte/iaifi-summer-school/main/book/definitions_lorentz.yml\"\n", " definitionsFile = wget.download(url)\n", "\n", "with open(\"definitions_lorentz.yml\") as file:\n", " # The FullLoader parameter handles the conversion from YAML\n", " # scalar values to Python the dictionary format\n", " definitions = yaml.load(file, Loader=yaml.FullLoader)\n", "\n", "features = definitions[\"features\"]\n", "spectators = definitions[\"spectators\"]\n", "labels = definitions[\"labels\"]\n", "\n", "nfeatures = definitions[\"nfeatures\"]\n", "nspectators = definitions[\"nspectators\"]\n", "nlabels = definitions[\"nlabels\"]\n", "ntracks = definitions[\"ntracks\"]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Dataset loader\n", "Here we have to define the dataset loader. \n", "\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "682c0adf1652494bba5d58f420efd3b6", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/10000 [00:00= patience:\n", " print(\"Early stopping after %i stale epochs\" % patience)\n", " break" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Evaluate on testing data" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "08ae3357d440459fb733b72cac7c5476", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/117.21875 [00:00" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# For Colab\n", "import matplotlib.pyplot as plt\n", "\n", "_, bins, _ = plt.hist(\n", " track_pt[y_test[:, 1] == 1], bins=50, label=\"sig\", histtype=\"step\"\n", ")\n", "_, bins, _ = plt.hist(\n", " track_pt[y_test[:, 1] == 0], bins=bins, label=\"bkg\", histtype=\"step\"\n", ")\n", "plt.legend()\n", "plt.semilogy()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAJuCAYAAADclpgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACFRklEQVR4nO3dfXwU1dk//s8FAQKGByNGRcQEERNEBBFQ0VqNrfQhSutdqdVaFEVb79rW9ndXbe9W+6htbWsp34reVFpbn/ugqdXW0lpbi4APqVoTAiZAYkjTENYQYwgh1++PmV02k93szs7uzpzJ5/167WvJ7Ozstfth4eTMnHNEVUFEREREFG+E3wUQERERUfCwkUhEREREg7CRSERERESDsJFIRERERIOwkUhEREREg7CRSERERESDGNFIFMubIvL1DJ77PhHZICJdIrJbRB4XkXm5qJOIiIgoLIxoJAJ4P4Apbp8kIhcDeBzAaQC2A3gHQBWADSJyRjYLJCIiIgqTQDcSRWS8iFwG4KcZPLcYwM8B7AdwhqrOVtWpAK4HMAbAWhEJ9PsnIiIi8ktgG0ki8giAtwDcB6Akg0NcAqsx+A1V3RDdqKqrAPwBQDmAc7JQKhEREVHoFPhdwBD+AaDd/vMJcN+gu8S+/02Cx34N4Hz7tj6j6oiIiIhCLLCNRFX9QfTPIvIJuG8klgF4S1VrEzwW7VmsyLA8IiIiolAL7OlmL0REYJ2i3p1kl2gP5bT8VERERERklsD2JHp0GKz3tifJ4x32/SGJHhQRzUVRRERERLmiqpLN44WyJzENI+37fl+rICIiIgqorDUSRWR0to6VBbsB9AEoTvJ4dPuuoQ6iqnm7XX311aF9vXy/txNPPDG0n+VweD3mZ/br5TO/sH+WYc5uOHye+Xq9K+/dlM320wAZNRLtFVCuFpFqEWkVkX0Auu3HjheRL4nIEVmt1AVVVQBtsE47JxLdPmQjkcxUWFjodwnkAfMzG/MzF7MzU9e+vpwd23UjUUSmAKgBcBeAD8AaIDIKQPQ8+HgAXwfwmoicmp0yM9IAYIKIzE7wWHS1lcY81kN50tPT43cJ5AHzMxvzMxezIydXjUQRGQvgjwBOgrWSyWocnI8w6k0AL8HqrfuDiEzyXmZGHrDvP5TgsaWOfShE+Nuw2Zif2ZifuZgdObntSbwSwCwAEQCnquqnVfWh+B1U9d8AFgF4BsAkAJ/xXGVmHgDQA+BmETktulFEPg3gvQA2qeorPtVGOcTfhs3G/MzG/MzF7MjJbSPxMgAK4Iuq+lqynVT1AICvwDoF/b7My0tNREpE5En7Flu+T1X3ALgc1lQ4G0TkFRFpBvAjWNciXpHLutyqqqoK7evl+73l+7fhMGfnx+sxP7NfL5/5hf2zDHN2QPg/z3y/Xi6INcYjzZ1F2gEcCuBYVW2O294Pa7zIyLhthwDYC2C3qh7uqUhrxZV1sNZh/l/HY8cC2G7/WKqqOxyPLwFwC6xT5PsA/A3ADar6xhCvp7DekJeyyScnnXQSXn31Vb/LoAwxP7MxP3MxOzMtW7MBD19rDbXQLM+T6HYy7V77Pp0+6eiUOJ7nIlTVnwH4WZLHduDgoJlEjz8F4CmvNZA5Ro8O0mxM5BbzMxvzMxezIye3p5tfsu/PSmPfufb9P12+BpEn+/fv97sE8oD5mY35mYvZmaemKYKNjR2pd8yQ20bic7B67b4nIocm28leO/lrsK5f3Jh5eUTujRw5MvVOFFjMz2zMz1zMzjyr1m/N6fHdNhLvAPAKgDIAr4vIShE5LvqgiBwuIu+B1ZhcDOtawduzVCtRWngtqdmYn9mYn7mYnXlyOZE24PKaRFXtFZFLADwO4DgAP4k+ZN+32vcCa8WTS1W1KxuFEqXr8ssv97sE8oD5mY35mYvZkZOr0c2xJ4mMAvBpAJ8EUAogvo/6TQC/APAtVd2bhRrzjqObzRaJRDBp0iS/y6AMMT+zMT9zMTvzLFuzARsbO7Dj9g8CyP7o5ozWblbV/ar6fVU9HsA4WBNszwNQpKrHqOpNpjYQyXzd3d1+l0AeMD+zMT9zMTtycnW6WUSOAQBVbYpuU9X9AOqG2H+/qrYmepwoF/ibsNmYn9mYn7mYHTm57UncAaDRxf7/AvAPl69B5ElbW5vfJZAHzM9szM9czI6cMjndnNb5bhE5Atap6CMzeA2ijE2dOtXvEsgD5mc25mcuZkdOQ55uFpHrAXwmwfakS9pFdwFwtH3/74yrI8pAQ0MDZs6c6XcZlCHmZzbmZy5mZ4aapghWrd+Krn19eH1XZ05fK9U1iZNgzYkYTxJsS0YBfNtlTUSe8B85szE/szE/czE7M6xavxXr6/JzaUCqRuI6AM/YfxYAf4HV8DsnzeM3xg9yIcqH2tpaVFRU+F0GZYj5mY35mYvZmSE6gfb4wgLMOmoCisYU4Kc5ei1X8ySKSD8AVdVQr93DeRKJiIgoiKJzIy4qK8ZD15wOALBWQ/Z/nsRSpH+qmUJsx44dEJGEt0mTJuHUU0/Fbbfd5su8W7W1tRk/d+vWrbjqqqswf/58TJw4EUcccQROP/10fOELX8C//x3cy2sPHDiAI444AiKCcePGYe/e5NOU/uxnP4OI4IorrhjymH/9618hIjjnnMQnDlQVDz30EC644AJMmzYNY8eOxXHHHYfzzz8fDz74YMa/ZHnJL1P79u3DrbfeikWLFmHixIkoLS3FhRdeiA0bNrg6zoc+9CG8733vS3j7wAc+MGj/J598Etdeey2uuOIKPPDAA0mPW11djdGjR2Pbtm2u31u++ZEfZQezo0FUNSc3AGMB7AbwWK5eI4e1q/XRUDLbt29XADp27FhdsmRJ7Hbeeefp0UcfrdHPcPr06frGG2/4XW5afvKTn2hBQYEC0JKSEl28eLHOmzdPJ0yYoAB03Lhx+tRTT3l6jejntnz58ixVbXnqqadinzkAve+++5Luu27durRqeOaZZxSAvvvd7x70WHt7u5511lmx1zvyyCP1rLPO0unTp6vdE69nnXWWvvPOO57fmxvRmtO5Rb3zzjt60kknKQAdP368nnbaaXr88ccrAB0xYoR+//vfT+u129vbh3y9goKCAfvffPPNg/ZZtmzZoOMeOHBAZ8+erdddd523D4eIQuHiu/6hx37xd3rxXf+IbYv7dy277aGMngSMBjAfwFlJbu+CNWClH8DebBed6xsbialFGzulpaUJH9+xY4eeeeaZCkBnzZqlBw4cyFttW7dudf2cF198UUeNGqVjxozR++67b0C977zzjn7ve99TEdHJkydra2trxrXlqpF4+eWXKwA999xzFYC+//3vT7qv10ZiX1+fnnLKKQpAFy5cqFu2bBnw+EsvvaTz5s1TAHrFFVe4fi+Z5Bf1yiuvDPilxXmLfj5TpkyJPefb3/62AtD3vOc9umfPntj2p59+WsePH6+jRo3SV155JeVrP//88wpAP/OZz6Tcd+PGjSoiesEFF+j27du1tbVVr776agWgDz/88IB97733Xj3kkEM8/b3LJy/5kb+YnRkC3UiEtWZzD4ADadz6ATyR7aJzfWMjMbVUjURV1d7eXl28eLEC0Pvvvz9vte3bt8/1c2666SYFoLfeemvSfa699loFoD/72c8yri0XjcTu7m4dP368jhkzRpuamnTs2LE6atQobW9vT7i/10biT3/6UwWg55xzTtKewubmZp04caIC0MbGRlfvJ5P80vXlL39ZR4wYoevXr49tO+GEE3TEiBEJ/4P8/ve/rwD05ptvTnnsX/7ylwpAV61alXLfW265RUeNGqWdnZ2xbX19fTplyhS98sorY9t6enp02rRp+pWvfCXlMYMil/lRbjE7M+SzkejqmkQRORfAnXZPYg+AVlijngXAmwB2AtiPgxNufw/AxW5eg8Jj1KhRuOmmmwAA3/zmNwc93tfXh29+85t417vehYkTJ2LatGm49NJL8dprryU8Xrr7v/DCCxAR3H777WhoaMCyZcswefJklJSU4AMf+AAef/zxQcd+9dVXAQCnnHJK0vfzoQ99CKeeeir27Nkz6LGXXnoJy5Ytw/HHH4/x48dj/vz5WL16Nfbv3x/b54orrkBpaSkAYN26dWldF5iO3/3ud9i7dy8uvPBCTJ06FR/4wAewf/9+/OpXv/J8bKfe3l7ceuutAIDbb78dhYWFCfc7+uij8ZGPfAQAXNfR2pqbVTyff/55fPvb38ZNN92Ec889FwDQ39+P7du34+ijj8aMGTMGPSe63z//+c+Ux49eL3j88cen3LezsxOFhYUoKiqKbRs5ciQOPfRQRCKR2LYf//jH6O7uxhe+8IWUxwyKXOVHucfsaBA3LUoAj8LqHXwcwBh72//C6jVcYv88zt7WD+DWbLdq83GD3SK/+uqrB90ef/xxNw3+0EqnJ1FVtb+/XydPnqwAtKurK7Z99+7detpppykAnThxop5++uk6ZcqU2HWOzmv/3Oz/r3/9SwHolVdeqYceeqgWFBToKaecoqWlpQpARUS//vWvDzj+ihUrFIBeeumlrk+N33vvvTpmzBgVET3hhBP01FNP1dGjRysAfd/73qc9PT2qqnrHHXfo2WefrQD06KOP1iVLlugdd9zh6rUSWbp0qQLQ6upqVVV95JFHkl5LqOqtJ/Gvf/2rAtAzzzwzZV1dXV3a3NysHR0dLt6N6t69e13tn463335bZ8yYofPnz9f9+/fHtnd2dupVV1016O9D1Pr165NeK+j08Y9/XAHoxo0b9etf/7pefPHFes011+hdd9014O++qurDDz+sAPT222+PbYvmFt0WiUS0uLhY77zzzkzesm9ykR/lB7MzQ+U3q/XYL/5O596wLtY2QY56Et02nrbYDcJ5cduOtRuE33Ts+wsAvQAWZLvoXN/iPmxKIt1Goqrq/PnzFYC++uqrsW2f+cxnFICuWLFC33777dj2u+66S0eMGKElJSX61ltvZbT/pk2bYl+Y8vLyAac7q6urtaioSEeOHKl1dXWx7Zs3b9aRI0cqAJ09e7bedtttWlNTo/39/UO+tzfffFPHjRunhx9+uP7tb3+Lbd+5c6cuWrRIAehtt9026HPL1unmPXv26JgxY/Twww+PNX66u7u1qKhIR4wYoW+++eag53hpJK5du1YB6Cc/+cms1J/Irl27sn7Mr33tawpAn3nmmbSf09/fr+9///sVgK5evTrl/meccYYC0EMOOWTQgJTjjjtOX3jhhdi+Bw4ciF2zW15eHrvG87jjjov9/b7pppu0tLTUuFOAuciP8oPZmSGfp5tTTabtdLR9XxfdoKo7ROQdAOWOfVcD+BiALwBY5vJ1QufW6n/h9ZbcLp+TrllTJuCrVSfm7fWmTZuGF198EQ0NDZg9ezZaW1vxk5/8BLNmzcJdd92FgoKDfw2vueYavPzyy1izZg0efvhhXHXVVa73Hz16dOzxe++9N3aKFwA++MEP4sYbb8SXv/xlfO9738M999wDADj11FPx1FNP4bOf/Sxee+013Hjjjbjxxhtx2GGH4ZxzzsG5556Lj3zkI5g8efKA9xad5ueee+7BmWeeGdt+zDHH4MEHH0R5eTlWrVqFL37xi9n+WAFYp3L37duHj33sY7HPZezYsaiqqsIDDzyAhx9+GJ/97Gez9npbt24FAJSVZXcmrF/+8pf4xS9+AQDYv38/Ro0alXC/73znOzjppJNcHbutrQ3f/e538cEPfhBnn312Ws/p6urCJz/5Sfz+979HWVlZWpcFRE83L1q0CN/61rcwa9YsNDY24tvf/jYefPBBLFu2DK+99hoKCwsxYsQIPPXUU7j55pvx29/+Fnv27MHHP/5x3HHHHRg3bhx27dqFO++8E3ffffeAv88mMK1eOojZBV9NUwQbGzvy9npuG4k9sKa2GQXgnbjt2wE41/P5l31/VkaVhczrLZ15DTZIrF9yDk72+corr6C3txdLly4d0OCLWrp0KdasWYONGzfiqquucr1/VEVFBU477bRB+1911VX48pe/jJqamgHbzzvvPLz22mt45ZVX8Kc//Ql//vOf8eyzz+LRRx/Fo48+is9+9rP4/Oc/j2984xsYMcK6nPeFF15AQUEBli5dOuh1SktLMXfuXGzcuBFvvvkmjj766EH7eHX//fcDAC6//PIB25ctW4YHHngADzzwQFYbiW+//TYAJL0WMVPbtm3DU089lXK/G2+80fWxv/a1r+Htt9/Gbbfdltb+jzzyCG644QY0NzfjiCOOwBNPPIGxY8cO+Zz+/n7ccMMNGDt2LK699trYf7Zz5szBAw88gN27d+Ppp5/Gvffei09+8pMAgEMOOQR33nkn7rzzzkHHu+WWWzBjxgxccsklAKzv0BNPPIEXXngBxxxzDC644AIcfvjhbj4GIgqBVeu3xv5cNMZtE849t6/QDOBQWNPf/CVu+1YA7xeRQlXtsbf12/eTPFUYErOmTPC7hJh819LUZK3MOH36dAAHe6O+9a1v4Vvf+lbS57W3t2e0f29vL4DkAwiOOOIIFBUV4Y033kj4+Jw5czBnzhzccMMN6Ovrw3PPPYf77rsP69atw7e//W2MGjUqNnhj69at6OvrwyGHHJK0rmht2W4ktrS04JlnnsGIESPwP//zP7FGOGBNDg0AmzZtwhtvvIHjjjsuK68ZHdzR0NCQleNFffWrX8VXv/pVANbF80ceeWRWjvuf//wH//d//4fzzjsPJ544dO/5rl27sGLFCjz55JMArIFKa9asSasxNmLEiCF7iz/1qU/h6aefxssvv5zyWPX19fjpT3+K6upqjBgxAj09Pbjgggvw9NNPx/Y5/PDD8Zvf/AaLFy9Oebx8i37/yDzMLrhqmiJYtX4rNm0/2Nl0fWXqQXJeuW0kPgtgDoAfisjFqrrF3v4igCoAH4W13jNgzZUIWCOeh718nt4NElXFjh07ACB22revz1p3ctasWZg2bVrS50bXEHW7f7TBlqjXMaqgoCD2D+KePXvw7LPPYsqUKViwYMGg/c4++2ycffbZqKqqwtKlS/GDH/wAt9xyC0QEfX19GD16dGwUbDLJTp968dBDD6G/3/pdbP369Un3e/DBB/GlL31p0PZoD28yiR6fOdM6YVBXVzfoMafNmzfjve99L0pLS9NqHEXFj/j16t5778W+ffuwYsWKIff7y1/+gv/6r/9CR0cHTjzxRPzgBz/Ae97znqzVEf2FZefO1P8c3nzzzVi8eDGWLFkCALj11luxfv163HXXXbjkkktQV1eHj3/847jssstQW1ub9V5dr7KZH+UXswuuVeu3Yn1dW+znyvISnHzMpJy/rttG4h0ArgIwG8DrIvJfqvobAL8FcCuAVSJSCmAfgM/CupDyr9kqlszz+9//Hu3t7TjxxBNjjbdob9RFF12Er33taymP4Xb/6BQiyXq72tvbEYlEcPLJJwOwet2WLl2KhQsXYuPGjUmPe+GFF+LQQw/Fnj170NHRgcMOOwwzZszAyy+/jMceeyzv1/NETzU//fTTOO+88wY9/utf/xoXXXQRHnjggQGNxGOPPRZA6gZLtHEf7QEGrGs3i4qK8PTTT6O2tjbWME/kySefRCQSwfz581O+l/hrEt95552kp3fdXJOoqlizZg2Ki4tx4YUXJt3v1VdfxdKlS7F3717cdNNNuPXWW1036l977TW8+OKLWLBgAWbNmjXo8Wgvd6oe3U2bNuHXv/71gOUAH3nkESxbtgzXXHMNAGDhwoX44Q9/iPe///146aWXcMYZZ7iqNdc6OjrY2DAUswuurn1WZ8n4wgIsLC3OSy8igIwm054P4HVYp5M/Erf9bntb/ETa/wFwTLZH2+T6Bo5uTindybSjIz4ffPDBAc8dMWKEnnbaaQlHDz/00EO6dOlS/dOf/pTR/vX19bGpbuJHVEfddtttCkA//vGPx7YdccQROmrUKH355ZeTvp/W1lYFoEcddVRs25VXXqkA9Mknnxy0f09Pj370ox/Vq666asB7RxZGN0ff4+TJkwdM6RLv7bff1nHjxg0aWb5nzx4FoEVFRQlHP0d98IMfTDiy95ZbbolN79Pb25vwubt379YjjjhCAegjjzyS8v1Ej5nq5mZ0cnT6mquvvnrI/c4777y0J8FO5tlnn419JonceOONCkDvvvvuIY/z7ne/Wy+66KIB2yZNmjRoSb4XXnhBAehvf/vbjGvOFdNGY9NBzC64Eo1ojhfXbslueyjjJwITAUyM+3kEgBsAbADwEoD/M7GBqGwkpsXNsnyzZ88eNPdgdBm5L37xiwMaGn//+9/1sMMO0zFjxmhbW1tG+8ev3zt//vwBDaEnnnhCx48fryNGjBjQcIqurHHsscfqY489Nuj91NbWxlaP+Z//+Z/Y9i1btmhBQYGWlZVpTU1NbHtnZ2ds7qobbrhh0Oe2dOnS5B9uGqKNqpUrVw6530UXXZRwxZDo6jGnnHKKvvTSSwMea29v109+8pMKQMvKyjQSiQx4vKurS6dNm6YA9LTTThswlZCq1YCNrut8/vnnp5xGyClbS4N97nOfUwD6i1/8Iuk+b7zxhoqIzpkzx9NrHThwQMvKyhSA3nHHHQPe88MPP6xjxozR6dOnD7mW9ZNPPqkFBQWDPs/zzz9fDz300Nj2ffv26Yc//GEdOXKkNjc3e6o7F7i0m7mYXXAZ10gM842NxNSijZ2xY8cOWBv3vPPO06lTp8b+wpaVlekbb7wx6PnNzc1aUVGhAPSwww7TxYsXa0lJSawHML7n0e3+0doWLFigRx55pI4ZM0YXLFig06dPj9V1yy23DKrpiiuuiD1eXFysp556qp511ll63HHHxbZfeOGF2tfXN+B53/nOd3TEiBE6cuRIPfHEE3X+/PmxORcXLFgwYCLlSCSiALSwsFAvvPBC/dGPfhR77KKLLtIlS5bo008/nfLznzlzpgKI9Z4mc//99ysAnT59+oDt77zzjlZWVsbe1/Tp0/Xss8/WE088UceMGaMAdOrUqfriiy8mPG5bW5suWbIk9vzDDz9czzrrLJ0xY0bsvZ9yyina0tKS8r3kSnl5uQLQHTt2JN3n0UcfVcBay3moNZ+//e1vx57z9NNP65IlS/QTn/jEgGNt2rQp9tkdc8wx+q53vUuPOeaY2N/ZZ599Nmkd/f39evLJJyds9NfU1Ojo0aN1zJgxAyaR/+IXv+j+QyEiIxnRSASw1u4hHJXtQoJ0YyMxtWhDLNFt/PjxOm/ePP3mN785YOJrp7fffltvvPFGXbRokRYVFem0adP0wx/+8IBJhzPZ/+mnn46d0t25c6d+7GMf07KyMp08ebKef/75CXsKozZu3KiXXHKJnnzyyTpx4kSdNGmSzp07Vy+++OIhT3U+88wzeuGFF+qxxx4be//f/e53tbu7e9C+t99+u06ePFnHjRunn//852PbJ02apAB03bp1SV9H9eCpxsmTJw9qsDp1dnbGGi7PP//8oMerq6v1wgsv1FmzZum4ceN02rRpWllZqd/5zneG7PVStRo299xzj1ZWVuoRRxyhY8aM0RkzZuiSJUt07dq1rleuiXr99dczel686N/PY445Zsj9vve976V1mvujH/1o7DnRycgT9aLX1tbG/r6NHTtW58yZoytXrkw5SfEvfvELHTt2bNLT/y+//LKed955OnHiRJ01a5beeeedrnto8yUb+ZE/mF1w+dVIFOvY6RGRvbCW3atQ1fq0n2gYEbFaii4+GwqOHTt2oLS0FMuXL8e9997rdzmuXHbZZViyZAkuu+wyv0shIqKAWLZmAzY2dmBRWTEeuub0QY9Hp0BTVRn0oAcjXO7/jH2/MJtFEGVTdF5F07S3t+OFF16ITTMzXNXW1vpdAnnA/MzF7MjJbSPxcwB2A7hdRCan2pnID8km0Q66hQsXoqqqCgsXDu/fwYaaVoeCj/mZi9mRk9t5EncDuBDA/QDeEJH/A1ADYBesuRETUtW/ZVogkVvZXg0kX0ytO9vq6+uHfW+qyZifuZgdObltJLbH/VlgTZidimbwOkQZG2pVFgq++Mm7yTzMz1zMjpzcNt52wmr0EQXWyJEjOejIYM3NzbElHMk8zM9czC6Yapoi2NjYkXrHHHDVSFTVslwVQpQtJSUlfpdAHjA/szE/czG7YFq1/uBgzKIx+T0x63bgClHgRdduJjMxP7MxP3Mxu2CKrtsMIH9rNtvYSKTQGTdunN8lkAfMz2zMz1zMLtgWlRXj5GMm5fU12Uik0Onr60u9EwUW8zMb8zMXsyMnNhIpdPr7+/0ugTxgfmZjfuZiduTERiKFTmFhod8lkAfMz2zMz1zMLnj8HNkMsJFIIdTZ2el3CeQB8zMb8zMXswseP0c2A2wkUghNnswVI03G/MzG/MzF7ILHz5HNABuJFEItLS1+l0AeMD+zMT9zMbvg8mNkM8BGIoVQWRnnfDcZ8zMb8zMXsyOnjBuJIvIeEVklIs+LyBYRedPePk1ELhWR0dkrkyh9W7Zs8bsE8oD5mY35mYvZBYvfg1YA92s3Q0TGA3gQwJLoJvs+uljuZAD3AbhVRM5T1e1ei/TLypUrB22rqqpCVVWVD9VQusrLy/0ugTxgfmZjfuZidsFR0xTB0tXPxX6OH7RSXV2N6urqvNQhqpp6r+jOIgUA/gTgLFiNwycA/B3AtwGoqo4UkWMA/APA0QCaAJygqj3ZLjyXREQBwM1nQ8FRW1uLiooKv8ugDDE/szE/czG74FixbjPW17XFfn7susVDXpMoYvXXqaok3SkDbhuJlwH4OYAeAEtV9Y/29n7YjUT75yIAfwMwB8DnVfWH2Sw619hIJCIiIj84exFTNRCB3DUS3V6TeBWs08q3RBuIiahqF4AbYfU2XpR5eUTu1dXV+V0CecD8zMb8zMXsgiF+bsTK8hJfRjVHuW0knmDf/yqNfTfY98e5fA0iT0444YTUO1FgMT+zMT9zMbtg8HtuxHhuG4nRKyd3p7Fv9FztGJevQeRJY2Oj3yWQB8zPbMzPXMwuWPyaGzGe20biy/b9gjT2PdG+f9XlaxB5MmXKFL9LIA+Yn9mYn7mYHTm5bSRuhnWd4XfSmAfxJli9iS9lUhhRptrb2/0ugTxgfmZjfuZiduTktpF4O4AdsEYtvyAi7xWRwvgdROR4EXkIQBWAdgC3ZaVSojRNmDDB7xLIA+ZnNuZnLmbnvyBMoB3PVSNRVTsBXArgLQCzATxp/1kBQES6ANQB+AisaXJWqGpb4qMR5UZPj1HTcpID8zMb8zMXs/Nf/Mjm+Am0/eJ6WT5V/QeAGQB+DKAXwChYp6AFwDhYDcaHAJSr6u+yVypRekaM4JLkJmN+ZmN+5mJ2/gvSyGYgg2X5AEBVOwBcLyKfBVAKYCasUcz1AN5Q1d5sFUjkVkGB/799UeaYn9mYn7mYXXAEYWQz4LInUUQOj/9ZVftVtUFVn1LVx1S1lg1E8lt3d7ffJZAHzM9szM9czM5fQbseEXB/urlZRH4rIh+y13EmCpxJkyb5XQJ5wPzMxvzMxez841yKLwjXIwLuG4mjYI1afhTALhG5U0ROyX5ZRJlra+NYKZMxP7MxP3Mxu/yraYpgxbrNAxqIQDCuRwQAUdXUe0V3FvkYgGUAzgcwGgdXVXkdwL0Afqmq/852kfkmIgoAbj4bCo6+vj5eW2Mw5mc25mcuZpdfzt7DqMeuW+z6ekQRAQCoqmSjtii3U+Dcr6oXAigBsBzAHwD0wVpd5bsAmkTkcRG5SERGZbNQonQ1NDT4XQJ5wPzMxvzMxezyJ1EDsbK8JKMGYi656klMeACRSQA+DKuH8RxYI6YVQATA/QB+rqqbPb1InrEnkYiIiHJlxbrNWF938PS+18ZhIHoSE1HViKr+VFXPB3AUgGsB/AXABACfArDB62sQuVFbW+t3CeQB8zMb8zMXs8uf+PkQg9Z7GC/bM2f2AegGsBfAfhycZJsobyoqKvwugTxgfmZjfuZidvkXlPkQk/HcSBSREhFZKSJPAWgD8DMAFwIohLVE361eX4PIDf42bDbmZzbmZy5mlx9BnA8xmYyGMYnIsQA+BOtaxDMwsMewAdayfA+q6qvZKJLIDf42bDbmZzbmZy5mlx9BW595KG5XXLlZRF6A1RC8A8CZ9jGa7Z8XquoMVf0SG4jkl23btvldAnnA/MzG/MzF7HKvpikyYMBKUOZDTMZtE/YbcX9uBfAIgIdU9R/ZK4nIm2nTpvldAnnA/MzG/MzF7HIvvhexsrwk0NcjAu6vSdwN4G4A5wI4WlU/wwYiBU1ra6vfJZAHzM9szM9czC734kc1B70XEXDfk3ikqh7ISSVEWVJcXOx3CeQB8zMb8zMXs8ut+AErQR/VHDVkT6KIHGPfjgQANhDJBF1dXX6XQB4wP7MxP3Mxu9wyacBKVKoqd8BaPaUWwGwRWZ/Ba6iqnpfB83y3cuXKQduqqqpQVVXlQzWUrtGjR/tdAnnA/MzG/MzF7HInmwNWqqurUV1dnY2yUhpyWT4R6bf/WKuqJ8b97Iaq6siMqvMJl+UzW0dHB0+bGIz5mY35mYvZ5U78MnyV5SVYu3xBVo+fq2X5UvUkrrPvd9n3y7P54kS50Nvb63cJ5AHzMxvzMxezyx3TBqxEDdlIVNUrHT//PLflEHlXVFTkdwnkAfMzG/MzF7PLPVMGrES5nUz7LBE5y+X+p7gviyhzHR1mLHdEiTE/szE/czE7cnI7vOavAPpdPK8awFsAjnX5OkQZO/LII/0ugTxgfmZjfuZiduTkdjJt4OAazUPvJDIPwAQAh2fwGkQZ27lzp98lkAfMz2zMz1zMjpxSzZP4FRE5EL3Bmg4H8duS3QC8YO+/I/dvg+igGTNm+F0CecD8zMb8zMXsyCmdnkTxcOsBcFPWqyYaQm1trd8lkAfMz2zMz1zMjpxSXVv4QxycBkcANMLqHSxL8/i7VHV/RpURZaiiosLvEsgD5mc25mcuZkdOQ/Ykqmqnqu60bzvitu9M88YGIuUdfxs2G/MzG/MzF7PLvpqmCFas24zXd3X6XUpGhlxxZbjiiitERETkRU1TBEtXPzdgWy5WWwFyt+JKqoErx9g3josnY9TX1/tdAnnA/MzG/MzF7LJr1fqtA36uLC8xarUVIPU1iTtgXYNYC2C2iKzP4DVUVc/L4HlEGZk+fbrfJZAHzM9szM9czC674pfie+y6xUattBKVzqTY0ZHKAHBOBq/Bc7aUV83NzSgtLfW7DMoQ8zMb8zMXs8sN05bii5eqkbjOvt9l3y/PWSVEWVJSUuJ3CeQB8zMb8zMXsyOnIRuJqnql4+ef57YcIu8ikQjGjRvndxmUIeZnNuZnLmaXPTVNEWxsNH8t7EyW5SMKNP4jZzbmZzbmZy5mlz3xg1aKxqRzZV8wZVy5iIwC0Kdx88SIyJUAlgCIAPijqj7quUIil/r6+lLvRIHF/MzG/MzF7LInftCKaSOa47nuSRSROSKyAcBeAEfGbf8ugHsAXATgKgAPicidXgsUkfeJyAYR6RKR3SLyuIjMc/F8EZFPiMhzItIhIq0isl5EPui1Ngqm/v5+v0sgD5if2ZifuZhd9pk8aAVw2UgUkVIAzwNYBGB03PZjAXzW/vFRAA/Yf/5vETkj0+JE5GIAjwM4DcB2AO8AqAKwwcVx74M1AOcUAPUA3gTwLgDVIvK1TGuj4CosLPS7BPKA+ZmN+ZmL2ZGT257EmwEUAngNwHsB/Nve/mEAIwE8rqrLVPVSAN+GNXXOdZkUJiLFAH4OYD+AM1R1tqpOBXA9gDEA1opIqsnAPwDgUgD/AnCcqp6mqvMBnASgDcCXRISLVYZMZ6eZyx+RhfmZjfmZi9mRk9tG4umw5j38pKr+SVWjfdNL7O0Pxe17r30/J8PaLoHVGPyGqm6IblTVVQD+AKAcqedtPNu+/5aqtsQdow7A/4P1/s/MsD4KqMmTJ/tdAnnA/MzG/MzF7MjJbSOx1L5/KbrB7s07zf7xr3H77rTvp2VUmdVIBIDfJHjs1/b9+SmOcYh9n2hC72gDt8hlXRRwLS0tqXeiwGJ+ZmN+5mJ25OS2kRjtix4bt+0UAOMBNKjqrrjt0YsbMh0uVQbgLVWtTfBYtGcx1ani39r3XxKRKdGNIlIO4FOwTmU/mWF9FFBlZWV+l0AeMD+zMT9zMTtycttIbLDv49diXmbf/96xb3RgSbPbokREAJQA2J1kl3b7fsheSlV9GtY1jDMBbLNHSb8A4FUA4wBcYp96phDZsmWL3yWQB8zPbMzPXMyOnNzOk/gIgMUAfiwiRbB6FP8b1uncXwOxBt6ZAH5ib38hg7oOs2vbk+Tx6DTmhyR5PF4LrB7Qw3DwtDgA/AcZNGAp+MrLy/0ugTxgfmZjfuZidt7VNEWwav1WvL4rHIOA3PYkrgGwBcBkWHMi/gjW4JL1qhq9HvFzAJ6Bdf2iAvhuNgp1GGnfDzmpk4hcBmtKng5YU+ccCuBoWKeaJwNYP9Sci/PmzcPcuXMxd+5czJs3D3PmzMH8+fNx0kkn4dRTT8Xs2bNj93fffTfq6uqgqmhoaEBPTw+am5vR2dmJtrY2tLe3IxKJoKWlBd3d3di+fTv6+vpQX18PAKitrR1wv23bNvT29mLnzp3o6upCa2srOjo60NHRgdbWVnR1dWHnzp3o7e3Ftm3bEh6jvr4efX192L59O7q7u9HS0oJIJIL29na0tbWhs7MTzc3N6OnpQUNDA1QVdXV1A45h4nvauHFj6N5TGHNK9p7+9re/he49hTGnZO9p48aNoXtPYcwp0XvatGlT6N5TvnO680/1WF/Xhr091pV2Y0Zoxu9p9erVmDNnzqC2yMknn4xTTjkl1iaZPXs2ckXiFkxJ7wkiEwH8AEAlrFO2fwLw36q62378BgDfgzXFzBWq6vqaP7s3shdAk6pOT/D4VABNAJ5V1bOdj9v7jLb3GQ/gJFV9w/H4MgAPAvi9qn7A8ZgCgNvPhoiIiIavZWs2YGNjB8YXFmBhaTGurzw+L5NpW80mQFUlm8d1veKKqr6lqleq6rGqeriqXhJtINoehTU9zdGZNBDt11BYjczDkuwS3b4ryeMAcAKs6xo3ORuItl8B2AdOgRM60d/MyEzMz2zMz1zMLntmHTUBa5cvMHq1FSCDRmIqqrpTVetV9YDHQzUAmCAiifpRo4NiGod4fvRU9NuJHlTVPliNRK91UsCccMIJfpdAHjA/szE/czE7cvLUSBSR6SLyHhG5VkQ+LSJLRGTQ6eEMRZf2+1CCx5Y69klkC6xG4AIRGTTARUTmA5gAoCbzEimIGhuH+t2Bgo75mY35mYvZkVNGjUQROV1E/g5gK4CnAKwG8EMATwDYak81c9oQh0jHAwB6ANwcfywR+TSsJQE3qeoryZ5s9xSuA3A4gHvtaymjx5iJgyvCrPVYJwXMlClTUu9EgcX8zMb8zMXsyMl1I1FEPgXg77CW6BMA7wCog7Wec7e9bRGA50TkmkwLU9U9AC6HNRXOBhF5RUSaYY2o3gXgiriaSkTkSftWEneYL8DqKfwIgGa78foKrLWcTwKwTlV/mWmNFEzt7e2pd6LAYn5mY37mYnbk5KqRaK9U8l1YDcE/AzhTVYtU9URVPVlVx8OaR/EZe587ROT4TItT1UdgTV2zEcBxsEZTPw7gLFV9PW7XsbDWj16CuNVgVLULwAIA/x+Af8IaUHOYXfuHVPUKUOhMmDDB7xLIA+ZnNuZnLmZHTm4n074BViPsLwDOV9VB8xSq6gYReQ/sRqT9nE9mWqCqPgXrlPZQ++yA1ShN9FgfrCl5vpdpDWSWnp4e/mNnMOZnNuZnLmZHTm4biSfBmiD7q4kaiFGqekBE/hdWj+LcjKsjysCIEVkftE95xPzMxvzMxewyE11lpWtfX2hWWoly20icZd//M419X3Y8hygvCgrc/rWmIGF+ZmN+5mJ2mVm1fivW17UN2FY0JhyfpdtfG1rt+6lp7Hu04zlEedHd3e13CeQB8zMb8zMXs3OvpikSayCOLyzAorJiVJaX4PrKjIdjBIrbpu4rAGbAGi38tRT7Xhz3HKK8mTRpkt8lkAfMz2zMz1zMLn3RU8zxPYgLS4uxdvkCH6vKPrc9iY/DGiDyvyLyiWQ7icjHAfwvrOsXH8u8PCL32traUu9EgcX8zMb8zMXs0pfoFHNYeg/jibVMsosniPwGwIWwGoBbAPwJB5fHKwVQCaACVmPyMVVNtGJKoImIAoDbz4aCoa+vj9fWGIz5mY35mYvZpW/Zmg3Y2NiB8YUFWFhajOsrj/d1nWYRa4IXVU0400umMhnKdAWA/4O1NnI5gOtwcIqZ/4Y1UEUB/BTAldkpkyh9DQ0NfpdAHjA/szE/czE792YdNQFrly/wtYGYS65/ZVDVCICVIvJDAB+DdY3iDFg9h9vs2wOq+lr2yiRK38yZM/0ugTxgfmZjfuZiduSU8aRIqvq6qn5ZVT+qqqeq6nxVXaaqX2IDkfxUW1vrdwnkAfMzG/MzF7MjJ08XH4jIGABlsJbMKwRQD2Cbqr6ThdqIMlJRUeF3CeQB8zMb8zMXsyOnjHoSReQ4EfkFgC4A/4I16vlhADUAukTkURFhvzX5gr8Nm435mY35mYvZpVbTFMGKdZtDt7JKMpmMbl4G4D4AI3FwveQuAH0AJtk/K4ADAC5X1QezUmkecXQzEREROa1Yt3nA1DeV5SWBmBsxEKObReQEAPfAOk29A8DVAI5Q1QmqWgxgMoBPAGiw97mbPYqUb9u2bfO7BPKA+ZmN+ZmL2aXWta8PgLW6SphWVknGVU+iiKyB1TDcCmCRPdI50X4TAWwEcDyA/1PVa7yXmj/sSTRbb28vRo8e7XcZlCHmZzbmZy5ml1x0hZVN2zuwt6cPi8qK8dA1p/tdVkwgehIBzId1KvmGZA1EAFDVtwB8AdbpaP/7YWlYaW3lcuEmY35mY37mYnbJRVdY2dtj9SQWjRkek467fZfl9v2GNPb9h31/nMvXIPKkuLjY7xLIA+ZnNuZnLmaXWE1TJHYdYvwKK8OB257E6NWak9PYd5J9/y+Xr0HkSVdXl98lkAfMz2zMz1zMLrFV67fG/rywtDjUK6w4uW0kVtv3l6Sx70X2/UaXr0HkCa+pMRvzMxvzMxezSyw6WAXAsOlBjHJ7uvnrAD4C4H9F5N8A7lbVfudOIvIRAN8A0AHgu56r9MnKlSsHbauqqkJVVZUP1RAREZFfFpUVB6IHsbq6GtXV1al3zAK3o5vnwRqxfBeAiQAaATwBYDuAXlirr5wDYK79lB8DeCHZ8VT1vgxqzjmObjZba2srjjzySL/LoAwxP7MxP3Mxu8FqmiJYuvo5AAjciOZ4uRrd7LYn8UVYo5sBa+TydAD/7dgnvkDnY06BbCSS2YqKivwugTxgfmZjfuZidgPFNxCB4TOiOZ7bd/xXHGwkEgVSR0cH/7EzGPMzG/MzF7MbKH7ACjD8rkcEXDYSVfWcXBVClC08XWI25mc25mcuZjdQ/ICVx65bHIjrEfPN7ehmosDbuXOn3yWQB8zPbMzPXMwusaAMWPEDG4kUOjNmzPC7BPKA+ZmN+ZmL2ZETG4kUOrW1tX6XQB4wP7MxP3MxO3JiI5FCp6Kiwu8SyAPmZzbmZy5mR05sJFLo8LdhszE/szE/czG7g2qaItjY2OF3Gb5jI5FCh78Nm435mY35mYvZHRQ//c1wnB8xio1ECp36+nq/SyAPmJ/ZmJ+5mN1Bw3m95nhsJFLoTJ8+3e8SyAPmZzbmZy5mN9hwnv4G8NBIFJERIjJfRK4VkZtE5Fv29nEiMi57JRK509zc7HcJ5AHzMxvzMxezI6eMTrSLyEcAfBfAMY6HbgZQDuDPIvJjVf2yx/qIXCspKfG7BPKA+ZmN+ZmL2ZGT655EEfkcgAcBTIO1jnM9AInbpR/ABAA3icjPs1EkkRuRSMTvEsgD5mc25mcuZmeNal6xbjNe39XpdymB4KqRKCLzAHzP/vEBAEep6oDhUKpaA+AiAD0ALhURrvdMeTVuHK92MBnzMxvzM9dwz66mKYKlq5/D+ro27O2xBq4M55HNgPuexBtg9Rr+XlUvVdX/JNpJVX8D4Mv2vp/2ViKRO319fal3osBifmZjfuYa7tnFT3sDAJXlJcN6ZDPg/prERbBOMX8jjX0fBnAHgBPdFkXkRX9/v98lkAfMz2zMz1zDObuapgjW17XFfn7susXDelRzlNuexCn2/Wtp7BvtZTza5WsQeVJYWOh3CeQB8zMb8zPXcM4uvhexsryEDUSb20biFvs+ncmUptn3b7h8DSJPOjt5wbHJmJ/ZmJ+5hnN2nDw7MbeNxJft+2vT2Pcj9v0rLl+DyJPJkyf7XQJ5wPzMxvzMxew4ebaT20biPQAOALhWRG4WkYTPF5H3w5ozUQH8zFuJRO60tLT4XQJ5wPzMxvzMxezIyVUjUVU3ArgV1qjlrwPYLiL3RR8Xkf8nIs8BqAZwCIDVqvqnLNZLlFJZWZnfJZAHzM9szM9czI6cXE+mrarfBHAVgFYAUwFcaj8ksE5Dnw5gL4AbAXw+O2USpW/Lli2pd6LAYn5mY37mYnbkJKqa2ROt9Zk/BOAEADMBjIG1+ko9gMeTzaFoAhFRAMj0syEiIqLgq2mKYNX6rdi0vQN7e/qwqKwYD11zut9luSZiLXynqpJiV1cynkpcVbsB/DKLtRBlRW1tLSoqKlLvSIHE/MzG/Mw1HLNbtX7rgPkRh/sKK05Z/zRE5BAA+1TV+KnbV65cOWhbVVUVqqqqfKiG0jXc/pELG+ZnNuZnruGYXXTqm/GFBVhYWmzE9DfV1dWorq7Oy2tldLpZRMphrb7yqKq+bW8rBfBzAGcA2AfgzwCuNPG0M083m62urg7l5eV+l0EZYn5mY37mGm7ZRddqBmDsaeaoXJ1udj1wRUS+BWvFlZ8CmBD30P0AzrSPORbA+wE8JyJjslAnUdpOOOEEv0sgD5if2ZifuYZbdvGrrPA0c2KuGoki8kFYo5ZHAHgTQK+9/V0ATgPwFoAPAFgCoBnAcQAuz2K9RCk1Njb6XQJ5wPzMxvzMNdyy4yorqbntSfw0rAmyf6Kq01R1t719qX2/RlWfVNU/wpr+RgBckpVKidI0ZcqU1DtRYDE/szE/cw3X7LjKSnJuG4kz7fvbHdvPgdV4fDJu21/s+1L3ZRFlrr293e8SyAPmZzbmZ67hlF1NUwQbGzv8LiPw3DYSS+z7XdENIjIBwEkA9gPYGLfvW/b9kRlXR5SBCRMmpN6JAov5mY35mWs4ZcfrEdPjtpHYZN8fE7ftXPs4G1W1J277Efb9bhDlUU9PT+qdKLCYn9mYn7mGS3Y1TZEBcyPyesTk3DafXwdwPID/BnCDWGOu/xvWqebHHftGB6w0gSiPRoxwPWifAoT5mY35mSvs2UVXV4lvIFaWl/B6xCG4bST+ENYglc+IyAIAowEsANAD4GEAEJHZAD4H4BOwGo+/ylKtRGkpKOCpA5MxP7MxP3OFPTtnAxFgL2Iqrn5tUNVnYQ1aEQCLYTUQAeBWVY32GL4XwBX2sbcB+El2SiVKT3d3t98lkAfMz2zMz1xhzy5+dZXK8hI8dt1i9iKm4PrXBlW9SUR+D+A8AOMA/ElV/xC3y9sAngewAcBX7TWeifJm0qRJfpdAHjA/szE/c4U5u/jRzLOOmoC1yxekeAYBGay4AgCq+jdV/aqq/n+OBiJUdY2qnqGqn1fVruyUSZS+tra21DtRYDE/szE/c4U5O45mzky4r1KlYWnq1Kl+l0AeMD+zMT9zhTk7rq6SmaTNaRE5K1svoqp/y9axiFJpaGjAzJkzU+9IgcT8zMb8zBXG7KIjml/f1QmAq6u4Jaqa+AGRflijk71SVTWqb1dEFACSfTZEREQUXImmuwGsKW/CeD2iNSMhoKqSzeMO1Xjbgew0Eonyqra2FhUVFX6XQRlifmZjfuYKU3bJGog81exO0p7E4Yw9iUREROZatmYDNjZ2YHxhARaWFuP6yuNDfZo5Vz2JHLhCoVNbW+t3CeQB8zMb8zNXWLJLNN1NmBuIuZSzRqKIjBaRF0Xkx7l6DaJEwnK6ZLhifmZjfuYKS3ac7iZ7Mm4kishhInJMkts0AFcDmIeDazgT5cW2bdv8LoE8YH5mY37mCkt2nO4me1w3sUVkKaw1nI9J8ymvuH0NIi+mTZvmdwnkAfMzG/MzVxiyiz/VzOluvHPVkygipwJ4FMA0WOs3D3UDgAcBXJytYonS0dra6ncJ5AHzMxvzM5fJ2dU0RbBi3WYsXf1cbBtPNXvn9nTzp+3nbABQCmAMgP8Ha6qcd6vqCADHA/ipvf8/VLUlO6USpae4uNjvEsgD5mc25mcuk7NLNOUNTzV757aReCqsBuH/qOpOVd0P4Eeweg7PBQBVfUNVrwLwBwC3iUi4pm+nwOvq4pLhJmN+ZmN+5jI1u5qmSKyBOL6wAJXlJXjsusU81ZwFbhuJR9v3/4zbthVAL4Byx753ABgH4KbMSiPKzOjRo/0ugTxgfmZjfuYyNbv40cwLS4s55U0WZTq6OTbLtFozTu+AdZo53sv2/bkZvgYRERHRkDiaOXfcNhKb7PsTHdvfADBLROKvEn3Hvj88k8KIMtXb2+t3CeQB8zMb8zOXidlxNHNuuR36sxlWA/F2EblQVTvt7S8DOB/ABwH81t52qn1v7MCVlStXDtpWVVWFqqoqH6qhdBUVFfldAnnA/MzG/MxlYnbDceLs6upqVFdX5+W1XK3dLCIn4uC8hz0APqSqfxSR0wE8B+DfsK5B3AfgFgAzADykqh/LZtG5xrWbzbZz585QzPc1XDE/szE/c5mYXXSNZgDDerBKINZuVtV/AbgQQCeAsQAm2ts3AHgCwBEA1gL4BaxrFPcB+HoW6yVK6cgjj/S7BPKA+ZmN+ZnL5Ox4qjk3XA9cUdXfASiBteTec3EPXQzgxwDaALwF4M8AzlTVcKwYTsbYuXOn3yWQB8zPbMzPXKZlF389IuWGq9PNwwVPNxMREQXbinWbY/MjVpaXYO3yBT5X5J+8n24WkfEiMj6bL0aUD7W17Lw2GfMzG/Mzl2nZceqb3BtqKNBbAPpT7EMUOBUVFX6XQB4wP7MxP3OZmh2vR8ydVNckJu22FJEXReSFLNdD5Jlpvw3TQMzPbMzPXCZlx+sR88NLL+E8xK28QhQUpv42TBbmZzbmZy6TshuO8yP6IdNl+YgCq76+3u8SyAPmZzbmZy4TsqtpimDFus3YtP1gLyKvR8ydpKObRaQf1tLMIzN53GQc3Wy2vr4+FBTwN0tTMT+zMT9zmZBd/IhmgKOaowIxmTaRCZqbm/0ugTxgfmZjfuYyIbvoiObxhQWoLC9hL2KOBftXBqIMlJSU+F0CecD8zMb8zGVSdrOOmsAexDxgTyKFTiQS8bsE8oD5mY35mYvZkRN7Eil0xo0b53cJ5AHzMxvzM1eQs6tpimDV+q14fVen36UMK2wkUuj09fWl3okCi/mZjfmZK8jZrVq/dcCAFU57kx8pP2URWe/lcVgjoM9zVRWRB/39/X6XQB4wP7MxP3MFMbtoD2J0ypvxhQVYWFrMASt5kqqRKADO8fA4wAm3Kc8KCwv9LoE8YH5mY37mClp2NU0RLF393IBtC0uLOWAlj4ZqJK7LVxFE2dTZ2YkJEyb4XQZliPmZjfmZK2jZxa+qAoBT3vggaSNRVa/MZyHJiMj7AHwFwEkA9gF4DsBXVfVlF8coBfBVAOcDmACgDsBqAOuUM2aHzuTJk/0ugTxgfmZjfuYKWnbROREB4LHrFuPkYyb5V8wwFegpcETkYgCPAzgNwHYA7wCoArBBRM5I8xgnAXgZwHJY7/dVACcC+CmA72W9aPJdS0uL3yWQB8zPbMzPXEHNblFZMRuIPglsI1FEigH8HMB+AGeo6mxVnQrgegBjAKwVkXTqvw/AJADXAjhKVU8HMAtAM4DPicgpuaif/FNWVuZ3CeQB8zMb8zNXkLKraYpgY2NH6h0ppwLbSARwCazG4DdUdUN0o6quAvAHAOVIMWhGRE4DcDKAe1R1TfTUsqo2AvhfWANvPpyb8skvW7Zs8bsE8oD5mY35mStI2cVfj8jpbvwT9EYiAPwmwWO/tu/PT3GMq+z7exM89ksApQDudF0ZBVp5ebnfJZAHzM9szM9cQcou/npEDlbxT5AbiWUA3lLV2gSPRXsWK1Ic4zQA78T3REap6n5V3aGq//FYJwVMbW2ivzJkCuZnNuZnriBmx+sR/RXIRqKICIASALuT7NJu309LcaijAPxbRCaJyGoReUVE3hKRf4jIZ9O8ppEMU1GR6ncHCjLmZzbmZy5mR05BbSQdBmt6nj1JHo9ezXpIsgOIyBgAxfaPzwFYaf95C4B5AH4A4I9sKIZPXV2d3yWQB8zPbMzPXMyOnExtII2074daQyjaQCyFterLbFWdo6oLARwHYBOASgCfSnaAefPmYe7cuZg7dy7mzZuHOXPmYP78+TjppJNw6qmnYvbs2bH7u+++G3V1dVBVNDQ0oKenB83Nzejs7ERbWxva29sRiUTQ0tKC7u5ubN++HX19faivrwdwsJs/er9t2zb09vZi586d6OrqQmtrKzo6OtDR0YHW1lZ0dXVh586d6O3txbZt2xIeo76+Hn19fdi+fTu6u7vR0tKCSCSC9vZ2tLW1obOzE83Nzejp6UFDQwNUNfaPRPQYJr6noqKi0L2nMOaU7D1Fpy4N03sKY07J3lNRUVHo3lMYc0r0nsaPHx+Y93TgwAEA1lKBwzWn1atXY86cOYPaIieffDJOOeWUWJtk9uzZyBUJ4lzS9unmXgBNqjo9weNTATQBeFZVz05yjEJY8yoCwAJVfcHx+MkAagD8Q1UXOx6LjoL2+E7IDw0NDZg+fdBfGzIE8zMb8zNXkLJbtmYDNjZ2YFFZMR665nS/ywk8q9kEqKpk87iBHFeuqioibbBOOycS3b5riGP0iMhbsBrCLyR4/J8ishfWSi4UIlOmTPG7BPKA+ZmN+ZmL2ZFTkE83NwCYICKJ+lGjq600pjjGmwBGi8hI5wP2tYgjAOz1VCUFTnt7e+qdKLCYn9mYn7mCkh0n0g6OIDcSH7DvP5TgsaWOfZL5DYBCWNceOi2GNfDl1UyKo+AK0gL15B7zMxvzM1dQsuNE2sER9EZiD4Cb7ZVTAAAi8mkA7wWwSVVfSXGMe2ANblljX4MYPcYJ9mMA8KOsVk2+6+np8bsE8oD5mY35mSso2XEi7eAIbCNRVfcAuBzWdZMb7DkOm2E16nYBuCK6r4iUiMiT9q0k7hg7AHwG1nyKL9rHeAlW7+EJAH6sqr/P37uifBgxIrB/rSkNzM9szM9cQcuOE2n7L9D9uKr6iD245BZYA0z2AXgcwA2q+kbcrmMBLIn7c/wxfiwiOwBcCWABgFEA/gLg/6nqY7l9B+SHgoJA/7WmFJif2ZifufzMrqYpglXrt6JrXx9e39XpWx00UOC/zar6FICnUuyzA0DSYd+qWg2gOsulUUB1d3dj0qRJfpdBGWJ+ZmN+5vIzu1Xrt2J9XduAbbwe0X9MgEKH/0GZjfmZjfmZy6/sapoisQbi+MICzDpqAorGFPB6xAAI1gUIRFnQ1taWeicKLOZnNuZnLr+yix/NvLDUmjx77fIFvB4xANhIpNCZOnWq3yWQB8zPbMzPXH5kF9+LCHA0c9CwkUih09DQ4HcJ5AHzMxvzM1e+s6tpimDp6udiP1eWl7D3MGACuXaz37h2MxERUW6tWLd5QC/iY9ctZiMxQ7lau5k9iRQ6tbW1fpdAHjA/szE/c+U7u/hJs9lADCY2Eil0Kioq/C6BPGB+ZmN+5vIrO06aHVxsJFLosCfDbMzPbMzPXPnKrqYpghXrNnPSbAPwmsQEeE0iERFRbjivRawsL8Ha5Qt8rMh8vCaRKE3btm3zuwTygPmZjfmZK1/ZRa9FHF9YgMryEk57E2BccYVCZ9q0aX6XQB4wP7MxP3PlO7tZR01gD2LAsSeRQqe1tdXvEsgD5mc25mcuZkdObCRS6BQXF/tdAnnA/MzG/MzF7MiJjUQKna6uLr9LIA+Yn9mYn7mYHTmxkUihM3r0aL9LIA+Yn9mYn7nykV1NUwQbGzty/jqUHRy4QkRERDlV0xTBqvVbB0x9UzSGTZCgY08ihU5vb6/fJZAHzM9szM9cuczO2UAEwKlvDMBmPIVOUVGR3yWQB8zPbMzPXLnMLn5uxIWlxbi+8nguxWcANhKHsHLlykHbqqqqUFVV5UM1lK6Ojg7+R2Uw5mc25meufGTHuRG9q66uRnV1dV5ei8vyJcBl+czW29vLi+cNxvzMxvzMlcvslq3ZgI2NHVhUVoyHrjk9J68xnHFZPqI07dy50+8SyAPmZzbmZy5mR05sJFLozJgxw+8SyAPmZzbmZy5mR05sJFLo1NbW+l0CecD8zMb8zMXsyImNRAqdiooKv0sgD5if2ZifuZgdObGRSKHD34bNxvzMxvzMxezIiY1ECh3+Nmw25mc25meuXGXHpfjMxUYihU59fb3fJZAHzM9szM9cucpu1fqtsT9zKT6zcJ7EBDhPotn6+vpQUMB/iEzF/MzG/MyVi+xqmiJYuvq52M+PXbeYK63kAOdJJEpTc3Oz3yWQB8zPbMzPXNnOztlArCwvYQPRMGwkUuiUlJT4XQJ5wPzMxvzMle3s4k8zA8D1lcdn9fiUe2wkUuhEIhG/SyAPmJ/ZmJ+5sp1d176+2J95mtlMbCRS6IwbN87vEsgD5mc25meubGYXP6J5UVkxG4iGYiORQqevry/1ThRYzM9szM9c2crOeS0iRzSbi41ECp3+/n6/SyAPmJ/ZmJ+5spUdr0UMDzYSKXQKCwv9LoE8YH5mY37mykZ2NU0RrK9ri/3MaxHNxkYihU5nZ6ffJZAHzM9szM9cXrKraYpgxbrNnPImZHihAIXO5MmT/S6BPGB+ZmN+5so0O+c1iFE8zWw+9iRS6LS0tPhdAnnA/MzG/MyVaXbOaxAry0t4mjkkuCxfAlyWz2yqGluiiMzD/MzG/MyVSXZcdi8YuCwfUZq2bNnidwnkAfMzG/Mzl9vsuOxe+LEnMQH2JBIREQ1txbrNHMkcEOxJJEpTbW2t3yWQB8zPbMzPXG6z47J74ceexATYk0hERJRc/KnmRWXFeOia032uaHhjTyJRmurq6vwugTxgfmZjfuZyk138iGYuuxdebCRS6Jxwwgl+l0AeMD+zMT9zucku/lQz50MMLzb/h7By5cpB26qqqlBVVeVDNZSuxsZGTJ8+3e8yKEPMz2zMz1yZZLeorJjXIuZZdXU1qqur8/JavCYxAV6TaLaenh6uH2sw5mc25meudLKraYpg1fqt2LS9A3t7+ng9YkDwmkSiNLW3t/tdAnnA/MzG/MyVKrvoYJX1dW3Y22Odbub1iOHGRiKFzoQJE/wugTxgfmZjfuZKlV2i5fd4PWK48VcACp2enh7+R2Uw5mc25meuVNlxXsThhz2JFDojRvCvtcmYn9mYn7mGyq6mKYKNjR0AOFhlOOG3mUKnoIAd5CZjfmZjfuYaKjvOizg8sZFIodPd3e13CeQB8zMb8zPXUNlxXsThiY1ECp1Jkyb5XQJ5wPzMxvzMlU52PNU8vLCRSKHT1tbmdwnkAfMzG/MzF7MjJzYSKXSmTp3qdwnkAfMzG/MzF7MjJzYSKXQaGhr8LoE8YH5mY37mSpZd/MhmGl7YSKTQmTlzpt8lkAfMz2zMz1zJsuPI5uGLjUQKndraWr9LIA+Yn9mYn7mc2dU0RbBi3WZs2n6wF5Ejm4cXUVW/awgcEVEA4GdDRETDTU1TBKvWb8X6uoEDWSrLS7B2+QKfqqKhiAgAQFUlm8dlTyKFDnsyzMb8zMb8zFVbW4uapgiWrn4uYQORvYjDD3sSE2BPIhERDSdD9R5eX3k850YMOPYkEqVp27ZtfpdAHjA/szE/MyVqID523WKsXb6ADcRhjMOUKHSmTZvmdwnkAfMzG/MzU3TZvfGFBVhYWszeQwLAnkQKodbWVr9LIA+Yn9mYn1miI5hf39UJAJh11AT2HlIMexIpdIqLi/0ugTxgfmZjfmZxnmbmPIgUj38bKHS6urpQVFTkdxmUIeZnNuYXfNFBKl37+mI9iOMLCzDnqEM4gpkGYCORQmf06NF+l0AeMD+zMb/gSzRIZWFpMb57wXEoLp7kT1EUSGwkEhERDSPxg1RmHTUBRWMK7B7Efn8Lo8BhI5FCp7e31+8SyAPmZzbmZ45ZR03AQ9ecHvuZg47IiaObKXR4PZTZmJ/ZmJ+5mB05sZFIodPR0ZF6Jwos5mc25hdsNU0RbGxMnBGzIyeebh7CypUrB22rqqpCVVWVD9VQuo488ki/SyAPmJ/ZmF+wrVq/NfZn53Q3zM4M1dXVqK6uzstrce3mBLh2s9m2bduGGTNm+F0GZYj5mY35BVdNUwRLVz8X+/mx6xYPmDSb2ZkrV2s3s5GYABuJREQUNivWbY5NfVNZXoK1yxf4XBFlS64aibwmkUKntrbW7xLIA+ZnNuYXTDVNkQFzIyaaNJvZkRN7EhNgTyIREYUJexHDjT2JRGnib8NmY35mY37BFJ1AG0jciwgwOxqMjUQKnYqKCr9LIA+Yn9mYX7AtKiseMFglHrMjJ06BQ6FTX1+PmTNn+l0GZYj5mY35BUNNUwSr1m+N9SC+vqsz5XOYHTmxkUihM336dL9LIA+Yn9mYn/+cU93Ec86NGI/ZkRNPN1PoNDc3+10CecD8zMb8/FPTFMGKdZsHNRAXlRVjUVkxKstLkl6PCDA7Gow9iRQ6JSUlfpdAHjA/szE//6xav3XANDfA4Amzh8LsyIk9iRQ6kUjE7xLIA+ZnNubnj/h5EMcXFqCyvMRVAxFgdjQYexIpdMaNG+d3CeQB8zMb8/NH/JrMC0uLM5oHkdmRExuJFDp9fX2pd6LAYn5mY375Ez+COX708lDXHQ6F2ZETG4kUOv39/X6XQB4wP7Mxv/xJdA1iZXmJq1PM8ZgdObGRSKFTWFjodwnkAfMzG/PLD+c1iLOOmoCiMQUZ9yICzI4GYyORQqezsxMTJkzwuwzKEPMzG/PLnfjTyxsbO2LbM70G0YnZkRMbiRQ6kydP9rsE8oD5mY355U6i08tA5tcgOjE7cuIUOBQ6LS0tfpdAHjA/szG/3IkusTe+sCA2ObbbaW6GwuzISVTV7xoCR0QUAPjZmElVISJ+l0EZYn5mY365Eb/U3qKyYjx0zelZfw1mZ65obqqa1QAD35MoIu8TkQ0i0iUiu0XkcRGZ5+F4IiJ/EBEVkZHZrJWCYcuWLX6XQB4wP7Mxv9yInwdxqPWXvWB25BTonkQRuRjAL2FdO/kvAJMAHA1gH4BzVfUfGRzz0wB+ZP9YoKoHEuzDnkQiIgqMZWs2xAarZPMUM4XDsOtJFJFiAD8HsB/AGao6W1WnArgewBgAa0XEVf0iMgvAd7JeLAVKbW2t3yWQB8zPbMwv+2qaIrEG4qKy4pw1EJkdOQW2kQjgEliNwW+o6oboRlVdBeAPAMoBnJPuwURkNKxeybcB7MluqRQkFRUVfpdAHjA/szG/7MvHqWaA2dFgQW8kAsBvEjz2a/v+fBfH+zqAuQCuBfBW5mVR0NXV1fldAnnA/MzG/LKjpimCFes2Y9maDdi0/eCciNma7iYRZkdOgb0mUUTeBHCIqk5K8NhJAF4B8DtVrUrjWGcD+DOAX6jqJ0SkEUApeE1iKHGEntmYn9mYX3asWLc54ZJ72Zg0OxlmZ65hdU2iWO+2BMDuJLu02/fT0jjWRFjXNjYB+HRWCqRAa2xs9LsE8oD5mY35ZUeiORFz2YsIMDsaLKgrrhwGq7Zk1w5G+94PSeNYqwFMBXCOqnZmoTYKuClTpvhdAnnA/MzG/LyLH6gy66gJOZkTMRFmR06B7ElMQ3R+w/6hdhKRZQAuBfA9VX3W7YvMmzcPc+fOxdy5czFv3jzMmTMH8+fPx0knnYRTTz0Vs2fPjt3ffffdqKurg6qioaEBPT09aG5uRmdnJ9ra2tDe3o5IJIKWlhZ0d3dj+/bt6OvrQ319PYCDo8qi99u2bUNvby927tyJrq4utLa2oqOjAx0dHWhtbUVXVxd27tyJ3t5ebNu2LeEx6uvr0dfXh+3bt6O7uxstLS2IRCJob29HW1sbOjs70dzcjJ6eHjQ0NEBVY9ekRI9h4nuqr68P3XsKY07J3tMrr7wSuvcUxpySvaf6+vrQvad85hQ/aTZgDVTJ13vaunUrcwrQe1q9ejXmzJkzqC1y8skn45RTTom1SWbPno1cCeQ1ifbp5l4ATao6PcHjU2GdPn5WVc9OcoypsK5b3Algoar2xj3GaxJDjIvUm435mY35eeO8FjGfcyIyO3Pl6prEQJ5uVlUVkTZYp50TiW7fNcRhKgEcCqAFwGOOi3GPsO9/LyL9AL4WP80Oma2np4f/0BmM+ZmN+aWvpimCVeu3xq4/BIDXdx28Kirfk2YzO3IKZCPR1gDgTBGZraqvOR47w75P5yrbE+1bIu+17+/KoD4KqBEjTL2KggDmZzrml75V67cOGsEcVVlekvdVVZgdOQW5kfgAgDMBfAiAs5G4NG6fhFT1ZwB+luixVKebyWwFBUH+a02pMD+zMb/0xY9gnnXUwR68ojEFOR/JnAizI6cg/414AMAdAG4WkadV9XkgtvbyewFsUtVX/CyQgqm7uxuTJk3yuwzKEPMzG/NzL58jmIfC7MgpsH3LqroHwOWwGrIbROQVEWkG8CNY1yJeEd1XREpE5En7VuJPxRQU/EfObMzPbMwvPfHT3AQFsyOnwDYSAUBVHwFQBWAjgOMAjAPwOICzVPX1uF3HAlhi38bmu04Klra2xNf4kBmYn9mYX2qJprkJAmZHToGcAsdvnALHbH19fby2xmDMz2zML7H4kczOHsR8j2JOhtmZa1hNgUPkRUNDA2bOnOl3GZQh5mc25nfQUA3DqKA0EAFmR4OxJzEB9iQSEZFXzomxoxaVFcdGMAelgUhmY08iUZpqa2tRUVHhdxmUIeZntuGeX3zvYXRi7OgUN0FvGA737Ggw9iQmwJ5EIiJyyzkgJaqyvARrly/woSIaLnLVkxjo0c1EmYgulE5mYn5mG4751TRFsGLd5kENxEVlxagsL/FlYuxMDMfsaGjsSUyAPYlERJSuRNceBmlACoUfr0kkStO2bdswY8YMv8ugDDE/sw2H/OKvOwQw4NrDhaXFgb7ucCjDITtyhz2JCbAn0Wy9vb0YPXq032VQhpif2cKcX7RxmGjEMmD+tYdhzi7seE0iUZpaW1v9LoE8YH5mC3N+iRqIi8qKjbv2MJkwZ0eZ4elmCp3i4mK/SyAPmJ/ZwpRfWE8rJxOm7Cg72Eik0Onq6kJRUZHfZVCGmJ/ZwpJfsulsAGBhabHRp5WTCUt2lD1sJFLo8JoaszE/s4Ulv1Xrtw74eVGZ1csWnRA7jMKSHWUPG4lERERxapoiA6495HQ2NFyxkUih09vb63cJ5AHzM5vJ+SUavVxZXjJsGogmZ0e5wdHNFDq8psZszM9sJueXaPRyWE8tJ2JydpQbbCRS6HR0dPhdAnnA/Mxmcn7RUczjCwtQWV4y7E4zm5wd5QZPN1PoHHnkkX6XQB4wP7OFIb9ZR00I5ejlVMKQHWUXexIpdHbu3Ol3CeQB8zObqfnVNEWwsXF496SZmh3lDnsSh7By5cpB26qqqlBVVeVDNZQurj1qNuZnNlPzi5/ypmjM8Pyv0dTshpvq6mpUV1fn5bW4dnMCXLvZbLW1taioqPC7DMoQ8zObqfktW7Mh1pM43K5FjDI1O8rd2s1sJCbARiIRUfjFL7v3+q5O7O3pw6KyYjx0zel+l0bkSq4aibwmkUKntrbW7xLIA+ZnNlPyiy67t76uDRsbO7C3xxrZPFxPNQPmZEf5w57EBNiTSEQUXonWZV5UVhxbcm84nmoms+WqJ3H4/spEoVVfX4+ZM2f6XQZliPmZLcj5JVpRBRi+1yA6BTk78gd7EhNgT6LZ+vr6UFDA339MxfzMFsT8kjUOATYQ4wUxO0oPr0kkSlNzc7PfJZAHzM9sQcsv/trDeMNxRZVUgpYd+Y+/MlDolJSU+F0CecD8zBa0/OLnPwSsxiGvO0wsaNmR/9hIpNCJRCIYN26c32VQhpif2YKUX01TZEAPInsOhxak7CgYeLqZQof/yJmN+ZktSPnF9yJWlpewgZhCkLKjYGBPIoVOX1+f3yWQB8zPbEHILzpQZdP2g2sxX195vI8VmSEI2VGwsJFIodPf3+93CeQB8zNbEPJzjmRmL2J6gpAdBQsbiRQ6hYWFfpdAHjA/s/mRX/zyegDw+q5OAMD4wgIsLC1mL2Ka+N0jJzYSKXQ6OzsxYcIEv8ugDDE/s+U7v0Srp0QtLC3G2uUL8laL6fjdIyc2Eil0Jk+e7HcJ5AHzM1u+8ks2QfaismIAiC2xR+njd4+c2Eik0GlpacH06dP9LoMyxPzMlq/8uLxe9vG7R05cli8BLstnNlWNLVFE5mF+ZstXfsvWbMDGxo4B1x2ygegNv3vm4rJ8RGnasmWL3yWQB8zPbPnOb9ZRE7B2+QI2ELOA3z1yYiORQqe8vNzvEsgD5mc25mcuZkdObCRS6NTW1vpdAnnA/MyWj/xqmiLY2NiRekdyhd89cuI1iQnwmkQiomCJnwsxvoFYWV7CaW5o2OM1iURpqqur87sE8oD5mS0X+UXnQlxf1zaoB5HT3GQPv3vkxJ7EBNiTaDaO0DMb8zNbLvJbsW7zgOluFpUVx+ZB5ICV7OF3z1y56knkPIkUOo2NjZzry2DMz2zZzC96innT9oO9h5wLMXf43SMnNhIpdKZMmeJ3CeQB8zNbNvJLtppKZXkJG4g5xO8eOfGaRAqd9vZ2v0sgD5if2bKRX7IGIq8/zC1+98iJPYlDWLly5aBtVVVVqKqq8qEaShcXqDcb8zOb1/xqmiKxBiJXU8kvfvfMUF1djerq6ry8FgeuJMCBK2Zra2tDSUmJ32VQhpif2bzmFz9IhdPb5Be/e+biwBWiNI0YwasoTMb8zJZpfokGqfD0cn7xu0dObCRS6BQU8K+1yZif2dzmx0EqwcHvHjnxbwSFTnd3NyZNmuR3GZQh5me2dPJLtnpKFAep+IPfPXJiI5FCh//ImY35mS2dBuLS1c8lfCzaOGQPoj/43SMnNhIpdNra2lBaWup3GZQh5me2RPkN1XPI1VOCg989cuLo5gQ4utlsfX19vLbGYMzPbInycy6rF8XVU4KF3z1z5Wp0M4cyUeg0NDT4XQJ5wPzMFp9fTVMEK9Ztjo1YHl9YgEVlxagsL2EDMYD43SMn9iQmwJ5EIiJvEl17yHkPiXKDPYlEaaqtrfW7BPKA+Zktmt+q9VsHbOeI5eDjd4+c2JOYAHsSiYi8WbZmQ2yQCk8tE+UWexKJ0sTfhs3G/MzmzG9RWTEbiIbgd4+c2Eik0KmoqPC7BPKA+ZmN+ZmL2ZETG4kUOtu2bfO7BPKA+Zlt27ZtqGmKJFxJhYKN3z1y4oRIFDrTpk3zuwTygPmZKTph9t6e/di0fUtse9EY/jdjCn73yIk9iRQ6ra2tfpdAHjA/M61avxXr69qwafueAds5otkc/O6RE3/Fo9ApLi72uwTygPmZp6YpEltRZfyYkZg1ZSKX2jMQv3vkxEYihU5XVxeKior8LoMyxPzMET3FHL/k3pwpRfjlNaf7WBVlit89cmIjkUJn9OjRfpdAHjC/4EvUOIy69kxe12YqfvfIiY1EIiJyJVEDMbqiyjGH9PtUFRFlGxuJFDq9vb1+l0AeML/givYgbtpuTW8zvrAAC0uLB1x7yMEP5uJ3j5zYSKTQ4TU1ZmN+wVTTFMHS1c8N2LawtBhrly8YsI35mYvZkROnwKHQ6ejgJL4mY37BtGr91gE/R08vOzE/czE7chJV9buGwBERBQB+Nmbq7e3lBdgGY37B4+xFfOy6xUmntmF+5mJ25hIRAICqSjaPy55ECp2dO3f6XQJ5wPyCJ74XsbK8ZMi5D5mfuZgdObEnMQH2JBLRcBcdpNK1rw+v7+rE3p4+AEP3IhKRP3LVk8iBK0NYuXLloG1VVVWoqqryoRpKV21tLSoqKvwugzLE/Pw11ByIqXoRAeZnMmZnhurqalRXV+fltdiTmAB7EoloOEo0ghkAFpUVc5k9ogBjTyJRmvjbsNmYX37En06O2tg4cHRrdASzm4Yh8zMXsyMn9iQmwJ5EIgobZ6PQ2SB04rWHROZgTyJRmurr6zFz5ky/y6AMMb/sS3YaOWpRWXHsz15PKzM/czE7cmJPYgLsSTRbX18fCgr4+4+pmF/2rVi3ecBAlGijMBfXGTI/czE7c7EnkShNzc3NKC0t9bsMyhDz8855avn1XZ2xx3J9Gpn5mYvZkRMbiRQ6JSUlfpdAHjC/9CUafAIkv94wnSlsvGJ+5mJ25MRGIoVOJBLBuHHj/C6DMsT80pPqOsMo56nlXGN+5mJ25MRGIoUO/5EzG/NLLr7n0NlbGD/4BMjN9YbpYH7mYnbkxEYihU5fX1/qnSiwmF9yyVZCCdJ0NczPXMyOnNhIpNDp7+/3uwTygPklv9YwOgBlfGEBZh01IZCroDA/czE7cmIjkUKnsLDQ7xLIg+Ga31Cnkp0WlhZj7fIFearMneGaXxgwO3JiI5FCp7OzExMmTPC7DMrQcMxvqEEoya41DKrhmF9YMDty4mTaCXAybbP19PTwN2KDhT2/dNZMXlRWHMhTyekIe35hxuzMxcm0idLU0tKC6dOn+10GZSjs+SUbfBIVpEEomQh7fmHG7MiJPYkJsCfRbKoa+62KzBPm/OJPK0cHn0SZ2nPoFOb8wo7ZmYs9iURp2rJlC8rLy/0ugzIU5vxWrd8a+3OQB594Eeb8wo7ZkRN7EhNgTyIRZUOiNZT39lh/Nv20MhEFB3sSidJUW1uLiooKv8ugDJmeXzpT2eRjDWW/mJ7fcMbsyCnwPYki8j4AXwFwEoB9AJ4D8FVVfdnFMT4G4GoA5QBGAXgFwM9VdV2S/dmTSESupTOVTViuPSSi4MhVT2KgG4kicjGAX8Lq8fwXgEkAjobVWDxXVf+RxjHuAXAVgP0AXgfQD2A2rMbibwBcpI4PgY1Es9XV1fG6GoOZmF+099A5atnkqWwyZWJ+ZGF25hp2jUQRKQbQAqtRV6mqG+ztnwbwIwB1AE5U1aTrCInIaQA2ANgJYImq1trbZwD4NazeyWtVdY3jeWwkGowj9MxmUn7JGofA8L3m0KT8aCBmZ67heE3iJQDGAPhStIEIAKq6SkQ+AOB8AOcAWD/EMZbb97dGG4j2MbaJyCcAvATgcgBrEjyXDNXY2Mi5vgwW5PycA1ESXXNYWV4yrHoOnYKcHw2N2ZFT0BuJgHVK2OnXsBqJ52PoRmL0b/szzgdU9WUR2QNgjocaKYCmTJnidwnkQdDyS3dN5eHeOIwKWn6UPmZHTkFuJJYBeCu+BzBOtGcx1TCs5wHsAPCm8wERKQRQBCD5v/pkpPb2dkydOtXvMihDQcgvnYYhB6IkFoT8KDPMjpwC2UgU6+R6CaxrCRNpt++nDXUcVf3KEA9/BtbglWddF0iBxgXqzRaE/JJdZzgcB6K4FYT8KDPMjpwC2UgEcBis2vYkeTz6q/0hbg9sN0A/C+CbsEZJfzOD+ijAenp6+I+dwYKQX/Saw+jSeWwYpi8I+VFmmB05jfC7gAyNtO+TjmxORETmA/gHgO/bz/2Eqv4z2f7z5s3D3LlzMXfuXMybNw9z5szB/PnzcdJJJ+HUU0/F7NmzY/d333036urqoKpoaGhAT08Pmpub0dnZiba2NrS3tyMSiaClpQXd3d3Yvn07+vr6UF9fD8CaxDT+ftu2bejt7cXOnTvR1dWF1tZWdHR0oKOjA62trejq6sLOnTvR29uLbdu2JTxGfX09+vr6sH37dnR3d6OlpQWRSATt7e1oa2tDZ2cnmpub0dPTg4aGBqgq6urqBhzDxPe0e/fu0L2nMOaU7D01NTX5+p5+949XY6eYZx01Abe8axLWLl+Ase+0Mac03tPu3btD957CmFOi97Rnz57QvSeTc1q9ejXmzJkzqC1y8skn45RTTom1SWbPno1cCeQUOHZvXy+AJlUdNNRKRKYCaALwrKqencbxxgD4OoDPw2oYvwqrgZhwQm5OgWO2SCSCSZMm+V0GZcjv/Fas2xw71VxZXhLK9ZVzye/8KHPMzlzDagocVVURaYN12jmR6PZdqY4lIkcDeArWBNrtsFZvuVtVD2SjVgqe7u5u/kNnsHznl2h95ajrK4/PWx1hwe+fuZgdOQWykWhrAHCmiMxW1dccj51h3zcOdQARGQ/gCVgNxCcAXKmqg69Gp1DhP3Jmy3d+yQaphHl95Vzi989czI6cgnxN4gP2/YcSPLbUsU8y1wM4GcAjAC5gA3F4aGtjzCbLd37xg1QWlRVjUVlxbM5Dco/fP3MxO3IK5DWJACAih8Jalg8AzlHV5+3t0WX5NqnqohTH2A5gKoCjVPU/Ll6b1yQarK+vDwUFQe4kp6HkM7+apgiWrn4OgDW9zUPXnJ6X1w0zfv/MxezMNayuSQQAVd0jIpcDuB/ABhF5FUAxgKNhXYt4RXRfESkB8DP7x0+oapuIHAbgWAA9AH4+xHqUe1T1Yzl6G+SDhoYGzJw50+8yKEO5yM953WFU/ETZRWMC+8+hUfj9MxezI6fA9iRGicgSALcAOAnWvIZ/A3CDqr4Rt8+xALbbP5aq6g57upsX0niJVlU9yvGa7EkkCpH4EcvJPHbdYl6DSERGGnY9iVGq+hSs0clD7bMDgDi2vejcRsNDbW0tKipSrdhIQZWL/JyTY8fjRNnZxe+fuZgdOQW+J9EP7EkkCg9ed0hEYZernsQgj24mykh05noyU7byq2mKYMW6zbEGIsDrDvOB3z9zMTtyYk9iAuxJJDJbfO9hPF53SERhxJ5EojRF19UkM2Ujv1Xrtw74ubK8hA3EPOH3z1zMjpzYk5gAexLN1tvbi9GjR/tdBmXIa37OXkQ2DvOL3z9zMTtzsSeRKE2tra1+l0AeeMnP2UDk0nr5x++fuZgdOfEqbgqd4uJiv0sgDzLJLzpZtnMuRC6tl3/8/pmL2ZETexIpdLq6uvwugTzIJL9EDUSeZvYHv3/mYnbkxJ5ECh1eU2M2t/nVNEViDcTxhQVYWFrMybF9xO+fuZgdObGRSERGix/JvLC0GGuXL/CxGiKi8GAjkUKnt7fX7xLIg3Tyi16D2LWvD6/v6oxt5zWI/uP3z1zMjpzYSKTQKSoq8rsE8iCd/BJdg8iRzMHA75+5mB05ceAKhU5HR4ffJZAHqfJzXoO4qKwYleUl7EUMCH7/zMXsyIk9iRQ6Rx55pN8lkAep8uM1iMHG75+5mB05sSeRQmfnzp1+l0AepMqva19f7M/sPQwefv/MxezIicvyJcBl+YiCxTlQZW9PHxaVFeOha073uzQiIt9xWT6iNNXW1vpdAnkQn19NUwQr1m3G0tXPYX1dGzY2dmBvj9WTWDSGV8sEEb9/5mJ25MSexATYk0jkr2TL7AHAorJiFI0p4ITZRES2XPUk8lfxIaxcuXLQtqqqKlRVVflQDaWrtrYWFRUVfpdBGaqtrcWqjV0Jp7hhwzD4+P0zF7MzQ3V1Naqrq/PyWuxJTIA9iUT+WrZmAzY2dnCZPSKiNPCaRKI01dfX+10CeRCf36yjJmDt8gVsIBqE3z9zMTtyYiORQmf69Ol+l0Ae7B1djI2NnNTXVPz+mYvZkRMbiRQ6zc3NfpdAGappiuCiuzbGfuYIZvPw+2cuZkdObCRS6JSUlPhdAmWgpimCpaufG7CNk2Wbh98/czE7cmIjkUInEon4XQK5lKiB+Nh1i3ktooH4/TMXsyMnnsuh0Bk3bpzfJdAQ4ldPiXJeg8gGorn4/TMXsyMnNhIpdPr6+lLvRL5I1GPo9LNLT2QD0WD8/pmL2ZETG4kUOv39/X6XQAkkaiAuKiuO/Tm6ispRY3rzXRplEb9/5mJ25MRGIoVOYWGh3yWQg5trDjs7O/NUFeUCv3/mYnbkxIErFDpsZARHTVMEK9ZtdjUohfmZjfmZi9mRE5flS4DL8pmtp6eHvxH7KH5gSqJJsVMNSmF+ZmN+5mJ25srVsnw83Uyh09LSwpUD8sg5WjnZaimV5SVprcHM/MzG/MzF7MiJPYkJsCfRbKoa+62Ksi/dRiFgDUyJDkhJd8Qy8zMb8zMXszMXexKJ0rRlyxaUl5f7XUYopZrCJjpa2W3DMB7zMxvzMxezIyf2JCbAnkQiS6pew2w0ComIyBv2JBKlqba2FhUVFX6XYSQ3p5JztSoK8zMb8zMXsyMn9iQmwJ5EGo7ycSqZiIiyjz2JRGmqq6vjdTUuDbUaSr4bhczPbMzPXMyOnNiTmAB7Es3GEXruuFkNJR+Yn9mYn7mYnbly1ZPIFVcodBobG/0uwRhBayACzM90zM9czI6c2JOYAHsSzcZVA1KLDlBZX9c2YLvfDUSA+ZmO+ZmL2ZmLPYlEaWpvb/e7hECL9h4GsYEIMD/TMT9zMTty4sAVCp0JEyb4XUJgJTq9nO5yefnC/MzG/MzF7MiJjUQKnZ6eHv5jFyd+7kPnvIdB6T2Mx/zMxvzMxezIiY1ECp0RI3gVRbxE1x4CwWwgAszPdMzPXMyOnNhIHMLKlSsHbauqqkJVVZUP1VC6Cgr41zq+9/D1XZ0AgPGFBZh11ITAT4bN/MzG/MzF7MxQXV2N6urqvLwWRzcnwNHNZmtpacGUKVP8LiPvhjqtDFjXHq5dvsCHytwZrvmFBfMzF7MzF1dcIUrTpEmT/C4h55xrLAPJ11leVFYc6z00wXDIL8yYn7mYHTmxkUih09bWhtLSUr/LyJlUaywDAxuGQT2tnEzY8ws75mcuZkdOPN2cAE83m62vry+019YMtcYykP91lnMhzPkNB8zPXMzOXDzdTJSmhoYGzJw50+8ycmLV+q0Dfg7qCGUvwpzfcMD8zMXsyIk9iQmwJ5GCyNmLGMYGIhERucdl+YjSVFtb63cJWVPTFMGKdZuxbM2GAQ3EyvKS0DYQw5TfcMT8zMXsyIk9iQmwJ5HyJdEo5XjJRiyzF5GIiKJ4TSJRmmpra1FRUeF3GSmlM0o5nskjlt0wJT9KjPmZi9mRE3sSE2BPIuVaqlHK8YZDw5CIiDLHnkSiNG3btg0zZszwu4yEoqeXnWsp8/TxQUHOj1JjfuZiduTEnsQE2JNott7eXowePdrvMmJSLZfHBuJAQcuP3GF+5mJ25uLoZqI0tba2+l1CTPS08vq6tkENxMryEjYQEwhSfuQe8zMXsyMnnm6m0CkuTnxtXz4lO608XAafeBGE/ChzzM9czI6c2Eik0Onq6kJRUVHeXi/RNDY8rZy5fOdH2cX8zMXsyImNRAqdfF1Tk6y30KmyvIQ9hy7wmiizMT9zMTtyYiORKA3p9hbGT2PD08pERGQyNhIpdHp7e7NynFSjkuOxtzB7spUf+YP5mYvZkRMbiRQ62bimZqjVUNhbmFu8JspszM9czI6c2Eik0Ono6MjoH7uheg45Kjl/Ms2PgoH5mYvZkRMn006Ak2mbLdMJYVes25xwEApHJecXJ/Q1G/MzF7MzF5flI0rTzp07015aKr738PVdnQCA8YUFmHXUBPYc+sRNfhQ8zM9czI6c2JOYAHsSwy3VgJTK8hKsXb7Ah8qIiIjc47J8RGmqra1N+thQy+QtKiuOjVIm/wyVHwUf8zMXsyMn9iQmwJ7EcOGAFCIiCjNek0iUpt8++zKqG/piE18nm+OQA1KCqba2FhUVFX6XQRlifuZiduTEnsQEoj2JV1999aDHqqqqUFVVlfeaKLV0lsljzyEREZmsuroa1dXVA7bdc889ALLfk8hGYgI83WyWoRqH0Ymv2TA0R319PWbOnOl3GZQh5mcuZmeuXJ1uZiMxATYSgy+dEcpsFJqpr68PBQW8EsZUzM9czM5cvCaRKE6ynsPK8hJ8ZFYRlizkdTWmam5uRmlpqd9lUIaYn7mYHTmxkUjGSHfi6+7ubp8rJS9KSkr8LoE8YH7mYnbkxEYiGSE6v6HTwtLiQRNfRyIRjBs3Ll+lUZYxP7MxP3MxO3JiI5ECLdmglPhRyk78R85szM9szM9czI6c2Egk38WfRnZKNCgl1fyGfX2Dj0PmYH5mY37mYnbkxEYi5Z2zUZhssmundEcs9/f3ey2RfMT8zMb8zMXsyImNRMqbdCe7dnI7x2FhYWGmJVIAMD+zMT9zMTtyYiORcirVfIa5mOy6s7MTEyZM8Hwc8gfzMxvzMxezIydOpp0AJ9POTKJrC5OdSs7lZNc9PT38jdhgzM9szM9czM5cnEybAi3ZFDXx8rVucktLC6ZPn56z41NuMT+zMT9zMTtyYk9iAuxJHFo6PYbx1xbme91kVY39VkXmYX5mY37mYnbmYk8iBUaqwSeppqjJtS1btqC8vNy31ydvmJ/ZmJ+5mB05jfC7ADJLTVMk1kAcX1iARWXFsVtleYnvDUQAePbZZ319ffKG+ZmN+ZmL2ZETTzcnwNPNgyWavqayvGTQknhBMHv2bLz22mt+l0EZYn5mY37mYnbm4ulmyqmhVj0BEo9STrQkXhBwdJ7ZmJ/ZmJ+5mB05sZE4TGW66gmQ2+lrsqGnp8fvEsgD5mc25mcuZkdObCQOI6kmto5KtOoJkP9Rypnib8NmY35mY37mYnbkxEZiiKXbW5iLVU/8tG/fPr9LIA+Yn9mYn7mYHTlxdHNAVFdXZ+U4NU0RrFi3GcvWbMDS1c9hfV0bNjZ2DGogzpigsdHID11zOh665nSsXb4gJw3EbL23dI0ePTqvr5fv9xf212N+Zr9ePvML+2cZ5uyA8H+e+X69XGAjMSDc/GWKbwg6b/ENw3jOaWqmb388Z41Cp3x/Ufbv35/X1wv7PzzMj6/nRj7zC/tnGebsgPB/nmFoJPJ0c0C8NXISVqzbnHR0cbx0B5nkaxm8oBk5cqTfJZAHzM9szM9czI6c2Ej00YCBJBPPBoZYxSSZRINMhmPDMB7ntzQb8zMb8zMXsyMnNhJzbKj5B1MNJBnKcG8IEhERUW5xxZUEoiuuEBEREZki2yuucOAKEREREQ3CnkQiIiIiGoQ9iUREREQ0CBuJRERERDQIG4lERERENAgbiUREREQ0yLBqJIrI+0Rkg4h0ichuEXlcRObl+xjkXpay+5iI/EVEdolIu4j8WUSW56hkipPt741Y/iAiKiJcJiKHsvTdKxWRe0WkxT7OCyJyhYhkdboOGsxrfvZ37RMi8pyIdIhIq4isF5EP5rJuOsjO4E0R+XoGz/X2/VXVYXEDcDGA/QAUwGsAmu0/9wA4I1/H4M237O6xn9MLoAbAS/afFcCvYY/05y2Y+SU45qftYyiAkX6/x7DesvTdOwnAHvt5rQA2AHjH/vkOv99jmG9Zyu8X9nPeAfA8gBfjjvk1v9/jcLgB+ID9eX897/n7/ebz9AEX2x9KN4DT47ZH/6OpBTAi18fgzbfsTrP33QGgIm77DACv2I9d4/d7DeMtF98bALPiGhlsJAY8O1i/lCmAa3Bw2rUyAE0A+gGc4vd7DeMtS/92RhsnrwGYEre9HMC/ARyI/zeVt6xnOB7AZfZn7aqRmLXvr98fQp4+6OvsD+XmBI89ZT9Wmetj8OZbdnfZ+12Z4LF59mPP+f1ew3jL9vcGwGgALwNoB9DBRmKws8PBX9DuTvDYcvuxb/j9XsN4y1J+37H3+1iCx75qP3a13+81jDcAj9i/RGnczU0jMSv/9g6XaxIvse9/k+CxX9v35+fhGOReNj736fb9M84HVPVlWKfC5mRSHKWU7e/N1wHMBXAtgLcyL4vSkI3srrLv703w2C8BlAK403VllI5s5HeIfa8JHuu374tc1kXp+QeANbA6Of6SwfOz8m/vcGkklgF4S1VrEzy2wb6vyMMxyL1sfO7PA/g/AG86HxCRQlj/yL3tpUhKKmvfGxE5G8AXAPxcVR/NUn2UXDayOw3AO6q6wfmAqu5X1R2q+h+PdVJi2cjvt/b9l0RkSnSjiJQD+BSs692e9FgnJaCqP1DVT6rqJwH8LINDZOXf3tA3Eu3RcyUAdifZpd2+n5bLY5B72frcVfUrqnq1qu5L8PBnAIwC8GzGhVJC2fzeiMhEAD+HdR3bp7NSICWVxeyOAvBvEZkkIqtF5BUReUtE/iEinxWR0P8f5Ics/tv5NIDrAcwEsM0eJfsCgFcBjANwiarWZadqypZs/ttbkK2iAuwwWO9zT5LHO+z7Q5I8nq1jkHs5+9ztL9FnAXwTwD77nrIrm/mtBjAVwDmq2pmF2mhonrMTkTGwLp7vBPAcrIZGLYAtsK4FPh3AB0Xkvaran+w4lJFsfvdaYGV4GKye4aj/wBotS8GTtfz5WxwQnWPNyz9S2TgGuZfR5y4i82Fd7/F9+7mfUNV/Zrk2Si2t/ERkGYBLAXxPVdnjGwzpZFds35fCuqZttqrOUdWFAI4DsAlAJazTlpRf6X73LgPwKKxGRRWAQwEcDSuzyQDWc55gI6X9f+dwaCTuBtCHg/9gOUW378rxMci9rH7uIjJGRL4D6z+n02CdMlmkqg95LZQS8pyfiEwF8BMA/wTwv1mtjoaSje9efC/GclXdEv1BVVsArLR/vASUbdn47o0GcAes6abep6q/U9WIqrao6k9gTWl0CIBvZK9sypKs/d8Z+tPNqqoi0gar+zWR6PakH1Y2jkHuZfNzF5GjYQ37nw3reoyvwJqW40A2aqXBspRfJazeixYAjzkW6DjCvv+9iPTDmth30AAJci9L/272iMhbsOZGfCHB4/8Ukb2wJtumLMrSd+8EWNe1/VVV30jw+K9gXapzZsaFUk5k8//O4dCTCAANACaIyOwEj51h3zfm4RjknufPXUTGA3gCVgPxCQAnqupP2EDMi2x9b04EsMRxG2s/9l775xJvpZJDNrJ7E8DoREsn2oNWRgDY66lKSsZrftFTkQlnflDVPliNRP47GkxZ+bd3uDQSH7DvP5TgsaWOfXJ5DHIvG5/79QBOhjU56QWq2pad0igNnvJT1Z+pqiS6Adhu71Zgb3ssa1UTkJ3v3m8AFMLqEXZaDOt05auZFEcpec1vC6xG4AIRGTTAwb62ewKsFXUoeLLTZvF7VvF83GCdrnrHvp0Wtz26PM3GfByDN9+y2w7r+ozD/X4/w+2Wy+8NrN+CueJKgLMDcCysnqZGACfHbT8BQJ19nPf7/V7DeMtSftHVqh4GMDFu+0wcXNL0Ur/fa9hvAD4B9yuuZOXfXt/ffB4/5I/g4ELXr+DgQtctAGbF7VcCa3LQJwGUZHIM3oKTHaxrL9T+ojw5xO1+v99nWG/Z+O4lOS4biQZkB+C/7YZin32MlwD02sdZ5fd7DPPNa36wFhp42X7OXliTML8Sd8x7/X6Pw+E2VCMx120W3998nj/oJbBW33gb1pD+xwAc59jnWBxcJ/HYTI7BW3CyAzA/bttQt11+v8cw37Lx3UtwTDYSDckO1vQpv7H/k/o3gD8AuNDv9zYcbl7zgzXA9QsA/g5rxPqbdn5L/X5vw+WWopGY0zaL2AchIiIiIooZLgNXiIiIiMgFNhKJiIiIaBA2EomIiIhoEDYSiYiIiGgQNhKJiIiIaBA2EomIiIhoEDYSiYiIiGgQNhKJiIiIaBA2EomIKPBE5KsiohnePuF3/UQmYiORiIiIPBGRv0Qb5Y7tx9oN/M+k+5zhQkROtj+bwP4Sw0YiEREFnqreqqrivAF4d9xupYn2UdWf+VQ2AaUAbgHwWV+rCKa5sD6b5b5WMYQCvwsgIiIi4+0EUJeH51AesZFIREREnqiq61OmmTyH8ounm4mIaFgQkbPta+Cq7Z8vEZF/iUifiJxtb7vX3uerQxyn0d7n7CSPv09E7hOR10TkbRF5XUR+IiLHZ1Bz9LUOE5HpIrJWRJpFpEtENojIj0RkyhDPHyEinxaRx0Vku4h0iMiz9vOOHuJ5E0XkKyLyvIi0ichbIlIjIt8XkZIE+0cHFt1r/3ysfa3hM/YupXEDiY5N8pzJIrLf3nbZELV9yd5nt4iMdjw2RUR+ICJ/tWtuFpGnROQCEZEhPupkr6Uistf+86ki8oyIvOP8+yEis0Xkp3bmb9m310Xk5yKywLHv2fZns87e9O5k12baOXxTRJ4WkXYRabXf28dFZJTb9+MWexKJiGjYEZHPAfh+lo85BsB3AXza8VCFfbtSRC5X1YcyOPzpAH4JYELcttPs2zIRuURV/+yoZyqA+wGc5TjWWfbtMhG5WlV/5XjesQA2AjjC8byT7dvlIjJXVZszeB9JqWq7iPwZwHsBfBjAL5Lsusy+v19Ve+PqrgJwL4DD4vadAOBoAOcDeERELot/TrpEZDGAPwIYl+CxDwJ4HICzEToBVu6XishHVPXXLl/zDFiZlzoeOgLAuwBcJSIXqOpbbo7rBnsSiYhouJkLqzH3RwDnApgK4NksHPdLsBqIfQC+CWAWgEkAKmE1ukYDuF9ETs/g2PcBKIQ1AKQMwBQAHwPQBqAEwK9F5FDHc34KqzHYYz/veFgNqPMBvALgULueMsfz7oXVEGkEUAWgGFaD5/0A3rSPccdQxarqDsfAou1xA4l2DPHUB+37JSKSqEFWDuAk+8d1cdtPAPAru7ZnAZwNYCKA2QC+B6AfwEcA3DlU3UmMBvAIrPf+X7A+x2/arzsaVjYC4G8AzoD1WU2E1ZB7HlZb64fRg6nqX+3PZrm96Zm4gVjR93MYgN/BaiC+CuB99nubCeAmAPvs40c/r9xQVd5444033ngz8garMaD27VgX+z6UZJ977ce/OsRxGu19zo7bNhVAt7394wmeUwCr8aIANrh4f41xNX8gwePTALxlP/6tuO1L4p53boLnjQPwL/vx++O2F8JqgCiA9yR43tX2Yzsc279qb783yWfemOBYg54Dq1Edff0PD/Gc1xzbH7e3Pw1gRILnXWM/fgDALBeff/Qz3A5gbILH59qP9wA4NMHjx8Yd43DHY5+wt/8lwfN+ZD/2LwCFCR4/P+6452fzOxV/Y08iERENR9/K8vGWAxgLYJOq3ud8UFX7ANxg/3haouv6Uvibqj6R4Lg7Aayyf7wi7qGP2/dPq+M0tP28bhz8DJbFXds3ClbPGWA1GJ1+DqtBfIa78tOjqhEAf7B//HCCXS6279dFN9in1avsH69X1f4Ez7sbwGuwevU+kEFpP1DVdxJs/w+AjwJYqqp7Ejy+K+7Pg3pGExGRkQBW2j9+QVV7nPuo6h8ARP8+XJDOcTPBRiIREQ03B2A1GLLpBPv+T0Ps8xKs3kYAONXl8R8b4rHH7fsjReQQ+88z7Ps/DvG86GMjYJ3ChqruhXVqHADuswevnBQd9KGq+1T1TVV902X9bkSv2fxg/MAUEZkN6xT+AVjX6kVFP/tdqlqb6IBqdb89Z/+4INE+KdQkOe6bqvqQqj4Vv90eMHQCMrvutRTAGFiXLfx1iP3+bt9n8n7SwoErREQ03LSp6oEsH3OmfX+ziNycxv7O6wdT2T7EYw1xf54O6xq2aCOxMdmTVPU/ItINq4frOABb7Icug9VQOwXArfatQ0SeA/B7AL9V1VaX9bvxOKzTtxNhXTMabYBFB6w8parxPXTRz/6oRCOEE3D72QMDewQHsQeZfBDAPFif5bE42CPrVvT9FAB4O41B2Zm8n7SwJ5GIiIabfR6fn2jqkTEujzHe5f5DjcjdH/fn6CnidKd7iTaWY+9JVbfB6p26ANbglxZYg1eqAPwEQIOI3IAcsXszo6dS4085R081O1fQyfVnDyT5OyMi48SaUuk5WANKzgXwNqye328AOCeD18rH+0kLexKJiIjSZJ/+PCrBQ/Wwpoe5SVVvy8FLO0cgx5sR9+et9n20oVea7EkiMhkHGxhb4x+zr+urtm8QkemwGjwfhzUY5Q4ReVVVn07/LbjyEICLACwVkWsBzIHVw7YHB0+vR9Xb91tUtTxH9SRzG6wexDYAnwJQrY4pdjKYnjH6ft4BUJTkGsu8YE8iERHRYIkGbQDAfCT+vzP6H/vJyQ4oIgUiMt++uZ0I+dwhHnu/ff8fe+AHYDUSAeA9Qzwv+lg/gDfsGueIyOdF5Jr4HVW1QVXXwmoobrI3n59m7Zn4HYAuAIcDOBMHTzU/oKrOXr3oZz8j7prMQUTkePuzT9TIz1S0d/NmVf1VggbijATPSeUNWJmMhTXdTkIiMs1+P8dm8BppYSORiIjooC77flGSx29Jsv0BWKduLxKReUn2+TSAF2D1kvW5rOsCETnNuVGsVVOip37jB3NEJ6I+X0TeneB5hwD4iv3jr+MaXkfBmlfwLhEpdT7PHgASPUUdcVG/q+40eyRxtf3jRUh+qjl6evx5ACORJB8ROQbAy7A+/0wabslETw0PGoFsuzG+jCT7DNhuZ/GI/eM3Ej5BZDysU9wvwJovMSfYSCQiIjroRfv+HBH5enRCZxEpE5Ffwep9GzRoQ1X/BeAeWNf2/VFEPiUipSIyRqzl9L4GawJvAPiu3dhyQwA8LSJXi8hUETlSRD5q1zsJQCfiGhSq+nsA0alvfi/W0nzTReRQETkf1gjmcljXOn4x7nVqcLDB8ysROUtEikSkUEROFJE1sFZ/UQw9ktvpaBE50uV7jk4UfRWsATm1qropyb6fs2v6vFhLK84TkUNEpFhELoI1R+UhAJ5X1b+5rGMoL9n3t4jIu+xrFA8TkUoR+T2AFXH7Vtmr8jiVJ+gB/SKsHP5LrCUVTxeRCfYyfefb72cqrAFNjyBXcjUBI2+88cYbb7zl+obMJtNuHGKfUbAaUNFjHsDByar7AfyP/Z/ygMm07edOBPBw3HMT3W5z+f6ik2nfDqvRkOiYbQDOS/DcabCmSUlWy24knrD62hTvQQH8f47nJJtMe5r9uUU/y73RnJI9J+65Y2D1VkZf839SfFZXweoJTlbzqwAmu/z8h/y7Bevyg2S5dAO4HlZjN7rt5bjnnhm3vRdAt+PYF8CahzHZ+2kGcFwuv1/sSSQiIrKp6n5Yy+jdCqtR0QPr1PAfASxR1e8M8dy3VPViAJcAeBTWtXLdAOpgNRQWqOqNyZ6fwu9hTa9yN6zevi5Y1wauBjBXVQf16qk10fbZsJbk+x2AHbAavH+HNQH3SZpgPWFVvQvWmtCP2LV3wWqsvQJrRZq5qvpd5/MSsWv4FICdsEZhd2DgaOyhnrsPwG/sHw8g+VrO0f3/D9ZntAZWQ78L1lJ6f4XVgDxFVdvTee10qeqLsBqKD8Fq0O+D1Xi7z369HwH4PIANsEY9Px/33L8D+BqsnukDcPRQq+rjsJYgvBPWkn8RAP8G8A8AXwAwU1XfyOb7cRK7tUpEREQBIyKNsEYov1tVh5pYmSjr2JNIRERERIOwkUhEREREg7CRSERERESDsJFIRERERIOwkUhEREREg3B0MxERERENwp5EIiIiIhqEjUQiIiIiGoSNRCIiIiIahI1EIiIiIhqEjUQiIiIiGoSNRCIiIiIa5P8HiigZKRBOxj0AAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from sklearn.metrics import roc_curve, auc\n", "import mplhep as hep\n", "\n", "plt.style.use(hep.style.ROOT)\n", "# create ROC curves\n", "fpr_deepset, tpr_deepset, threshold_deepset = roc_curve(y_test[:, 1], y_predict[:, 1])\n", "with open(\"deepset_roc.npy\", \"wb\") as f:\n", " np.save(f, fpr_deepset)\n", " np.save(f, tpr_deepset)\n", " np.save(f, threshold_deepset)\n", "\n", "# plot ROC curves\n", "plt.figure()\n", "plt.plot(\n", " tpr_deepset,\n", " fpr_deepset,\n", " lw=2.5,\n", " label=\"DeepSet, AUC = {:.1f}%\".format(auc(fpr_deepset, tpr_deepset) * 100),\n", ")\n", "plt.xlabel(r\"True positive rate\")\n", "plt.ylabel(r\"False positive rate\")\n", "plt.ylim(0.001, 1)\n", "plt.xlim(0, 1)\n", "plt.grid(True)\n", "plt.legend(loc=\"upper left\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "95eb11fb11914c0fa6098a810971e71f", "version_major": 2, "version_minor": 0 }, "text/plain": [ " 0%| | 0/117.21875 [00:00" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from sklearn.metrics import roc_curve, auc\n", "import matplotlib.pyplot as plt\n", "import mplhep as hep\n", "\n", "plt.style.use(hep.style.ROOT)\n", "# create ROC curves\n", "fpr_deepset_perm, tpr_deepset_perm, threshold_deepset_perm = roc_curve(\n", " y_test[:, 1], y_predict[:, 1]\n", ")\n", "with open(\"deepset_perm_roc.npy\", \"wb\") as f:\n", " np.save(f, fpr_deepset)\n", " np.save(f, tpr_deepset)\n", " np.save(f, threshold_deepset)\n", "\n", "with open(\"deepset_roc.npy\", \"rb\") as f:\n", " fpr_deepset = np.load(f)\n", " tpr_deepset = np.load(f)\n", " threshold_deepset = np.load(f)\n", "\n", "# plot ROC curves\n", "plt.figure()\n", "plt.plot(\n", " tpr_deepset,\n", " fpr_deepset,\n", " lw=2.5,\n", " label=\"DeepSet, AUC = {:.1f}%\".format(auc(fpr_deepset, tpr_deepset) * 100),\n", ")\n", "plt.plot(\n", " tpr_deepset_perm,\n", " fpr_deepset_perm,\n", " lw=2.5,\n", " label=\"DeepSet (Permuted), AUC = {:.1f}%\".format(\n", " auc(fpr_deepset_perm, tpr_deepset_perm) * 100\n", " ),\n", " linestyle=\"dashed\",\n", ")\n", "plt.xlabel(r\"True positive rate\")\n", "plt.ylabel(r\"False positive rate\")\n", "plt.ylim(0.001, 1)\n", "plt.xlim(0, 1)\n", "plt.grid(True)\n", "plt.legend(loc=\"upper left\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAokAAAJuCAYAAADclpgbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACvu0lEQVR4nOzdeXhU1f0G8PckgQRIAgQMOyTIkmDYZBNBqWIVi6morShaBRe0tVWr1n3fd1spP7ciqHUt1WJc0EpFBBFwiYgkLCZAIgSEEEMMIYR8f3/M3GFyM/tM5t5z836eJ8/AnZs7Z+bNJN85955zlIiAiIiIiMhbgtUNICIiIiL7YZFIRERERM2wSCQiIiKiZlgkEhEREVEzLBKJiIiIqBkWiURERETUjBZFonL5QSl1TwTfe6pSaqVSqkYptUcp9bZSamRLtJOIiIjIKbQoEgH8CkDPcL9JKXU2gLcBHANgC4D9APIBrFRKHRvLBhIRERE5ia2LRKVUmlLqfADPR/C9GQBeBHAQwLEikicivQFcCSAZwDyllK2fPxEREZFVbFskKaX+BeAnAC8ByIzgEOfCVQzeKyIrjY0iMgfABwByAJwQg6YSEREROU6S1Q0I4DMAu93/HozwC7pz3bdv+bjvTQCnuL+WRNQ6IiIiIgezbZEoIk8Y/1ZKXYjwi8RsAD+JSJGP+4yexdwIm0dERETkaLY93RwNpZSC6xT1Hj+7GD2UfePTIiIiIiK92LYnMUpd4Hpue/3cX+m+7eDrTqWUtESjiIiIiFqKiKhYHs+RPYkhSHTfNlraCiIiIiKbilmRqJRqG6tjxcAeAA0AMvzcb2zfEeggIhK3r0svvdSxjxfv53bUUUc59rVsDY/H/PR+vHjm5/TX0snZtYbXMx6Pd9H81eh3wzuxrJ+aiKhIdK+AcqlSqkApVaGUOgCg1n3fQKXULUqpbjFtaRhERADsguu0sy/G9oBFIukpJSXF6iZQFJif3pifvpidfmoONLTo8cMuEpVSPQEUAngawFS4Boi0AWCcB08DcA+AdUqp0bFpZkRKAKQrpfJ83GestlIax/ZQnNTV1VndBIoC89Mb89MXsyOzsIpEpVQ7AB8CGArXSiZzcXg+QsMPAL6Cq7fuA6VUp+ibGZFX3bdn+LhvmmkfchB+GtYb89Mb89MXsyOzcHsSLwIwBEAVgNEi8icRed17BxHZCWAcgKUAOgG4KupWRuZVAHUAblZKHWNsVEr9CcDJAFaLyFqL2kYtiJ+G9cb89Mb89MXsyCzcIvF8AALgBhFZ528nETkE4Ha4TkGfGnnzglNKZSql3nd/eZbvE5G9AC6AayqclUqptUqpcgBPwnUt4qyWbFe48vPzHft48X5u8f407OTsrHg85qf348UzP6e/lk7ODnD+6xnvx2sJyjXGI8SdldoNoDOAfiJS7rW9Ea7xIole2zoA2Adgj4gcEVUjXSuuLIBrHebbTPf1A7DF/d8sEdlqun8KgDvhOkV+AMCnAK4Rke8DPJ7A9YSiaTZZZOjQofj222+tbgZFiPnpjfnpi9npZ/ozK7GqtBJbHzoNQOznSQx3Mu16920ofdLGlDhRz0UoIi8AeMHPfVtxeNCMr/sXA1gcbRtIH23b2mk2JgoX89Mb89MXsyOzcE83f+W+PS6EfUe4b78J8zGIonLw4EGrm0BRYH56Y376YnZkFm6RuAKuXrtHlVKd/e3kXjv5briuX1wVefOIwpeYmBh8J7It5qc35qcvZqeXwrIqrCqtDL5jFMI93fwYgOkAhgFYr5S6A8AS406l1BFw9SDeBeAYuOYhfCgmLSUKEa8l1Rvz0xvz0xez00T5l8Cyh5GydTtea+vq/R3fQg8VVpEoIvVKqXMBvA3gSABPGXe5byvctwquFU/OE5GaWDSUKFQXXHCB1U2gKDA/vTE/fTE7TSx7GNi4GDlADBdX9i2s0c2eb1KqDYA/Afg9gCwA3n3UPwD4J4D7RWRfDNoYdxzdrLeqqip06tTJ6mZQhJif3pifvpidJuZPBbYux8+qA7491BdpKUnIu2UFAOtHNxuNOAjgcQCPuwvGIwEkA9gkIrUxbB9R2Gpra/mLTmPMT2/MT1/MTi9b2vTHOftvwrheGTi82nBshVUkKqX6AICIlBnb3AVjcYD9D4pIha/7iVoCf8npjfnpjfnpi9mRWbhns7fCNRglVN8B+CzMxyCKyq5du6xuAkWB+emN+emL2ZFZJJc8hnS+WynVDUB7AN0jeAyiiPXu3dvqJlAUmJ/emJ++mB2ZBSwSlVJXKqW+N768tn8f5KsEwDa4CsqdLfwciJooKSmxugkUBeanN+anL2ZHZsGuSewEINu0TfnY5o8AeCDMNhFFZdCgQVY3gaLA/PTG/PTF7MgsWJG4AMBS978VgI/hKvxOCPH4pd6DXIjioaioCLm5uVY3gyLE/PTG/PTF7PSyr66hxR8jYJEoItvgOm0MAHCttgeIyLKWbRZR5PhLTm/MT2/MT1/MTk+pyRHNZhiScAeuZCH0U83kYFu3boVSyudXp06dMHr0aDz44IOorY3/tJlFRUURf++mTZtwySWXYNSoUejYsSO6deuG8ePH47rrrsPOndZeXrtz50507twZq1evBnA4g1mzZlnarmjNmjXL78+Sr68TTjgBjY2NyMvLw3PPPddi7Ro1apTnMTdv3ux3v08++cTTrkCMvLKz/f8KXbx4Mc4991xkZWWhXbt26Nu3L0488UQ89dRTaGho+V6DWCgqKkJVVRX+9Kc/YcSIEUhNTcWgQYNw7rnnYuPGjWEdq7GxEX/7299w/PHHo3Pnzhg8eDDOP/98fPHFFz73X7lyJa666iqcf/75eOaZZ/y+ZmvXrkViYiKWLWN/h7dofneSda6cPLDlDi4iLfIFoB2APQAWtdRjtGDbxfXSkD9btmwRANKuXTuZMmWK5+ukk06SXr16ifEa9u/fX77//nurmxuSp556SpKSkgSAZGZmyoQJE2TkyJGSnp4uAKR9+/ayePHiqB7DeN1mzpwZ9vfOmDFD8vPzY3IsO3nsscea/AxNmTJFhg4dKgCkV69eze67/vrrRUTkX//6l3Tu3Fl27doV8zYVFxd7foYByD333ON336VLlwoA+cUvfhHwmEZeWVlZze6rra2VM8880/N4GRkZMnHiRBk0aJAkJiYKAMnNzZUff/wx6ucWDqPNoXxt2bJFRER2794tvXv3FgDStWtXmThxovTr108ASNu2bWX58uUhPXZdXZ1MnDhRAEiHDh3kmGOOkaysLM978e23326y/1NPPSUJCQlN2jRx4kSpr69vduxTTz1Vpk6dGv0LRGSF538lcke6rLxtnJz99GciIp6feYl1PRTRNwFtAYwCcJyfr+PhGrDSCGBfrBvd0l8sEoML9AdPRGTr1q2eX/BDhgyRQ4cOxa1tmzZtCvt7vvzyS2nTpo0kJyfLSy+91KS9+/fvl0cffVSUUtK1a1epqKiIuG2RFnafffaZAJDVq1dHfSy727RpkyxYsCDoc2tsbJTc3Fy57LLLYt6G22+/XQDIiSee6PkZ9icWReKvf/1rASADBw6UNWvWSGNjo+e+TZs2yUknnSQA5KSTTorre2nnzp3NinTvr1NOOUWSkpIkNTVVKisrRUTkggsuEABywQUXSF1dnedYTzzxhACQnJyckB77lltuEQBy2mmneY4tIrJw4UJJSUmRzp07S21trYi4ft+kpKTI+PHjZf369bJnzx654447BIA8/PDDTY67dOlSSUhIkG+++Sbal8dxIvndSRawc5EI15rNdQAOhfDVCODdWDe6pb9YJAYXrEgUEamvr5cJEyYIAHnllVfi1rYDBw6E/T033XSTAJC77rrL7z6XX365AJAXXngh4rZFWthNnz5dcnNzY3Isuztw4EBIRaKIyAMPPCDt27dvUkTEwsCBAwWArF+/Xvr27SsAZO3atT73jbZI/N///ucpRP09j+rqasnOzhYAsnTp0sieVAv4xz/+IQBkwYIFnm09e/aU5ORk2bNnT7P9hw0bJgBkx44dAY/b2NgoaWlp0qlTJ9m7d2+z+40i/vnnnxcR8fy8FBcXN9lv3LhxcuKJJzbbdsEFF4T6FFuVSH53kgXiWCSGdU2iUupEAH9z9yTWAaiAa9SzAvADXINcDuLwhNuPAjg7nMcg52jTpg1uuukmAMB9993X7P6Ghgbcd999OP7449GxY0f07dsX5513HtatW+fzeKHu/8UXX0AphYceegglJSWYPn06unbtiszMTEydOhVvv/12s2N/++23AICjjz7a7/M544wzMHr0aOzdu7fZfV999RWmT5+OgQMHIi0tDaNGjcLcuXNx8OBBzz6zZs1CVlYWAGDBggUhX0+4Y8cOvPnmmzjvvPOC7mt47bXXcOqpp6J79+7o0aMHpkyZgldffbXJPhdffDGUUnjxxRebbH/++eehlEJiYiKqqqqa3Jefnw+lFBYtWhTw8ZVS+P3vf48ff/wRl156Kbp3747OnTvjpJNOwvz58wN+b0VF6Kt4zpgxA/v37w96zHCsWbMGmzZtwtixY5Gbm4uzz3b9CjO/frFyyy23AADuvPNOdO7c2ec+aWlpuPjiiwEACxcubJF2hKukpARXX301ZsyYgQsvvBAAUFdXhx07diArKwsZGRnNvmfw4MGe7w2ktLQU+/btw9ixY30uFZefnw8AePPNNwEA1dXVAIAuXbo02a9r165Nfob//e9/4+uvv8bdd98d2pNsZcJ571ErEU5FCWAhXL2DbwNIdm+7Da5ewynu/7d3b2sEcFesq9p4fMFdkV966aXNvszXwbRWofQkirh6BLp27SoApKamxrN9z549cswxxwgA6dixo4wfP1569uzpuc7RfO1fOPt/9913AkAuuugi6dy5syQlJcnRRx/tuZ5JKdXsGrOLL75YAMh5550X9um8+fPnS3JysiilZPDgwTJ69Ghp27atAJBTTz3Vc8rtsccek0mTJjW51u6xxx4Levw5c+YIgGanx/z1JBo9ngkJCZKXlydDhw71XKt1ySWXePZ7/fXXBYDMmjWryfdfdNFFnk+l77zzjmd7Y2Oj5/X86aefArYZgJx11lmSlZUlSinJy8uTwYMHi1KqWTvM9u3bF3JPoojI8OHDZcyYMUH3C9XVV18tAGTOnDkiIrJmzRoBINnZ2T73j6YncevWrQJA+vbtG/Tnrq6uTsrLy1vkGsxwNTY2yoQJE6RPnz5NfhYOHDgg77//vnz11Vc+v2/UqFFNrl/0p7Cw0PP+8cV4j48cOVJERFavXi0A5IorrvC8jitWrJC2bdvK73//exEROXjwoAwePFj+/Oc/h/18W4t9+/ZZ3QQKwY+PjPX0JI64ZoFceuml9jjdDGCDuyAc6bWtn7sgvM+07z8B1AMYE+tGt/SX14tNfoRaJIoc/sPw7bfferZdddVVAkAuvvhi+fnnnz3bn376aUlISJDMzMwmf3zC2d/4gwH39U+lpaWe/QsKCiQ1NVUSExObnJpas2aNZ4BAXl6ePPjgg1JYWNjk2jBffvjhB2nfvr0cccQR8umnn3q2b9u2TcaNGycA5MEHH2z2uoVzivjMM8+UDh06SENDQ5Ptvo710UcfCQDp06dPk6Jy3bp1niL5gw8+EBFX4Z2QkCD9+/dvctxBgwZJ+/btBYDccMMNnu3ffPONAJDjjz8+aJuN179Hjx5NCoaVK1dKt27dBIB89NFHPr93x44dYRWJs2fPlsTERKmqqgq6bzCHDh2SHj16SJs2bZoMEjnyyCMFgKxcubLZ90RTJC5ZsiRgMWRXL774ot9LL7xPJTc2NsrevXtl7dq18vvf/14AyK9//eugx6+rq5PExETp3r277N+/v9n9f/vb3wSAdO/e3bNtxowZntd33LhxkpiYKBkZGbJ9+3YREXnmmWckPT097oN/dBLsMgCyiTiebg53cp1e7ttiY4OIbFVK7QeQY9p3LoAZAK4DMD3Mx3Gcuwq+w/rt1VY3AwAwpGc67sg/Km6P17dvX3z55ZcoKSlBXl4eKioq8NRTT2HIkCF4+umnkZR0+Mfwsssuw9dff41nnnkGb7zxBi655JKw92/btq3n/vnz53tO8QLAaaedhhtvvBG33norHn30Uc8UKqNHj8bixYtx9dVXY926dbjxxhtx4403okuXLjjhhBNw4okn4re//S26du3a5LkZ0/w899xzmDhxomd7nz598NprryEnJwdz5szBDTfcEPHr98knn+Doo49GYmJi0H2N0/p/+9vfMGzYMM/2o446Cn/7299w+umn44EHHsDJJ5+MjIwMjBo1CmvWrEFZWRn69OmDH3/8ERs3bsTll1+O559/Hp9++qnnGMa/TznllJDb/sQTT2DkyJGe/x9zzDF47LHHcP755+PBBx/E5MmTm32Pd36hGDNmDJ599lksX74cU6dODet7zT7++GPs2LEDp59+epOszz77bDzwwAN47bXXcMwxx0T1GN42bdoEAAGnxYnERx99hMceeyzoftdeey1OOumksI594MAB3HbbbRg2bBjOP//8Zvd75/f888/jkksu8fz/rLPOwoIFC4I+RnJyMs444wwsXLgQf/rTn/D3v/8dycnJAIAPP/wQt912GwCgsrLS8z0vvPACBg0ahJdffhmbNm3CaaedhieeeAI9evTA/v37cdddd+H6669v9h6mw8J975HzhVsk1sE1tU0bAPu9tm8BYF7P5zv37XERtcxh1m+vxqrSyuA7OpDrQ87hydjXrl2L+vp6TJs2rUnBZ5g2bRqeeeYZrFq1CpdccknY+xtyc3N9/kG/5JJLcOutt6KwsLDJ9pNOOgnr1q3D2rVr8dFHH+F///sfli1bhoULF2LhwoW4+uqrce211+Lee+9FQoLrct4vvvgCSUlJmDZtWrPHycrKwogRI7Bq1Sr88MMP6NWrV7N9gqmsrMSePXvQt2/fkPZfu3YtUlNTfbYnPz8fHTt2xNq1az3bTjnlFKxZswaffPIJzj//fKxYsQIAcPLJJ2Pt2rX44osvsH//frRr184zp1yoRWJaWhp+85vfNNt+zjnn4LLLLmv2+kfKeG0CzWUYqldeeQUAcMEFFzTZPn36dDzwwAN4/fXX8fjjj3vyj9bPP/8MAEhJSYnJ8Qw//PADFi9eHHS/c845J+xjz5kzB1u3bsV7770X9HXo3bs3fvnLX2LHjh0oLi5GQUEBHn744ZCuCXzyySfx+eef4x//+AfefPNN5ObmoqKiAt9//z1OO+00vPPOO00KvqSkJNxxxx244447mh3rr3/9KxobG3H11Vd7ti1duhSffvopunTpgqlTp6Jfv36hvwhErUS4RWI5gM5wTX/zsdf2TQB+pZRKEZE697ZG922nqFroEEN6plvdBI94t6WszLUyY//+/QEc7j25//77cf/99/v9vt27d0e0f319PQBg4EDfE4x269YNqamp+P77733eP2zYMAwbNgzXXHMNGhoasGLFCrz00ktYsGABHnjgAbRp0wZ33XWXp20NDQ3o0KGD33YZbYukSDQm8DZfkO9LdXU19uzZg7y8PE9B7k0phX79+mHt2rWoqqpCp06dcPLJJ+Pee+9tViQee+yxmDRpEj777DOsWrUKv/jFL7Bs2TJ07do14OAeb9nZ2T57PxMTE5GdnY1169ahuroa6elNfx6N/EJlvDbRXnR/4MAB/Pvf/wbgKiqeeuopz30igoSEBFRUVGDp0qU48cQTo3osw4ABAwAEH8gRrgsvvNAzmCSWDh48iEcffRSDBw/Gqaee6nMf7/xOOeUUz4eK77//Hqeffjruuece5OTkYMaMGQEfq0ePHvjuu+9wxx13YMmSJfjmm29w1FFH4bLLLsM555yDd955Bz179gza5srKSjz00EN48MEH0aFDB4gIZs2ahRdeeMGzz/XXX48XX3wRZ555Zigvg2OF+94j5wu3SFwGYBiAvyqlzhaRDe7tXwLIB3AOXOs9A665EgGvZf1as3ie3rUTEcHWrVsBwHPa11gFYciQIQF7yIwlosLd3yjYfPU6GpKSkjy/EPfu3Ytly5ahZ8+eGDNmTLP9Jk2ahEmTJiE/Px/Tpk3DE088gTvvvBNKKTQ0NKBt27ZBi4Y2bdoEvN8fYyR1Wlpa0H3NPba+GEWb8Zoec8wxSEtLw9KlSwEAy5cvx8CBA9GtWzccf/zxeOCBB/Dpp5+id+/eqKiowIwZMwIe31ug199ox4EDB5rdl5qaGtLxDR07dgTQ9NRjJN577z389NNPANDkNLvZq6++6jNv4/X3x9f9gwa5TsAUFxc3u8+soqICubm5SElJwbZt2yL+mYrGW2+9hZ07d+Kaa67xu4+//I488kg89NBDOO200/DWW28FLRIBID09HU888USz7caKKz169Ah6jPvvvx9HHHGE5yzDs88+ixdeeAF33HEHrrrqKuzYsQMXX3wxLrroIkyYMAHdunULekynCve9R84XbpH4GIBLAOQBWK+U+o2IvAXgPwDuAjBHKZUF4ACAq+G6kPKTWDWW9PPee+9h9+7dOOqoozzFm9F7ctZZZ4V02inc/Y0pL/z1zuzevRtVVVUYPnw4AFehMm3aNIwdOxarVq3ye9zTTz8dnTt3xt69e1FZWYkuXbpgwIAB+Prrr7Fo0aIWuZ7HmEZk3759Qfft2LEjunTpgi1btkBEfBZzpaWl6Nixo+c0XZs2bXDiiSdi0aJF+P777/HVV195/nhPmDABiYmJ+PTTTz29oOFcj1haWupzu4igpKQEHTt2xBFHHNHs/nCLPaOw8zXlSjiMU83PPfdck8sWDF999RVGjRqFf//73/i///s/T5FmnKbcti3w52Hjw5LRow64CqfevXujuLgYH374IU4++WS/3//hhx+iqqoKkydPDlogttQ1iU899RSSkpLwu9/9zuf9CxcuxF/+8hdcfvnlPq/DNT7kGafZAykrK4OI+Pxg+L///Q8AMH78+KDHmDt3Ll588UXPh5Z//etfGD9+PO68804AQOfOnfH8889jyJAhWLJkSUjFq1NVVlayULS5wrIqpFRUNxsE0lLCurBGRLbCdY3hBrjmQkxyb/8WwD8AdIBr+pt7ARwBoNL9b2qFDh486Dk9bFxoDgB5eXlISEjAf//7X5+9K2+88QbOOOMMLFmyJKL9jcLjm2++8Tnn4rx58wDAM7Cje/fu6NatG77++uuA18nt3LkTe/fuRY8ePTynOIcNG4ZDhw55/mh5O3DgAM4991xceumlfo8ZjNGrsWfPnpD2HzZsGPbt2+dzHsO3334bVVVVTQa0APAUJo888gjq6+s9A3DS0tIwcuRIrFy50vP8fvnLX4bc9r179+K9995rtv2NN97Avn37mrXD0L1795AfAzj82kTTA1RdXY133nkHSUlJOOOMM3zuc/TRRyMrKwt79+7FBx984NmelZWFzp07o7S0FN98843fx/jXv/4FwLUmtKFNmza4917Xr8gbbrgBNTU1Pr+3vr4eDz/8MABgypQpQZ+PcU1isK8ffvgh6LEM33//PZYuXYoTTjjBbw/ekUceiS1btuDjjz/2eb/RA+gve2/nn38++vXr1+yykEOHDuGll15CUlJS0HlGb7/9duTl5TW5NnbPnj3NPlBkZmYCAH788ceg7XKycN971MLKvwRemQ7Mn+r5SvlnPnrWHb7+OjU53L6+MEU6LBpARwAdvf6fAOAaACsBfAVX0dgn1sOx4/EFToETVDjL8uXl5TWbA85YuuuGG25osrbq8uXLpUuXLpKcnNxkPrhw9jemJAEgo0aNkh9++MGz/7vvvitpaWmSkJDQZEqexx9/XABIv379ZNGiRc2eT1FRkWf1GGPtYBGRDRs2SFJSkmRnZ0thYaFne3V1tWfuqmuuuabZ6zZt2jT/L65Jly5dZOLEic22+5oC57///a9n3j3v57d27VrP+rnmOSg3bdokACQ5OVkASFFRkee+a6+91nPf8OHDQ26z8fr379+/yfFWrVolPXr0EADy3nvv+fzeUJflMzz33HMCQAoKCkJun5nxeCeffHLA/YzXY8aMGU22P/jgg565FD/++OMm99XU1Midd94pAKRz587N5gg8dOiQjBkzRgDI4MGDZfXq1U2mXtq+fbucccYZAkCGDh3aZKm7eDKmnbn33nv97nPw4EHp06ePAJB58+Y1uW/16tXSrVs3SUxMbLK8pD9PPvmkJxNj/r76+nrPPJ6/+c1vAn7/unXrJCEhodlUS5dddpm0bdvWM2XVoUOH5Morr/Q7xVFrwmX5bObls0XuSPf79fWDJ0vhtr0i0nJT4FhekNnxi0VicEaB0q5duyZruZ500knSu3dvzw9sdna2fP/9982+v7y8XHJzcwWAdOnSRSZMmCCZmZmeya5fe+21iPc32jZmzBjp3r27JCcny5gxY6R///6edt15553N2jRr1izP/RkZGTJ69Gg57rjjPHPkAZDTTz+92XyFDz/8sCQkJEhiYqIcddRRMmrUKM+ci2PGjGkyiXhVVZUAkJSUFDn99NPlySefDPpan3nmmdK+ffuQ5kkUcf0RBCCJiYkydOjQJpNpX3rppT4fw3htunTp0qRAWbRokee5exfHwRgFz+DBgyUxMVFGjBghubm5nsm0zRN4m8VinsQ//OEPMmXKFPnnP/8Z9Bgnn3yyAJB//OMfAfcz1tDu0KFDk/k6Gxsb5fzzz/e8Vn369JHjjjtOhg8fLh06dPD8TL3//vs+j1tTU+P5IAS4JoyfMGGC5OTkSJs2bQSADBgwQNatWxf0ubSUKVOmCAD55JNPAu738ccfS1JSkud1OP744z0TqSul5IEHHmiy/9q1az2/P7w1NDR4Pph16dJFjj32WElNTfV8+Ai2hnp+fr7Pov+HH36Qzp07S2JioowdO9bzsz99+vQQXwmiOHHPhyj395Gi+yfKytvGeb6+fvBkkfIvPLvaokgEMM/dQ9gm1g2x0xeLxOCMAsXXV1pamowcOVLuu+++Jn9IzX7++We58cYbZdy4cZKamip9+/aVM888U7744ouo9jd602bOnCnbtm2TGTNmSHZ2tnTt2lVOOeUUnz2FhlWrVsm5554rw4cPl44dO0qnTp1kxIgRcvbZZwdcM3fp0qVy+umnS79+/TzP/5FHHpHa2tpm+z700EPStWtXad++vVx77bV+j2kwVlzx7qkUCTwx9yuvvCInn3yydOvWTbp16yannHJKs8Lbm7FKi3mi48rKSk+BuWTJkqBtNcA9ufTevXtl9uzZkpOTI506dZITTjghaCG2fv36sIrEESNG+FxxZcSIEX4/EHjbuXOnJCYmSlJSkuzevTvgvo2NjdKrVy8B4PP1XL58uZx99tkybNgw6dChg/To0UOOP/54ueWWW3yuQWy2cOFCOe2006Rnz57Stm1b6devn5x00kny6KOPWrqu7v79+6Vdu3bStm1bn5Nbe1u/fr0UFRXJ9OnTZeDAgdKuXTsZMGCATJs2LeBk5L5+59bW1sott9wiOTk5kpKSItnZ2XLNNdcEfS2XL18uSin58ssvfd5fUlIi06ZNk4yMDBkwYIDcfvvtTc5QtFbr16+3ugnkzSgSn/+VnP30Z9Lvhnck747FctH81Z4eRENLFYnKdezQKKX2wbXsXq6IbAz5GzXj7u1AOK8N2cfWrVuRlZWFmTNnxnRNX6vs2LED/fr1wx133OFZ59fulFL4xS9+4ffatFgpKytDv3798Oijj/occXvrrbciJSUFt956a4u2g4go5uZPBbYuB/pNxPT6W7GqtBLjsjPw+mXNB2wZAxVFJLTpJ0IU7oywS923Y2PZCKJYMuZVdIoePXrgzDPPxMsvv2x1U+KiqKgo5H1fffVVtGvXzucAhpqaGqxYscIzzQzFRzj5kb0wOzILt0j8M4A9AB5SSnFtI7Ilf5No6+yqq65CUVERVq9ebXVTWpwx32UwIoIXX3wRv/vd79C5c+dm9//qV79C7969W/0EyfEWan5kP8yOzMIdO70HwOkAXgHwvVLqHwAKAeyAa25En0TE/8y0RDEW69Ur7GD8+PGYMWMG7rnnHhQUFFjdnBa1cePGkHr/3nzzTWzfvt3v3JnGMoIUX6HmR/bD7Mgs3CJxt9e/FVwTZgcjETwOUcRCXedYN48//jhycnKwevVqjB3r3Cs+vCeb9qexsRF33HEHHnzwQc8cd2QPoeRH9sTsyCzc4m0bXEUfkW0lJiY6ctBRt27dPMv02V00r395eblnCUd/EhISfE6UTtYLJT+yJ2ZHZmEViSKS3VINIYoV9izpjfnpjfnpi9mRWbgDV4hsz1i7mfTE/PTG/PTF7MiMRSI5Tvv27a1uAkWB+emN+emL2ZEZi0RynIaGBqubQFFgfnpjfvpidmTGUcfkOI2NjVY3gaLA/PTG/PTF7CxU/iWw7GHgQM3hbRXfWtceNxaJ5DgpKSlWN4GiwPz0xvz0xezixFdBuHW5390LdzVg/f7qODSsORaJ5DjV1dVIT0+3uhkUIeanN+anL2YXJ8seBjYu9n9/v4mefxbuasDtVVOxT1yXAqQmx7dsY5FIjtO1K1eM1Bnz0xvz0xezawGBTiMndwS6Dz28PTkVmHQ90GuUZ9MDz6zE2r2VSEtJwtisDFw5Ob7LzrJIJMfZvn07Vw7QGPPTG/PTF7NrAYF6DfuNB2a8HtJhhvRIx7yZY2LYsNCwSCTHyc7mnO86Y356Y376YnYtwOhB9NdraHMRT4GjlPqlUmqOUupzpdQGpdQP7u19lVLnKaXaxq6ZZDdbt26FUsrnV6dOnTB69Gg8+OCDqK2tjXvbNmzYEPH3btq0CZdccglGjRqFjh07olu3bhg/fjyuu+467Ny5M4atDN/OnTvRuXNnrF69GsDhDGbNmhXS97/wwgtQSkX1h+CTTz6BUgp33XVXxMcIxpxfoJ81f1+ffPIJXn/9dRx55JHYv39/i7SzoKDA83i/+93vAu57wgkneNoVyKxZs6CUwgsvvODz/t27d+Oee+7BmDFj0LVrV6SlpWHEiBG48MILUVxcHPFziYWGhgY88sgjGDx4MNq3b48jjzwSv//977Fnz54Wfdx169bht7/9Lfr374/U1FSMHDkSt99+O37++edm++7fvx+PP/44zjnnHFx//fUBl3Y866yzcMIJJ7Rk020nmt+dFET3ocCsdw9/zXi9yWlluwq7J1EplQbgNQBTjE3uW2Ox1q4AXgJwl1LqJBHZEm0jrTJ79uxm2/Lz85Gfn29Ba+ypXbt2mDRpkuf/DQ0NKCoqwpdffokvv/wSzz33HP773//G9RRGTk5ORN/39NNP409/+hMaGhqQmZmJoUOHora2FuvXr8fnn3+Op556Cm+++SZOOeWUiNu2detWZGVlYebMmZg/f35Y33vNNdfguOOOw9ixYyN67F69emHKlCno1q1bRN8fL+b82rVrhylTpjTb75NPPsH+/fsxadIktGvXrsl9GRkZOP7443Hvvffi/vvvxz333BPzdr7yyiuef//nP//B/v37m7Ujlt5//3387ne/w549e5CQkICjjjoK7dq1w+bNm/HNN9/glVdewaOPPoqrrrqqxdrgT0NDA6ZOnYoPP/wQbdu2xciRI7F161Y8/fTT+OCDD1BYWOgZEDFr1iwsWLAg6DFDeY8sXrwYp512Gg4dOoRBgwZh5MiRWL9+Pe655x4sXLgQa9asQYcOHQC4VhOZMGEC1q9f7/n+J598Eq+99hqmTZvW5LirVq3CW2+9hc8//zy8F0Jzkf7upPgqKChAQUFBfB5MREL+gquoXArgEIBGAAUAbnD/+5B7nz4AytzbtgJICecx7PAFV8Er5N+WLVsEgGRlZfm8f+vWrTJx4kQBIEOGDJFDhw7FrW3r168P+3u+/PJLadOmjSQnJ8tLL73UpL379++XRx99VJRS0rVrV6moqIi4bcbrNnPmzLC+77PPPhMAsnr16qiPFY2lS5cKALnzzjtb7DFCzS8rK0sAyJYtW/zu89prr0nbtm1l69atsWqeiIjU1NRI+/btJSUlRcaPHy8A5I033vC7/y9+8QsBIEuXLg143JkzZwoAWbBgQZPtn3/+ubRt21YAyG233SbV1dWe+xoaGmTevHnStm1bSUxMlP/973/RPbkIPP744wJATjrpJPniiy9ERKS+vl5mzZolAOTKK6/07PvYY4/JlClT/H7l5OQIALn55psDPuahQ4ekW7dukpiYKG+++aZne21trUyfPl0AyE033eTZ/oc//EESEhLk6aeflp9++klWrVolgwYNkszMTKmpqWly7EmTJslvfvObWLw0WonkdycF8fyvRO5Id92G6ette6XfDe9IvxvekbOf/izgvl51S2zrobB2Bs53F3+1AE722u4pEt3/TwXwtbuYvDrWjW7pLxaJwQUrEkVcfyQmTJggAOSVV16JY+vCd9NNNwkAueuuu/zuc/nllwsAeeGFFyJ+nEgLu+nTp0tubm5MjhWNeBSJoQqlSKyrq5OOHTs2KRZi4Z///KcAkHPOOUfmzZsnAOTMM8/0u3+0ReLxxx8vAOSZZ57x+71///vfBYD84he/CO/JxMDgwYOlc+fOsm/fvibba2pqpEOHDtK7d++QjvPzzz/LoEGDZMiQIfLzzz8H3Pe7774TAPLLX/6y2X3Ge+PYY4/1bMvKypJzzjmnyX7vv/++AJBly5Z5tr333nuSlJQkGzZsCKnNRB5lX4i8fLarIDS+7u8TcZF40fzVniLxovmrA+7bUkViuNckXuJuyJ0i8qG/nUSkBsCNcJ2KPivMxyCHaNOmDW666SYAwH333dfs/oaGBtx33304/vjj0bFjR/Tt2xfnnXee3+uEQt1/yZIlUErhoYceQklJCaZPn46uXbsiMzMTU6dOxdtvv93s2N9+65qS4Oijj/b7fM444wyMHj0ae/fubXbfV199henTp2PgwIFIS0vDqFGjMHfuXBw8eNCzz6xZs5CVlQUAWLBgQcjXE+7YsQNvvvkmzjvvPL/77N69G7NmzUJmZiZSU1Nx9NFH48UXX2yyT6BrGP/+979j0qRJSEtLw5FHHokHH3wQjY2NSEtL83tdVmlpKc466yx07twZHTt2xLHHHov33nsv6PMBgLvuugtKKezcuRNvvPEGxowZgw4dOmDIkCE466yzsH379pCOE0xycjJ+85vf4LnnnsOBAwdickzg8KnmCy64AGeccQbatm2Ld999F9XVsZ/w9oMPPsCyZctw1FFH4dJLL/W730UXXYS0tDQsW7YsrtfPLl++HBs2bMBvf/tbpKamNrk2skOHDti0aROWL19ufAAP6C9/+Qu2bduG1157Leg6wsY1h0qpZvclJLj+tNXUHJ52pLq6Gl26dGmynzHlS1VVFQDXiiM33XQTLr74YgwaNChoe53G6utatWeMZN66/PDXgZ9c9yWnhn24mgOHl0mM99Q3HuFUlAB2wNU7eKRpe5OeRPe2dPf27bGubFv6C+xJDCqUnkQRkcbGRunatasAaHJKZ8+ePXLMMccIAOnYsaOMHz9eevbsKQCkXbt2snjx4ibHCWf/0tJSASAXXXSRdO7cWZKSkuToo4/29DwppeSee+5pcvyLL75YAMh5550X9qnx+fPnS3JysiilZPDgwTJ69GjPqcFTTz1V6urqRMR1mm3SpEkCQHr16iVTpkyRxx57LOjx58yZIwDkm2++abLdyCA/P18GDhwoKSkpMnbsWBkwYIDnU+VLL73UbH/vnsfGxkY599xzBYAkJyfLmDFjpE+fPp79OnTo0KRnyuhJ/N3vfidHHHGEpKamyrHHHiu9e/cWAJKQkBC0t0xE5M477xQAct111wkA6dSpk4wfP17S09MFgHTr1k2+/PLLgMcIpSdRROStt94SAPLuu+8GbVcofvzxR0lKSpJu3brJwYMHRURk6tSpPnsADdH0JBqnbP/xj38EbduuXbukvLzc8zMXD4888ogAkNdee01EXD9TkVi8eLEAkCeeeCKk/evr6yUrK8vn6WbjZ/q2227zbP/Vr34lnTt3lqKiIhEROXDggJx55pmSmJgoP/zwg4iIvPTSS9K+fXvZvn17RM9Bd5FmR27GqeX7+zTtTXz5bJHyL8I+3NlPfxbSqWaRlutJDLd4+tFdJHYybfdVJKa5t++JdaNb+otFYnChFokiIqNGjRIA8u2333q2XXXVVQJALr744ianlZ5++mlJSEiQzMxM+emnnyLaf9myZZ43TE5OjpSWlnr2LygokNTUVElMTJTi4mLP9jVr1khiYqIAkLy8PHnwwQelsLAw6C/NH374Qdq3by9HHHGEfPrpp57t27Ztk3HjxgkAefDBB5u9buGcIj7zzDOlQ4cO0tDQ0GS7cSwAMmHCBNm1a5fnvgcffFAAyIknnhjwsd944w0BIKNGjZIdO3Z4tj/77LOSkJDQ7PSlUSQCkDPOOMNT+Dc0NMgVV1zhKc6DMYpEAPKHP/zB89zq6+s915NNnDgx4DFCLRK3b9/uKUhj4f/+7/8EgPz5z3/2bHvxxRcFgJxyyik+vyeaIvG4444TALJq1aqYtD/WrrnmGs9ze+6552T8+PHSsWNHGTx4sMyaNctTgAVy8OBBGTx4sAwcONBTeIdi3bp1cuSRRwoAGTx4sBx33HHSpUsXASAXXnhhk2OtXbtWkpOTJTk5ucmHTONShAMHDkhWVlbQayGd7Pvvv7e6CXqL4vpDX+xQJIY7uvlrAJMBjAHw3yD7HuW+tX6Fajt4/0ZbLNYNwDUU/9QH4/Zwffv2xZdffomSkhLk5eWhoqICTz31FIYMGYKnn34aSUmHfwwvu+wyfP3113jmmWfwxhtv4JJLLgl7/8zMTM/98+fP95ziBYDTTjsNN954I2699VY8+uijeO655wAAo0ePxuLFi3H11Vdj3bp1uPHGG3HjjTeiS5cuOOGEE3DiiSfit7/9bbMVCYxpfp577jlMnHh4KaU+ffrgtddeQ05ODubMmYMbbrgh4tfvk08+wdFHH43ExESf97dp0wYvvfQSjjjiCM+26667DnfffTdKSkoCHvvee+8F4Hqdunfv7tl+6aWX4v3338dbb73l8/syMjKwYMECz8jRxMRE3HrrrZg7d27Qx/SWm5uLv//9755Thm3atMHzzz+PwsJCLF++HCtWrMCECRNCPp4vPXr0QK9evbB06dKojmPwPtVsOP3005GSkoIlS5bgxx9/bJJFtDZt2gQg9nPYzZw5M+hp6W7dugUdibxjxw4AwMMPP4z33nsPPXv2xNChQ7Fp0ybMnz8fb731FpYuXYrhw4f7PcY//vEPbNiwAQsXLmzy/g4mNTUVvXv3xvfff48NGzZ4pnBJSkrCkCFDmrxnhg4dis8//xx/+ctfsGbNGvTu3Rs33ngj/vjHPwIAnnrqKezbtw/XX2//uetaSs+ePa1uAgEoLKvCnCWbsH6HNes1ewu3SFwD4CQADyulxolIfYB9b4Krsv0q0sY5SsW3ARfwdjLXh5zD1w6tXbsW9fX1mDZtms8/CNOmTcMzzzyDVatW4ZJLLgl7f+OawdzcXBxzzDHN9r/kkktw6623orCwsMn2k046CevWrcPatWvx0Ucf4X//+x+WLVuGhQsXYuHChbj66qtx7bXX4t577/Vc8/TFF18gKSmp2RQaAJCVlYURI0Zg1apV+OGHH9CrV6+wXjcAqKysxJ49e9C3b1+/+4wePbpZAZGYmNikWPalrq4O3377LYYOHYqhQ4c2u3/GjBl+i8RTTjml2Rqv3kVmqGbOnNnsmrLKykrMmjULN954IwoLC6MuEgHXB5WioqKoj7Nt2zasWLECeXl5GDFihGd7eno6pkyZgv/85z9YuHAhfv/730f9WAbj2ruUlJSYHRNwffjYsmVLwH28P2D5Y8yD+MEHH2DBggWYPHkyevfujcbGRtx11124++67cemll2LVqlU+rx/8+eefceedd2LcuHE466zQL2HfsWMHjjvuOOzcuRP33HMPzj//fHTp0gVfffUVrr/+etxwww2oqqrC/fff7/meESNG4L//bd6/sW/fPtx77724+eab0bFjRwDAjz/+iLfffhtlZWUYPXo0pk6d6rP9TrJ792707t3b6ma0aoVlVZg2d0WTbfFer9lbuI/8EIAZAIYB+EIpdR2AZd47KKUGArgXQD5cp6fj12VlZ92b/xG2TJzbUlZWBgCeuRKNnpH777+/yS9ws927d0e0f2qq6wLhgQN9X+jbrVs3pKam4vvvv/d5/7BhwzBs2DBcc801aGhowIoVK/DSSy9hwYIFeOCBB9CmTRvPZNKbNm1CQ0ODp0ctUNsiKRKNnh7zBffeQvlD7ktJSQlExO/3BzpupI9p5iuj9PR0DBgwAAD8ZhSuLl26oKqqCnV1dVEVW6+++ipEBHv37sUvf/nLJvcZBderr74a0yJxwIAB+Prrr1FSUhKwNy5cpaWlMTlO586dAQCXX345LrzwQs/gnYSEBNx5550oKCjAmjVrsHnzZp95z5s3Dzt37sQTTzwR1uM+9NBDKCsrw3333Yebb77Zs33SpEn44IMPMGTIEDz66KP44x//GLSH7JFHHkH79u1xxRVXAABWrlyJadOmYdeuXZ59Jk+ejIKCghadC9Nq5g9+FH9zlmxq8v/JOZnWDVpBmEWiiFQrpc4D8A6APADvA2iAeyJtpVQNgHZwjWquA3CxiOzyc7jWJY6nd+1ERLB161YAhwuLhgbXiK0hQ4YE7CHLzc2NaH9jFGug01ZJSUmor3d1hO/duxfLli1Dz549MWbMmGb7TZo0CZMmTUJ+fj6mTZuGJ554AnfeeSeUUmhoaEDbtm1x4okn+n0swHUaNRJGr2haWprffZKTkyM6drDRvv5Ob0fzmGa+Mqqrq/M8dqxGJBu9Q3v37kWPHj0iPo5xqvmHH37ADz/84HOf5cuXo6ysDH369Gl2n9Gr7o+v+wcNGoSvv/4axcXFQYvEP//5z1iwYAFuvvlm/OUvfwm4b6wYPcjGe6Curs5TbCilMGHCBHz99df49ttvfRaJTz/9NDp16oQzzjgjrMf99NNPAbh6vM06deqEU089Fc8//zxWr17ts6ffsHPnTjz++OOYO3cukpOTUVdXh/POOw+dO3fGO++8g0GDBuHVV1/FFVdcgbvvvhsPPPBAWO3UiXd2FH+FZVVYUny4ZFp0xQQM79PJugYhghVXROQzpdQAAHcCuBSA91+L9nANVnkDwA0isi0WjSR9vffee9i9ezeOOuooT2+b0Ut01lln4e677w56jHD3N04F+7s2bvfu3aiqqvL8wT1w4ACmTZuGsWPHYtWqVX6Pe/rpp6Nz587Yu3cvKisr0aVLF08vz6JFi9C2bexXoszIyADgOh0Wa8YfbH+nHI3iviX5yighIQGbN28G4L83OFw//eSahsLo9YrEd999h7Vr16J3797Ytm2bz1OPv/71r1FQUIA33ngD1157rWd7v379ALhOVwdivObeKxT94he/wOuvv44nn3wS06dPD/j9ixYtQlVVFcaPHx/0+cTqmkSjh7yurg7A4fefwfiQ5+uDzieffIKioiJcccUVYffwGo/jrxff2B7sFPHdd9+N7Oxsz9KKX3zxBUpLS/HBBx94PjRefvnl+Pjjj/Hvf//b0UWiOTuKL+9exMk5mZYXiECEazeLSKWIXAmgA4ABAH4F4Ay4Bqu0F5FzWSDSwYMHPaeHb7vtNs/2vLw8JCQk4L///a/PnpM33ngDZ5xxBpYsWRLR/kYv1DfffONzzsV58+YBcJ1WBlw9Id26dcPXX3/d7DpFbzt37vT0RBmnf4cNG4ZDhw7hf//7X7P9Dxw4gHPPPTfg3HbBGEvotcT6t6mpqTjyyCOxbt06n6/TG2+8EfPHNHv55ZebbUtISPAsx2ZkFK09e/agY8eOUZ1qNnoRf/vb3/otPIxr6l599dUm20eOHAnAtXyfP1u3bsWaNWuQkJDg2R8ALr74YgwcOBCfffYZ/vnPfwZsX2lpKTp37oxx48YFfT6ffPIJFi9eHPAr2FrTgOuaYKUU3nnnHQBNe4cbGhrw8ccfA4DP616N96Kv3sBgjA95xvG9NTY2Ytky15VQ3q+l2ebNm/Hcc8/hgQce8BRIxnvN+IBmyMzMxI8//hh2O3USzqChVqX8S+CV6cD8qYG/ohycaot5Ec3CGQoN4IhYD6+24xc4BU5Q4SzLl5eX12zuwQsuuEAAyA033CD19fWe7cuXL5cuXbpIcnJykyldwtl/1apVnukARo0a1WQKjnfffVfS0tIkISGhyZQ8xrJi/fr1k0WLFjV7PkVFRZ7VY66//nrP9g0bNkhSUpJkZ2dLYWGhZ3t1dbVceumlAkCuueaaZq/btGnT/L+4Jl26dPE5HUyw6XSysrKa5ONr/3/84x8CQEaPHt1kCpyXXnpJkpKS/E6B42/FFfP+/nhPgXPzzTd7phqqr6+X3/3udwJAxo0bF/AYoU6BIyLSq1cvGTVqVND9AsnOzhYA8tln/qejqKyslDZt2ggA2bhxo2f77t27pVevXp6pc/bu3dvk+z7//HMZNmxYs58Xw6JFiyQhIUGUUnLLLbc0W9nktddek86dOwtgzepGkydPFgDy17/+VcrLy0XEtdrNZZddJgDk7LPPbvY9hw4dkq5du0q7du2avKdDtWLFCklISJCePXs2Wa5y//79cuWVVwrgWiYwkOnTpzd7b5WXl0tiYqKcccYZnvkmN2zYIBkZGX6nOHKKUKYrapVePts1tU2oXy83/3kPRThT3ph51S2xrYfC2hk4AOA/cPUaJsW6MXb5YpEYnFFwtGvXrsm6qyeddJJnYmUAkp2d7XPurfLycsnNzRUA0qVLF5kwYYJkZmYK3JNdGxPzRrJ/UVGRAJAxY8ZI9+7dPZNE9+/f39MuX0WOMWkxAMnIyJDRo0fLcccd55mHDYCcfvrpzeYrfPjhhyUhIUESExPlqKOOklGjRnnmXBwzZkyTScSrqqoEgKSkpMjpp58uTz75ZNDX+swzz5T27dv7nScxmiKxoaFBTj31VIHXZNpGMXT77bdLhw4dmix7FusiMT8/X5RScsQRR8ixxx4rHTt2FAByxBFHyJo1awIeI9p5Ej/77DPPz20wxtrZffr0CTp35sknnyxA8yUely9f7vmZbdeunQwfPlyOP/546du3r+fn69e//rXfgunDDz+Ubt26CdyTlufk5Mixxx4rRxxxhACQxMTEJh9g4qmoqMjzPLp37y4TJkzwFK0DBw5s8gHE8PnnnwsAOeGEE4Ie//rrr5cpU6bIP//5zybb7777blFKSUJCguTm5sqxxx4rnTp1EgDSt29f2bZtm99jfvHFF6KUkhUrVjS774YbbhAA0qNHDzn22GMlJSVF2rZt2+SDoBMFWwqx1fI3SbavrwgnzhZxRpHYCNdk2ofgGrn8NwBHx7pRVn+xSAzOeyJn81daWpqMHDlS7rvvvoC/dH7++We58cYbZdy4cZKamip9+/aVM888U774wvcbLNT9P/30U08xtG3bNpkxY4ZkZ2dL165d5ZRTTvHZU2hYtWqVnHvuuTJ8+HDp2LGjdOrUSUaMGCFnn312wImQly5dKqeffrr069fP8/wfeeQRqa2tbbbvQw89JF27dpX27dvLtdde6/eYBmPFFfMfqFgUiSKuHp377rtPRo8eLe3atZO8vDx5+eWXZf/+/c16PWNdJC5dulT+/e9/y+TJk6VTp04yePBgOeusszy9UYGEWiT+5z//EaD5iivG9lDe63/84x89vYDBPPvsswK4JnI327dvn9x9993yi1/8Qnr37i3t27eXvLw8Oeuss+Sjjz4KeuyKigq57rrrJC8vT9LT0yU9PV2OPvpoOe+885qtyBNvP/zwg1x66aWSm5srqampMnr0aLn55pt9vgdEDv8M3H777UGPbUxG7uvn7tNPP5X8/HzJysqStLQ0GTNmjNx8881NPpz5ctJJJ8npp5/u877GxkaZM2eO53WePHmyfPXVV0HbqTvvhQfIS4wnyfbHjkWich07NEqpGQCmAzgFQFt3owBgPYD5AF4WkfgtGtpClFKuSjGM14bs4/vvv8eAAQMwc+ZMz7VtOtuxYwf69euHO+64A7fcckvcHtd4Ha+44gr8/e9/j+mx77rrLtx5551YunQpJk2a1OS+hoaGmF4bdemll+I///kPysvLm43KbmhoQEpKimdwBUUv1vlR/DA7P+ZPdc1z3G8iMOvdFnuY6c+sxKrSSozLzsDrlwUffObNuE5aRGI6mWdYA1dE5BUROR1AJoCZAD6AawqcowA8AqBMKfW2UuospVRkc34QRSnYCFLd9OjRA2eeeabPQR7RmjFjBnJzc1FZWdnsvrfffhtA7AaPhCqcFVuCOXDgABYuXIhLL720WYEoIvjwww8xaNCgmD0exTY/ii9mR2aRjm6uFpEXReRXALoBuATAR+67T4NrCpwKpdQcpdQYf8chagne04c4xVVXXYWioiKsXr06psfNyspCcXExHnnkkSbb169fj0ceeQRt27ZFfn5+TB8zmFgWbW+//TZqa2tx+eWXN7uvoKAAV199NebOnRuzx6PY5kfxxezILOpJkUSkSkSeF5FTAPQAcDmAjwGkA/gDgJXRPgZROIwVWpxk/PjxmDFjBu65556YHveGG27AgAED8OCDD2LMmDG47LLLkJ+fj7Fjx6KiogL33XdfVJNPRyIWy+cBrp7Ce++9F9dff73PSdh//etfY+PGjTjhhBNi8njkEqv8KP6YHZnFeubMBgC1APYBOAjXyivOXuySbCdWEzDbzeOPP47ly5fHtDexY8eO+Pzzz3HNNdfg559/xksvvYR169ZhwoQJ+OCDD3DdddfF7LFCZaycE61//etfqKmpabJkG7W8WOVH8cfsyCysgSs+D6BUJoBpAM4EcAJcq7gYhWExgNdEJPgyGTbCgSt6Kyoq4i87jTE/vTE/fTE7P1p44EphWRXmLNmE1Vsqsa+uwVYDVyIaxqSU6gfXXIlnAjgWTXsMSwC8DldxGN3040QR4C85vTE/vTE/fTG7+Cssq8K0uSuabEtNts8I87BONyulblZKfQFXIfgYgInuY5S7/z9WRAaIyC0sEMkqxrq/pCfmpzfmpy9mF1++CsTJOZn2WZIP4fck3uv17woA/wLwuoh8FrsmEUXH1yAF0gfz0xvz0xezg2ud5mUPAwdqDm+Lck1mf+YsaTrIctEVEzC8T6cWeaxIhVsk7gHwbwCvAfhEeNEe2VBFRQV/2WmM+emN+emL2cFVIG5c7Pu+5NSYPIT3NYgGOxaIQPhFYncROdQiLSGKkYyMDKubQFFgfnpjfvpidjjcg5jcEeg+9PD25FRg0vVRH97fKWY7FohAkCJRKdXH/c+DIlLBApF0UFNTg9TU2Hzio/hjfnpjfvpidl66D22RkczmU8x2uwbRLFhP4la41mcuApCnlFoSwWOIiJwUwfdZbvbs2c225efnx30FCgpP27ZtrW4CRYH56Y356YvZtbyaA4fXiY/0FHNBQQEKCgpi2Cr/Qjnd7D29TSRLE2h73eKzzz5rdROIiIjIYcZlZ0R8itlXZ9Vzzz0Xg1Y1F6xIXOC+3eG+ndkirSCKofr6equbQFFgfnpjfvpidi2rsKwKq0org+9oIwGLRBG5yPT/F1u2OUTR4zU1emN+emN++mJ2Lcv7ekQ7TZgdSLiTaR+nlDouzP2PDr9ZRJGrrNTrkxo1xfz0xvz0xexalvf1iHYerOIt3FL2EwCNYXxfAYCfAPQL83GIIta9e3erm0BRYH56Y376YnYtw5gXcf2OagDRXY8Yb2H1JLqFtHi0UmokgHQAR0TwGEQR27Ztm9VNoCgwP70xP30xu5YxZ8kmLCnehX11rp5EXU41A8HnSbwdwB1em8S9PdT5EgWuaXSI4mbAgAFWN4GiwPz0xvz0xexahnGaOS0lCWOzMrQ51QyE1pOooviqA3BTzFtNFEBRUZHVTaAoMD+9MT99MbvY8x7RPKRHOubNHKPNqWYg+LWFf8XhaXAUgFK4egezQzz+DhE5GFHLiCKUm5trdRMoCsxPb8xPX8wu9nQc0ewtYE+iiFSLyDb311av7dtC/GKBSHHHT8N6Y356Y376YnaxU1hWhYsXrMHqLYdHjOt0mtkQVlkrIpEMdCGKK34a1hvz0xvz0xezix1jsIphck6mVqeZDQGLPqVUH/cXx8WTNjZu3Gh1EygKzE9vzE9fzC52vAerTM7J1LIXEQjek7gVrmsQiwDkKaWWRPAYIiInRfB9RBHp37+/1U2gKDA/vTE/fTG72DMGq+gqlNPNxkhlADghgseQCL6HKGLl5eXIysqyuhkUIeanN+anL2ZHZsGKxAXu2x3u25kt1hKiGMnMzLS6CRQF5qc35qcvZkdmAYtEEbnI9P8XW7Y5RNGrqqpC+/btrW4GRYj56Y356YvZkZl+k/YQBcFfcnpjfnpjfvpqddmVfwksexg4UHN4W8W31rXHhiIuEpVSbQA0iIh4bbsIwBQAVQA+FJGFUbeQKEwNDQ1WN4GiwPz0xvz01eqyW/YwsHGx7/uSU+PbFpsKe95DpdQwpdRKAPsAdPfa/giA5wCcBeASAK8rpf4WbQOVUqcqpVYqpWqUUnuUUm8rpUaG8f1KKXWhUmqFUqpSKVWhlFqilDot2raRPTU2NlrdBIoC89Mb89NXq8vO6EFM7gj0m3j4a9AUYNL11rbNJsLqSVRKZQH4HECKaXs/AFe7/7sQQAOAcwD8USn1uoh8FknjlFJnA3jZ3c7vAHQCkA/gZKXUiSEe9yUA58G1jvQ3ANoAOB7AiUqpe0Tk9kjaRvaVkpISfCeyLeanN+anr1abXfehwKx3rW6FLYXbk3gzXAXiOgAnA9jp3n4mgEQAb4vIdBE5D8ADcE2dc0UkDVNKZQB4EcBBAMeKSJ6I9AZwJYBkAPOUUsEmA58KV4H4HYAjReQYERkFYCiAXQBuUUpxinmHqa6utroJFAXmpzfmpy9mR2bhFonj4Zr38Pci8pGIGH3TU9zbX/fad777dliEbTsXrmLwXhFZaWwUkTkAPgCQg+DzNk5y394vItu9jlEM4P/gev4TI2wf2VTXrl2tbgJFgfnpjfnpi9nFRmFZFVaVVgbfUQPhFolZ7tuvjA3u3rxj3P/9xGvfbe7bvhG1zFUkAsBbPu570317SpBjdHDf+prQ2yhweXWqw2zfvj34TmRbzE9vzE9fzC425izZ5Pl3arLek8iEWyQafdHtvLYdDSANQImI7PDablzcEOlwqWwAP4lIkY/7jJ7FYKeK/+O+vUUp1dPYqJTKAfAHuE5lvx9h+8imsrOzrW4CRYH56Y356YvZxYaxbjMAbddsNoRbJJa4b73XYp7uvn3PtO+x7tvycBullFIAMgHs8bPLbvdtwF5KEfkvXNcwDgKw2T1K+gsA3wJoD+Bc96lncpANGzZY3QSKAvPTG/PTF7OLrXHZGRjep5PVzYhKuP2g/wIwAcDflVKpcPUo/hGu07lvAp4CbyKAp9zbv4igXV3cbdvr537jZH8HP/d72w5XD2gXHD4tDgA/IoICluwvJyfH6iZQFJif3pifvpgdmYXbk/gMgA0AusI1J+KTcA0uWSIixvWIfwawFK7rFwXAI7FoqEmi+zbgpE5KqfPhmpKnEq6pczoD6AXXqeauAJYEmnNx5MiRGDFiBEaMGIGRI0di2LBhGDVqFIYOHYrRo0cjLy/Pc/vss8+iuLgYIoKSkhLU1dWhvLwc1dXV2LVrF3bv3o2qqips374dtbW12LJlCxoaGrBx40YAQFFRUZPbzZs3o76+Htu2bUNNTQ0qKipQWVmJyspKVFRUoKamBtu2bUN9fT02b97s8xgbN25EQ0MDtmzZgtraWmzfvh1VVVXYvXs3du3aherqapSXl6Ourg4lJSUQERQXFzc5ho7PadWqVY57Tk7Myd9z+vTTTx33nJyYk7/ntGrVKsc9Jyfm5Os5rV692nHPKVhOhlg+p7q6OgBAfX19VM9p7ty5GDZsWLNaZPjw4Tj66KM9NUleXh5aivJaMCW0b1CqI4AnAEyG65TtRwD+KCJ73PdfA+BRuKaYmSUiYV/z5+6NrAdQJiL9fdzfG0AZgGUiMsl8v3uftu590gAMFZHvTfdPB/AagPdEZKrpPgGAcF8bIiIi0sT8qcDW5a4JtGM4T+L0Z1ZiVWklxmVn4PXLxsfsuIG4yiZARFQsjxv2iisi8pOIXCQi/UTkCBE51ygQ3RbCNT1Nr0gKRPdjCFxFZhc/uxjbd/i5HwAGw3Vd42pzgej2bwAHwClwHMf4ZEZ6Yn56Y376YnZkFnaRGIyIbBORjSJyKMpDlQBIV0r56kc1BsWUBvh+41T0z77uFJEGuIrEaNtJNjN48GCrm0BRYH56Y376YnZkFlWRqJTqr5T6pVLqcqXUn5RSU5RSzU4PR+hV9+0ZPu6bZtrHlw1wFYFjlFLNBrgopUYBSAdQGHkTyY5KSwN9diC7Y356Y376YnZkFlGRqJQar5RaDmATgMUA5gL4K4B3AWxyTzVzTIBDhOJVuNZbvtn7WEqpP8G1JOBqEVnr75vdPYULABwBYL77WkrjGINweEWYeVG2k2ymZ8+ewXci22J+emN++mJ2ZBZ2kaiU+gOA5XAt0acA7AdQDNd6zrXubeMArFBKXRZpw0RkL4AL4JoKZ6VSaq1SqhyuEdU7AMzyalOmUup991em12Gug6un8LcAyt3F61q41nIeCmCBiLwcaRvJnnbv3h18J7It5qc35qcvZkdmYRWJ7pVKHoGrEPwfgIkikioiR4nIcBFJg2sexaXufR5TSkU83biI/AuuqWtWATgSrtHUbwM4TkTWe+3aDq71o6fAazUYEakBMAbAXwB8A9eAmi7utp8hIrNAjpOenm51EygKzE9vzE9fzI7Mwp1M+xq4irCPAZwiIs3mKRSRlUqpX8JdRLq/5/eRNlBEFsN1SjvQPlvhKkp93dcA15Q8j0baBtJLXV0df9lpjPnpjfnpi9mRWbinm4fCNUH2Hb4KRIN7ZPNtcBVuIyJuHVEEEhJiPmif4oj56Y356YvZkVm4PxFD3LffhLDv16bvIYqLpKRwO8jJTpif3pifvpgdmYVbJFa4b3uHsG8v0/cQxUVtba3VTaAoMD+9MT99MTsyC7dINKac+W0I+55t+h6iuOjUqZPVTaAoMD+9MT99MbvoFZZVYVVppdXNiJlwi8S34brO8Dal1IX+dlJK/Q6uaxIFwKLIm0cUvl27dlndBIoC89Mb89MXs4venCWbPP9OTdb/9H1Yz0BEXlJKnQngdADPK6VuAPARDi+PlwVgMoBcuIrJRSLyz9g1lyi43r1DuRqC7Ir56Y356YvZRa/mQIPn31dOjngGQNuIZCjTLAD/gGtt5BwAV+DwFDN/hGugigB4HsBFsWkmUehKSkqsbgJFgfnpjfnpi9nFzrjsDAzv08nqZkQt7L5QEakCMFsp9VcAMwAMcH8pAJvdX6+KyLrYNZModIMGDbK6CRQF5qc35qcvZkdmEU+KJCLrReRWETlHREaLyCgRmS4it7BAJCsVFRVZ3QSKAvPTG/PTF7Mjs6iuqlRKJQPIhmvJvBQAGwFsFpH9MWgbUURyc3OtbgJFgfnpjfnpi9mRWUQ9iUqpI5VS/wRQA+A7uEY9vwGgEECNUmqhUor91mQJfhrWG/PTG/PTF7Mjs7CLRKXUdABFAM4FkAjXtYg/A/jJ/W8F4AwA65RS58SuqUSh4adhvTE/vTE/fTE7MgurSFRKDQbwHFynqbcCuBRANxFJF5EMAF0BXAigxL3Ps+xRpHjbvHmz1U2gKDA/vTE/fTE7Mgu3J/EaAKkANgE4WkTmiciPxp0iUikiLwEYDdf1iR0AXBurxhKFom/fvlY3gaLA/PTG/PTF7Mgs3CJxFFxzIF7jngrHJxH5CcB1cJ16HhNx64giUFHB5cJ1xvz0xvz0xewiV1hWhYsXrMH6HdVWNyWmwh3dnOO+XRnCvp+5b48M8zGIopKRkWF1EygKzE9vzE9fzC5yc5ZswpLiw8saOmFJPiD8nkTjFegawr6d3LffhfkYRFGpqamxugkUBeanN+anL2YXOWM5vrSUJEzOyXTEknxA+D2JBXAtvXcugLuC7HuW+3ZVuI0iikbbtm2tbgJFgfnpjfnpy7HZlX8JLHsYOGAqgiu+jfrQhWVVmLNkk+c085Ae6Zg30zlX2YVbJN4D4LcAblNK7QTwrIg0mndSSv0WwL0AKgE8EnUrLTJ79uxm2/Lz85Gfn29Ba4iIiChsyx4GNi72f39yasSHtuI0c0FBAQoKClr8cQBAiUjoOys1EsBAAE8D6AigFMC7ALYAqIdr9ZUTAIxwf8vfAXzh73jukdC2o5QSAAjntSH7qKioQPfu3a1uBkWI+emN+enLsdnNnwpsXQ4kdwS6D216X3IqMOl6oNeoiA49/ZmVWFVaibSUJIzNysCVkwdieJ9O0bc5TEopAICIqFgeN9yS90u4RjcDrpHL/eE6/ezNu4Hm+8xsWSSS3lJTI/9USNZjfnpjfvpyfHbdhwKz3m2RQzvtNLMh3CLxExwuEolsqbKy0vm/7ByM+emN+emL2ZFZWEWiiJzQUg0hihVHni5pRZif3pifvpgdmYW9djOR3W3bts3qJlAUmJ/emJ++mB2ZOWO2RyIvAwYMsLoJFAXmpzfmpy9mFxpj2puaAw2OW2HFjD2J5DhFRUVWN4GiwPz0xvz0xexCY0x7s6q0EvvqXJNoO2WFFTNnPitq1XJzc61uAkWB+emN+emL2YXGe3WVIT3SkZqc5JgVVszYk0iOw0/DemN+emN++mJ2gRWWVeHiBWuarK7y+mXjMW/mGEvmRowH9iSS4/DTsN6Yn96Yn76YXWBWrK5iNfYkkuNs3LjR6iZQFJif3pifvpidf4VlVZ4CMS0lCZNzMh17itmb88tganX69+9vdRMoCsxPb8xPX8zOvzlLNnn+PTYrw5Grq/gScU+iUipBKTVKKXW5UuompdT97u3tlVLtY9dEovCUl5db3QSKAvPTG/PTF7PzzxisAqBV9CAaIupJVEr9FsAjAPqY7roZQA6A/yml/i4it0bZPqKwZWZmWt0EigLz0xvz0xezC25cdoZjB6n4EnZPolLqzwBeA9AXrnWcNwJQXrs0AkgHcJNS6sVYNJIoHFVVVVY3gaLA/PTG/PTF7HwrLKvCqtJKq5thibCKRKXUSACPuv/7KoAeItJkOJSIFAI4C0AdgPOUUlzvmeKqfXte7aAz5qc35qcvZteUMeXNtLkrPNtaw4hmb+H2JF4DV6/heyJynoj86GsnEXkLwK3uff8UXROJwtPQ0BB8J7It5qc35qcvZteUecoboHVdjwiEXySOg+sU870h7PuG+/aoMB+DKCqNjY1WN4GiwPz0xvz0xeya8l5ZZXJOJhZdMaFVXY8IhD9wpaf7dl0I+xq9jL3CfAyiqKSkpFjdBIoC89Mb89MXs/NtSI/0VjPljVm4PYkb3LehTKbU1337fZiPQRSV6upqq5tAUWB+emN++mJ2ZBZukfi1+/byEPb9rft2bZiPQRSVrl27Wt0EigLz0xvz0xezI7Nwi8TnABwCcLlS6mallM/vV0r9Cq45EwXAC9E1kSg827dvt7oJFAXmpzfmpy9mR2ZhFYkisgrAXXCNWr4HwBal1EvG/Uqp/1NKrQBQAKADgLki8lEM20sUVHZ2ttVNoCgwP70xP30xu8Na89yI3sKeTFtE7gNwCYAKAL0BnOe+S8F1Gno8gH0AbgRwbWyaSRS6DRs2BN+JbIv56Y356YvZHea9VnNrmxvRW0TPXESeV0q9BuAMAIMBDAKQDNfqKxsBvO1vDkWilpaTk2N1EygKzE9vzE9fzO6w1rpWs1nE5bGI1AJ4OYZtIYqJoqIi5ObmBt+RbIn56Y356YvZNdfa1mo2i3kfqlKqA4ADIqL91O2zZ89uti0/Px/5+fkWtIZCxV9yemN+emN++mJ2eigoKEBBQUFcHiuiIlEplQPX6isLReRn97YsAC8COBbAAaXU/wBcpPNp52effdbqJlAEiouLedpEY8xPb8xPX8xOD746q5577rkWeaywB64ope6Ha8WV5wGke931CoCJ7mO2A/ArACuUUskxaCdRyAYPHmx1EygKzE9vzE9fzI7MwioSlVKnwTVqOQHADwDq3duPB3AMgJ8ATAUwBUA5gCMBXBDD9hIFVVpaanUTKArMT2/MT1/MzoXT3xwWbk/in+CaIPspEekrInvc26e5b58RkfdF5EO4pr9RAM6NSUuJQtSzZ8/gO5FtMT+9MT99tfbsCsuqcPGCNZg2d4VnW2ue/gYIv0gc5L59yLT9BLiKx/e9tn3svs0Kv1lEkdu9e7fVTaAoMD+9MT99tfbs5izZhCXFu5psa83T3wDhD1zJdN/uMDYopdIBDAVwEMAqr31/ct92j7h1RBFIT08PvhPZFvPTG/PTV2vOrrCsylMgpqUkYWxWBq6cPLBVT38DhN+TWOa+7eO17UT3cVaJSJ3X9m7u2z0giqO6urrgO5FtMT+9MT99tebsvFdYGZuVgXkzx7T6AhEIv0hc7779IwAopZT73wLgbdO+xoCVMhDFUUJC2IP2yUaYn96Yn75ac3ZcYcW3cE83/xWuQSpXKaXGAGgLYAyAOgBvAIBSKg/AnwFcCFfx+O8YtZUoJElJrftCY90xP70xP30xO66wYhbWxwYRWQbXoBUFYAJcBSIA3CUiRo/hyQBmuY+9GcBTsWkqUWhqa2utbgJFgfnpjfnpi9mRWdgfG0TkJqXUewBOAtAewEci8oHXLj8D+BzASgB3uNd4JoqbTp06Wd0EigLz0xvz0xezI7OILkAQkU9F5A4R+YupQISIPCMix4rItSJSE5tmEoVu165dwXci22J+emN++mJ2ZNZ6r1Ilx+rdu7fVTaAoMD+9MT99MTsy83u6WSl1XKweREQ+jdWxiIIpKSnBoEGDgu9ItsT89Mb89MXsyCzQNYmfwDU6OVoS5HGIYoq/5PTG/PTG/PTVWrPjWs3+BSretiI2RSJRXBUVFSE3N9fqZlCEmJ/emJ++Wmt23hNpt/a1ms38vhoikh3PhhDFSmv8JeckzE9vzE9frS27wrIqzFmyCau3HO5F5ETaTXHgCjlOUVGR1U2gKDA/vTE/fbW27OYs2YQlxbuwr8612srknExOpG3SYv2qSqm2cM2VuFJE/thSj0Nk1to+DTsN89Mb89OXI7Ir/xJY9jBwwGsGvopvfe5qLMWXlpKEsVkZ7EX0IeIiUSnVBa7JtH3eDSAfwEgAA+Fe65koHjZv3owBAwZY3QyKEPPTG/PTlyOyW/YwsHGx7/uSU31uHtIjHfNmjvF5X2sXdpGolJoG1xrOfUL8lrXhPgZRNPr27Wt1EygKzE9vzE9fjsjO6EFM7gh0H3p4e3IqMOl6a9qksbCKRKXUaAALEdq1jALgNQDXRdAuoohVVFQ445ddK8X89Mb89KVddoFOLXcfCsx61++3ctqb0ITbk/gnuArElQDOBbADwBMAfg/gBBFZppQ6EsBNAGYB+ExEtsewvURBZWRkWN0EigLz0xvz05d22UVwatkY0byk+PAShJz2xr9wRzePhquH8HoR2SYiBwE8Cdc1iCcCgIh8LyKXAPgAwINKqdY5OydZpqaGS4brjPnpjfnpS7vsvE8t95t4+GvQFL+nls0FIsBpbwIJt3zu5b79xmvbJgD1AHJM+z4GYAoO9yoSxUXbtm2tbgJFgfnpjfnpS9vsgpxaBprPieg9opnT3vgXaR+rZyUWERGl1Fa4RjF7+9p9e2KEj0FEREQUNXMP4tisDI5oDkG4p5vL3LdHmbZ/D2CIUsq76Nzvvj0ikoYRRaq+vt7qJlAUmJ/emJ++nJyd95yIk3MyeYo5ROH2JK6Bq0B8SCl1uohUu7d/DeAUAKcB+I9722j3rbYDV2bPnt1sW35+PvLz8y1oDYUqNdX3BcukB+anN+anLydmZ5xmXr/DVa44YU7EgoICFBQUxOWxwi0SHwNwIYDjAexQSp0hIh8CeAeuaw+fUkp1AnAAwJ1wnZZeHbPWxtmzzz5rdRMoApWVlY78ZddaMD+9MT99OTE7J45k9tVZ9dxzz7XIY4X1aonId0qp0wG8BKCj+wsislIp9S6AqQDmuXdXAOoA3BO75hIF1717d6ubQFFgfnpjfvpyWnaFZVWeApFL70Um3GsSISLvAMiEa8m9FV53nQ3g7wB2AfgJwP8ATBSR1rViOFlu27ZtVjeBosD89Mb89OWk7ArLqjBt7uESxRiowpHM4VEiEnyvVkYpJQDA14aIiMim5k8Fti53zY3ongLH12TZALDoigmOLhCVUgAAEVGxPK7fnkSlVJpSKi2WD0YUD0VF7LzWGfPTG/PTlxOya40FYksKdE3iTwAag+xDZDu5ublWN4GiwPz0xvz05YTsvKe64WTZ0Qt2TaLfbkul1JdKqS9i3B6iqDnh03Brxvz0xvz0pXt2hWVVWFXqWlHFmOqGBWJ0ouklHAmvlVeI7MIJn4ZbM+anN+anL92zm7Nkk+ffTpjqxg7CHt1MZHcbN260ugkUBeanN+anL52z857uBgCnuokRFonkOP3797e6CRQF5qc35qcv3bIzrj/8bsdPTaa7mZyTydPMMcIikRynvLzc6iZQFJif3pifvnTLrnxvLQBgX11Dk+3sRYwdnrQnx8nMzLS6CRQF5qc35qcvW2dX/iWw7GHgQI1nU5/67wEAiQkK47IzkJqcxNHMMcYikRynqqoK7du3t7oZFCHmpzfmpy9bZ7fsYWDj4iabOrhvE5LT8Ppl4+PfplaARSI5jm1/yVFImJ/emJ++bJ2d0YOY3BHF6Ieq/QcBADWSgpUZv8MoC5vmZCwSyXEaGhqC70S2xfz0xvz0pUV23Yfijvpbsaq0ssmE2dQyghaJSqkl0dwPQETkpLBaRRSFxsZGq5tAUWB+emN++tIhu5oDDVi1pemE2dRyghWJCsAJUdwPcMJtirOUlBSrm0BRYH56Y3760iE7Y0QzwAmz4yHQK7wgXo0giqXq6mqkp6db3QyKEPPTG/PTlw7ZHZLD/U48zdzy/BaJInJRPBvij1LqVAC3AxgK4ACAFQDuEJGvwzhGFoA7AJwCIB1AMYC5ABaICHs6HaZr165WN4GiwPz0xvz0pVN247IzONVNHNi6r1YpdTaAl+Fq53cAOgHIB3CyUupEEfkshGMMBbDM/b07AXwLYASA5wHkAbi2BZpOFtq+fbt2KwfQYcxPb8xPX7bJzseciKj4FkDzibOpZdm2SFRKZQB4EcBBAMeLyEr39j8BeBLAPKXUUSIS7Erbl+AqEC8H8KyIiFIqG67C8c9KqZdF5KuWeh4Uf9nZ2VY3gaLA/PTG/PRlm+x8zIloqBHXdZO8HjE+7Lws37kAkgHcaxSIACAicwB8ACAHQQbNKKWOATAcwHMi8oxxallESgHcBtfAmzNbpvlklQ0bNljdBIoC89Mb89OXbbLzmhMR/SZ6vr5MHocnG1x/snk9YnzYuRQ/1337lo/73oTr+sJTAASagucS9+18H/e9DOBjALU+7iON5eTkWN0EigLz0xvz05ftsus+FJj1rue/Dz+zEmt/quT1iHFk557EbAA/iUiRj/uMnsXcIMc4BsB+755Ig4gcFJGtIvJjlO0kmykq8vUjQ7pgfnpjfvqya3aFZVW4eMEarN9RbXVTWh1bFolKKQUgE8AeP7vsdt/2DXKoHgB2KqU6KaXmKqXWKqV+Ukp9ppS6Willy+dP0cnNDfbZgeyM+emN+enLrtnNWbIJS4p3eQat8HrE+LHrK90Frrbt9XN/pfu2g5/7oZRKBpABoBquaXMGASgCsAHASADjAZymlDo5hMEvpJHi4mL7nTahkDE/vTE/fVmSXYCRzICrF3FJ8S4A4DJ8FtC1Jy3RfRuouMtw32bBtepLnogME5GxAI4EsBrAZAB/8HeAkSNHYsSIERgxYgRGjhyJYcOGYdSoURg6dChGjx6NvLw8z+2zzz6L4uJiiAhKSkpQV1eH8vJyVFdXY9euXdi9ezeqqqqwfft21NbWYsuWLWhoaMDGjRsBHO7mN243b96M+vp6bNu2DTU1NaioqEBlZSUqKytRUVGBmpoabNu2DfX19di8ebPPY2zcuBENDQ3YsmULamtrsX37dlRVVWH37t3YtWsXqqurUV5ejrq6OpSUlEBEUFxc3OQYOj6n1NRUxz0nJ+bk7zkZU5c66Tk5MSd/zyk1NdVxz8mJOfl6TmlpaXF/TrWL73SNZN66/PDXgZ8AAD/WAdPmroBhSNe2mDdzDNrW7GgVOc2dOxfDhg1rVosMHz4cRx99tKcmycvLQ0tRdpxL2n26uR5AmYg0m7RJKdUbQBmAZSIyyc8xUgDsd/93jIh8Ybp/OIBCAJ+JyATTfcYo6CifCVmhpKTEHnN9UUSYn96Yn74syW7+VFdhmNzRNVDFkJyKe/adhnmlGZ5Ni66YwAErfrjKJkBEVCyPa8vTze65DHfBddrZF2P7jgDHqFNK/QRXIfyFj/u/UUrtg2slF3KQnj17Wt0EigLz0xvz05el2ZlGMgPAumdWwri6jAWiNWxZJLqVAJiolMoTkXWm+45135YGOcYPAPorpRJF5JD3He5BKwkAfopJa8k2du/ejd69e1vdDIoQ89Mb89NXi2cX5PpDfzjljXXsfE3iq+7bM3zcN820jz9vAUiB69pDswlwDXwJ/hNKWrH7AvUUGPPTG/PTV4tnZ6yk4uP6QySntuxjU0TsXiTWAbjZvXIKAM+yfCcDWC0ia4Mc4zm4Brc8474G0TjGYPd9gGuJP3KQuro6q5tAUWB+emN++mrx7PyspIJBU4BJ17fsY1NEbHu6WUT2KqUuAPAKgJVKqW/hGrHcC65rEWcZ+yqlMgG84P7vhSKyy32MrUqpqwD8DcCXSqn1ABoA5AFoA+DvIvJevJ4TxUdCgp0/+1AwzE9vzE9fccvOx/WH3grLqjBnySZOnm0Dti0SAUBE/uUeXHInXANMDgB4G8A1IvK9167tAEzx+rf3Mf6ulNoK4CIAY+AqDj8G8H8isqhlnwFZISnJ1j/WFATz0xvz05cdsissq2oy7Q3AybOtZPtXXkQWA1gcZJ+tAPwO+xaRAgAFMW4a2VRtbS06depkdTMoQsxPb8xPX1Zn56tAnJyTycmzLWT7IpEoXPwDpTfmpzfmpy+rs5uzZFOT/3PaG+vx4hFynF27dlndBIoC89Mb89OX1dnVHGjw/JsFoj2wSCTH4RxtemN+emN++rJLdpwX0T5YJJLjlJSUWN0EigLz0xvz0xezIzNek0iOM2jQIKubQFFgfnpjfvqyKjtOeWNf7EkkxykqKrK6CRQF5qc35qcvq7Kbs2QTlhTvwr461zWJnPLGPpgEOU5ubq7VTaAoMD+9MT99WZWdMWAlLSUJY7MyOOWNjbAnkRyHPRl6Y356Y376sjq7IT3SMW/mGA5asREWieQ47MnQG/PTG/PTF7MjMxaJ5DibN2+2ugkUBeanN+anL2ZHZiwSyXH69u1rdRMoCsxPb8xPX8yOzFgkkuNUVFRY3QSKAvPTG/PTF7MjMxaJ5DgZGRlWN4GiwPz0xvz0ZUV2hWVVWFVaGffHpdCwSCTHqampsboJFAXmpzfmpy8rspuzZJPn35wf0X5YJJLjtG3b1uomUBSYn96Yn76syM6YIxEA50e0IRaJREREZKlx2RmcH9GG2LdLjlNfX291EygKzE9vzE9fMc2u/Etg2cPAAa9T2BXfAgCKK6pxxzMrAYDrNdsci0RynNTUVKubQFFgfnpjfvqKaXbLHgY2LvZ5V3ltIlb91HSwCq9HtCemEsDs2bObbcvPz0d+fr4FraFQVVZW8g+Vxpif3pifviLKzlePIeDpNURyR6D7UNQcaED53lpUHEjCkw1nIC0lCUN6pANwFYi8HjF0BQUFKCgoiMtjKRGJywPpRCklAMDXRk/19fW8eF5jzE9vzE9fEWX3ynS/PYYAgEFTgBmv4+IFa7CkeJdn8+ScTMybOSbClpKZUgoAICIqlsflwBVynG3btlndBIoC89Mb89NXRNkZPYjJHYF+E5t+DZoCTLoehWVVngIxLSUJk3My2XOoCZ5uJscZMGCA1U2gKDA/vTE/fUWVXfehwKx3fd41Z8Eaz7/HZmWwB1EjLBLJcYqKipCbm2t1MyhCzE9vzE9fQbMLMGLZH+9eRIBzIeqGRSI5Dv9A6Y356Y356StodgFGLCPZ94AX7xVVJudkci5EzbBIJMdhT4bemJ/emJ+G3D2EP+/diQ7tO/jfzzRi2SM5FZh0vc9v4YoqeuPoZh84upmIiFqNYCOUzdwjlgMpLKvCnCWbsHpLJfbVNWBcdgZev2x8lA0lf1pqdDN7EslxNm7ciEGDBlndDIoQ89Mb89OQ+xrDQ21SkdhzROB9A/QaGgrLqjBt7oom2zhZtp6YGjlO//79rW4CRYH56Y352VyAwScJPYb7HaEcDu/rEAFwyhuNsUgkxykvL0dWVpbVzaAIMT+9MT+bCzD4ZH9jItrH4CG8r0NcdMUEDlbRGItEcpzMzEyrm0BRYH56Y34W8bc8nlmAwScJ466KaZPGZWewQNQci0RynKqqKrRvH4vPw2QF5qc35hcHvgrCrcvDO0a/8c0Gn1Ru346eMWgeOQeLRHIc/oHSG/PTG/OLg0DzFQKuJfEC8TP4hNmRGYtEcpyGhobgO5FtMT+9Mb848F4v2dd8hb1GRXRYZkdmLBLJcRobG61uAkWB+emN+cWQv+sMjesKA6yXHIlosjPmRaw50ID1O6pj1iayFotEcpyUlBSrm0BRYH56Y34xFOy0sp+l8CIVTXZzlmxqskYzwLkRnYAJkuNUV1cjPT3d6mZQhJif3phfDPk7rQyENKl1uKLJzpj2Ji0lCUN6pCM1OYlzIzoAi0RynK5du1rdBIoC89Mb82sBMT6t7E8sshvSI53L7zlIgtUNIIq17du3W90EigLz0xvz0xezIzMWieQ42dnZVjeBosD89Mb89MXsyIxFIjnOhg0brG4CRYH56Y356YvZkRmLRHKcnJwcq5tAUWB+emN++mJ2ZMaBK+Q4RUVFyM3NtboZFCHmpzfmFyFfcyIa8yHGCbMjMxaJ5Dj8Jac35qc35hehQHMixng+RH+YHZnxdDM5TnFxsdVNoCgwP70xvwh5z4nYb+Lhr0FTYj4foj/MjszYk0iOM3jwYKubQFFgfnpjflGK05yIvjA7MmORGMDs2bObbcvPz0d+fr4FraFQlZaWon///lY3gyLE/PTG/PQVaXaFZVVYVVrZAi0iXwoKClBQUBCXx1IiEpcH0olSSgCAr42e6urquH6sxpif3phfhOZPBbYud51itqgnMdLsLl6wxrNu8+ScTMybOSbWTaMglFIAABFRsTwuexLJcXbv3o3evXtb3QyKEPPTG/MLgQ1GMvsSbnaFZVWYs2QTVm853IvI9ZqdhUUiOU6kC9STPTA/vTG/ENhgJLMv4WRXWFaFaXNXNNk2OScTw/t0inGryEosEslx6urq+IdKY8xPb8wvBN4jmbsPPbw9OTVuI5l9CSe7OUs2Nfn/5JxM9iI6EItEcpyEBM7spDPmpzfmFwYLRzL7Ek52NQcaPP9edMUE9iA6FN/N5DhJSfzsozPmpzfmp69IshuXncEC0cFYJJLj1NbWWt0EigLz0xvz01eo2XHKm9aDRSI5TqdOnaxuAkWB+emN+ekr1Oy8r0dMTWbPsZOxSCTH2bVrl9VNoCgwP70xP30Fy66wrAoXL1jDKW9aEX4EIMfhHG16Y356Y34mNp0T0Zdg2c1ZsskzaTbAKW9aA/YkkuOUlJRY3QSKAvPTG/MzMeZE3Lr88NeBn1z3WTgnoi+Bsissq/IUiGkpSZzyppXgsnw+cFk+IiKKCWO5PX9zIvYaZV3bQmSeOJtL79kPl+UjClFRURFyc3OtbgZFiPnpjfn5YbM5EX3xl5154mz2ILYeLBLJcfgHSm/MT2/MT1/e2RnrMtccaMD6HdWe7Zw4u3XhNYnkOEVFRVY3gaLA/PTG/PTlnZ0xSGVVaSX21blWV+FAldaHPYnkOOzJ0Bvz0xvz05d3dsaye2kpSRjSIx2pyUk8zdwKsSeRHGfz5s1WN4GiwPz0xvz05Su7IT3S8fpl4zFv5hj2IrZCLBLJcfr27Wt1EygKzE9vzE9fRnZcdo8MLBLJcSoqKqxuAkWB+emN+enLyI7L7pGBRSI5TkZGhtVNoCgwP70xP30Z2RnXIwKc7qa1Y5FIjlNTUxN8J7It5qc35qcvc3bjsjN4HWIrxyKRHKdt27ZWN4GiwPz0xvz0tXHPAVy8YE2TeRGpdePFBkRERK1cYVkVLnhpXZNtvB6R2JNIjlNfX291EygKzE9vzE9P5qX3Judk8npEYk8iOU9qaqrVTaAoMD+9MT89eQ9W4dJ7ZGCRSI5TWVnJP1QaY356azX5lX8JLHsYOBBkoE7Ft/FpT4SMNZqN6xA5WIW8sUgMYPbs2c225efnIz8/34LWUKi6d+9udRMoCsxPb60mv2UPAxsXh75/sj0LZ2ONZgOvQ7S/goICFBQUxOWxlIjE5YF0opQSAOBro6fNmzdjwIABVjeDIsT89NZq8ps/Fdi6HEjuCHQfGnjf5FRg0vVAr1HxaVsYpj+zEqtKK5GWkoSjjkjGTb8ewZ5EDSmlAAAiomJ5XH5kIMdpFX+gHIz56a3V5dd9KDDrXatbEbUhPdLx2mXjrW4G2QxHN5PjFBUVWd0EigLz0xvz0xezIzMWieQ4ubm5VjeBosD89Mb89MXsyIxFIjkOPw3rjfnpjfnpo7CsCqtKKz3/Z3ZkxiKRHIefhvXG/PTG/PThPYF2anISs6NmWCSS42zcuNHqJlAUmJ/emJ8+vCfQvnLyQGZHzXB0MzlO//79rW4CRYH56Y352ZsxeXbNgYZmE2g3NNhzLkeyDotEcpzy8nJkZWVZ3QyKEPPTm/b5OWQlFV8Ky6owbe6KZtuNCbS1z45ijkUiOU5mZqbVTaAoMD+9aZ+fQ1ZSMfNVII7LzkBqchKunDwQgAOyo5hjkUiOU1VVhfbt21vdDIoQ89Ob9vkZPYjhrKRiU96nlr1HMQPAoismNFtZRfvsKOZYJJLj8Jec3pif3hyTnwNWUjGvy2zwVSACDsqOYoZFIjlOQ0ND8J3Itpif3piffRijl9NSkjCkR7rn1LK/tZmZHZmxSCTHaWxstLoJFAXmpzfmZy1fo5eH9EjH6yGsy8zsyIxFIjlOSkqK1U2gKDA/vTE/a/k6xWyMXg6G2ZEZi0RynOrqaqSnp1vdDIoQ89ObVvn5mu5G06ltzL2H5lPModAqO4oLFonkOF27drW6CRQF5qc3rfILNN2NJlPbAL57D8dmZWDezDFhHUer7CguWCSS42zfvp2rPmiM+elNq/z8TXdj86ltzPwNUAmXVtlRXLBIJMfJzs62ugkUBeanNy3zc8B0N0DoA1T80TI7alEJVjcgGKXUqUqplUqpGqXUHqXU20qpkVEcTymlPlBKiVIqMZZtJXvYsGGD1U2gKDA/vTE/fTE7MrN1kaiUOhvA2wCOAbAFwH4A+QBWKqWOjfCwfwRwckwaSLaUk5NjdRMoCsxPb8xPX8yOzGxbJCqlMgC8COAggGNFJE9EegO4EkAygHlKqbDar5QaAuDhmDeWbKWoqMjqJlAUmJ/emJ++mB2Z2bZIBHAuXMXgvSKy0tgoInMAfAAgB8AJoR5MKdUWwMsAfgawN7ZNJTvJzc21ugkUBeanN+YXX4VlVc3WZY4UsyMzuxeJAPCWj/vedN+eEsbx7gEwAsDlAH6KvFlkd8XFxVY3gaLA/PRmy/zKvwRemQ7Mn9r0S8M5Ec3mLNnk+Xeok2b7Y8vsyFJ2Ht2cDeAnEfHV/230LIb0sUcpNQnAdQBeFJGFSqlHYtRGsqHBgwdb3QSKAvPTmy3zCzQfIqDVnIjeCsuqmsyPGMm0N95smR1ZypY9iUopBSATwB4/u+x23/YN4Vgd4bq2sQzAn2LSQLK10tJSq5tAUWB+erNlft7zIfab2PRr0BSt5kT05t2LODknE8P7dIrqeLbMjixl157ELnC1zd+1g8YFGB1CONZcAL0BnCAi1TFoG9lcz549rW4CRYH56c3W+TlkPkSDMYk2EH0vImDz7MgStuxJDIExv2FjoJ2UUtMBnAfgURFZFu6DjBw5EiNGjMCIESMwcuRIDBs2DKNGjcLQoUMxevRo5OXleW6fffZZFBcXQ0RQUlKCuro6lJeXo7q6Grt27cLu3btRVVWF7du3o7a2Flu2bEFDQwM2btwI4PCoMuN28+bNqK+vx7Zt21BTU4OKigpUVlaisrISFRUVqKmpwbZt21BfX4/Nmzf7PMbGjRvR0NCALVu2oLa2Ftu3b0dVVRV2796NXbt2obq6GuXl5airq0NJSQlExHNNinEMHZ/Txo0bHfecnJiTv+e0du1axz0nJ+bk7zlt3LjRds+pocFVTNUfrHdUTgcPHgQAjO7bEV1UTdTPadOmTZY/J76fDj+nuXPnYtiwYc1qkeHDh+Poo4/21CR5eXloKUpEWuzgkXKfbq4HUCYizdYIUkr1huv08TIRmeTnGL0BrAWwDcBYEan3uq8UQBaAJBE55ON7BQDs+NpQcFykXm/MT2+2zG/+VGDrctfpZQf1JE5/ZiVWlVZiXHZGVCutGGyZHYXEVTYBIqJieVxb9iSKqzrbBddpZ1+M7TsCHGYygM5wnbZepJR63/gC0M29z3vubdG/u8g26urqrG4CRYH56Y356YvZkZldr0kEgBIAE5VSeSKyznSfsdpKKFfZHuX+8sVYeeXpCNpHNpWQYMvPPhQi5qc35hdbhWVVmLNkU5PrDw3rd8T2MntmR2Z2LhJfBTARwBkAzEXiNK99fBKRFwC84Ou+YKebSW9JSXb+saZgmJ/emF9szVmyqck0N75EOz+igdmRmZ1/Il4F8BiAm5VS/xWRzwFAKfUnuHoAV4vIWisbSPZUW1uLTp06Wd0MihDz0xvzix3veRDTUpIwpEfz6wVTk5NiMrIZYHbUnG2LRBHZq5S6AMArAFYqpb4FkAGgF1zXIs4y9lVKZeJwr+GFIhL4Yxc5Gn/J6Y356Y35xY73PIhjszIwb+aYFn08Zkdmtr4AQUT+BSAfwCoARwJoD+BtAMeJyHqvXdsBmOL+ahfvdpK97NrFzwg6Y356Y37RKyyrwsUL1mD1lsNrMseqtzAQZkdmtu1JNIjIYgAB1lMCRGQrgJCHfYtIdrTtIvvq3bu31U2gKDA/vTG/6JmvQ4zFaiqhYHZkZvsikShcJSUlGDRokNXNoAgxP71Znl/5l661mo2l+ACg4lvr2hMm83WIY7My4tKLCNggO7IdFonkOPwlpzfmpzfL81v2MLDRz8mn5NT4tiUC8b4O0Zvl2ZHtsEgkxykqKkJubq7VzaAIMT+9tVh+vnoIfTF6DZM7utZqNiSnApOuj327YsSYDzHe1yF643uPzGy5LJ/VuCwfEZGFfBWEW5eHd4xBU4AZr8e2XS3AKA7NcyFOzsmMay8i6a2lluVjTyI5Dj8N64356S0m+QU6ZQy41mAOxOa9hoD/4hBwFYjx7kUE+N6j5tiT6AN7EomILDR/qqvn0N8p416jrGtbjFy8YI3P3sMrJw+My0hmchb2JBKFaPPmzRgwYIDVzaAIMT+9xTS/7kOBWe/G5lg24m8Es9XFId97ZMYikRynb9++VjeBosD89Mb8grNyBHMgzI7MbL3iClEkKioqrG4CRYH56Y35BebdiwjEfwRzIMyOzFgkkuNkZGRY3QSKAvPTG/MLzLsXMV4rqYSK2ZEZTzeT49TU1CA11f6T5pJvzE9vzK8pYxRzzYEGAMD6HdWe++zUiwgwO2qORSI5Ttu2ba1uAkWB+ekt7Pw0X0YvmEDT3NipFxHge4+aY5FIRETxEe4k2RosoxeM0YOYlpKEIT3SAQCpyUm260Uk8oVFIjlOfX291U2gKDA/vXnyi2TVFO9JsjWYEDscQ3qk4/XLxlvdjID43iMzFonkOLymRm/MTzOmYvCIQ4eAxMTICkIHTJINNL0O0fsaRLvje4/MWCSS41RWVvKXncaYn2ZMS+gl+trHwQWhL76uQ0xNtv+fW773yMz+P7VEYerevbvVTaAoMD/NGKeT3UvoNUojEpR7drVWUBAafPUeGtch6nINIt97ZMYikRxn27ZtXFpKY8xPU+4l9Epa0dJu3oXhqtLKZvfbaTWVUPC9R2YsEgOYPXt2s235+fnIz8+3oDUUKv6S0xvzs7EQpqtpTfn5m95mXHaGNr2H3lpTdjorKChAQUFBXB5LiUhcHkgnSikBAL42eioqKkJubq7VzaAIMT8be2V6k+sPmxg0BZjxeqvKb/ozK7GqtLLZaWW7zX8YqtaUndMopQAAIqJieVz2JJLj8Jec3pifjZmuP/Twmq6mNeanw/Q2oWiN2VFgLBLJcfhpWG/MzyYCnVp2X3/oS2vJr7Csyud1iDprLdlR6FgkkuPwl5zemJ9NmKa2aSLASiitIb/CsipMm7vC838dprcJRWvIjsLjjJ9sIi8bN27EoEGDrG4GRYj52UQIp5Z9cWJ+3qOYATTrQdRtgIo/TsyOosOBKz5w4IreGhoakJTEzz+6Yn42MX+qa9WUfhP9nlr2xUn5GcWhrxHMhkVXTNB2oIqZk7JrbVpq4EpCLA9GZAfl5eVWN4GiwPz05qT8fBWI47IzMC47A5NzMh1VIALOyo5igx8ZyHEyMzOtbgJFgfnpTff8/K2cMjYrQ+vpbUKhe3YUeywSyXGqqqrQvn17q5tBEWJ+etM9P1+9h7qtnBIp3bOj2GORSI7DX3J6Y3560y0/86AUXdddjgXdsqOWxyKRHKehocHqJlAUmJ/edMvP38CU1tJ76E237KjlsUgkx2lsbLS6CRQF5qc3XfIzehBXb3FNZ2P0HAJoVb2H3nTJjuKHRSI5TkpKitVNoCgwP73pkp+5B7E19hya6ZIdxQ+LRHKc6upqpKenW90MihDziyFfS+uFyliCL0x2z89XD6Ixcrm1s3t2FH8sEslxunbtanUTKArML0K+CsKty6M/boAl+Hyxe37sQfTP7tlR/LFIJMfZvn07+vfvb3UzKELMz0s4PYHBCsJ+E8N//CBL8Pli9/yMUczsQWzO7tlR/LFIJMfJzs62ugkUBebnZdnDwMbF4X+fd0FoFHq9RsWuXQHokt+QHunsQTTRJTuKHxaJ5DgbNmxATk6O1c2gCDE/L0YPYnJHoPvQ4PvHuSD0xa75GdciGvMgUnN2zY6swyKRHIe/5PTG/HzoPhSY9a7VrQiJXfMzX4uYmsw/f2Z2zY6sw3cJOU5RURFyc3OtbgZFqNXm5+v6wwhHGFvJrvnxWsTg7JodWYdFIjkOf8nprdXmF+j6wzBHGFvJ7vnxWkT/7J4dxV+C1Q0girXi4mKrm0BRaLX5eV9/2G/i4a9BU8IeYWwlu+VXWFaFixes4bWIIbBbdmQ99iSS4wwePNjqJlAUWn1+Gl1/6Ivd8uO1iKGzW3ZkPb5byHFKS0s515fGWkV+Drn+0Be75cdrEUNnt+zIeiwSyXF69uxpdRMoCq0iP4dcf+iLHfIzprupOdDgOc3MaxGDs0N2ZC8sEslxdu/ejd69e1vdDIpQq8jP3/yHEaxwYjdW51dYVoVpc1c0287TzMFZnR3ZD981AcyePbvZtvz8fOTn51vQGgoVF6jXW6vKT/PrD32Jd37evYYAsKq0ssn947IzkJqcxNPMIWhV7z2NFRQUoKCgIC6PpUQkLg+kE6WUAABfGz3t2rULmZmZVjeDItQq8ps/1bXWcr+JjisS453fxQvWNBmY4m3RFRMwvE+nuLVFd63ivedQSikAgIioWB6XPYnkOAkJnNlJZ8xPb/HMr7CsylMgpqUkYUgPV0+Y0XPIAjE8fO+RGYtEcpykJP5Y68xx+Tl4JLMv8cxvzpJNnn+PzcrgwJQoOe69R1HjTwQ5Tm1tLTp16mR1MyhCjsvPwSOZfYlHfsZ1iKu3HL7+kNccRs9x7z2KGotEchz+ktOb4/Jz8EhmX+KRn3mC7Mk5mTy1HAOOe+9R1FgkkuPs2rULWVlZVjeDIqR1foFOLTtwJLMvLZmfuQeRE2THltbvPWoRLBLJcTjPl960zq+VnVr2pSXzM/cg8jrE2NL6vUctgkUiOU5JSQkGDRpkdTMoQlrn18pOLfsSq/zM8x8C8Kyewh7ElqH1e49aBOdJ9IHzJBJRUP5OLR/4yZHzH8ZboPkPJ+dksgeRyAvnSSQKUVFREXJzc61uBkVIm/x4atmnSPMz9xx69xoa8x8C4OopLUib9x7FDXsSfWBPIhEFZaya4u/Ucq9R1rVNQ/56DtlrSBQcexKJQsRPw3rTLr9WMmo5VJHmZ/Qg+lo5heJDu/cetTgWieQ4/CWnN+ant2jzG9IjHa9fNj5GraFw8L1HZlyokRxn8+bNVjeBosD89BZJfoVlVVhVWhl8R2pRfO+RGXsSyXH69u1rdRMoCsxPb6HkZx6k4l0gpibzz5JV+N4jM/YkkuNUVFRY3QSKAvPTWyj5GZNiryqtbNaDyGsQrcP3HpnxIxs5TkZGhtVNoCgwP735y8+799DX9DbGIBWuwWwdvvfIjEUiOU5NTQ1SU1vvPHW6Y35685efeUk9gMvq2Q3fe2TGIpEcp23btlY3gaLA/PTmLz/zFDec3sZ++N4jMxaJREQUN5zihkgfHLhCjlNfX291EygKzE9vvvLjFDd64HuPzFgkkuPwmhq9MT+9+bse0XM/p7ixLb73yIxFIjlOZSV7LHTG/PTmKz/jekSAU9zYGd97ZMaPdOQ43bt3t7oJFAXmp7fu3bs3myzbmPJmXHYGp7ixMb73yIxFIjnOtm3bMGDAAKubQRFifnoyCsMfq/ZhbcV+n/vwVLO98b1HZnzHkuPwl5zebJlf+ZfAsoeBAzWHt1V8a117bMK7x9DfwJRx2a4Jmjnljf3Z8r1HlmKRGMDs2bObbcvPz0d+fr4FraFQFRUVITc31+pmUIQsz89XQbh1uf/9k1vnxf6FZVWYNneFz/vGZWdwBRUNWf7eo5AUFBSgoKAgLo+lRCQuD6QTpZQAAF8bolbolenAxsX+7+838fC/k1OBSdcDvUa1fLtsIFDPIQtDIusopQAAIqJieVz2JJLj8NOw3uKaX6DTyMkdge5DD29vZQWhL76W1gOARVdM8BSGRUVFADrFtV0UG/zdSWbsSfSBPYlErUSgXsNBU4AZr8e3PTY3/ZmVWFVa2WxpPfYcElmLPYlEIdq4cSMGDRpkdTMoQnHNz+hB9NdrSB7eq6YEWlqP7z99MTsyY5FIjtO/f3+rm0BRsCS/7kOBWe/G/3E1EuqqKXz/6YvZkRlXXCHHKS8vt7oJFAXmZ0+hrprC/PTF7MiMRSI5TmZmptVNoCgwP3sLtmoK89MXsyMznm4mx6mqqkL79u2tbgZFqEXy8zWKGeCE2CEwpr0xltYLhu8/fTE7MmORSI7DX3J6a5H8lj0ceO7DVjohdiBGcWie8ibY0np8/+mL2ZEZi0RynIaGhuA7kW21SH7+RjEDHMnsh68CcXJOZtCl9fj+0xezIzMWieQ4jY2NVjeBotCi+XEUc0DeK6oYp5fTUpIwNisj5PkQ+f7TF7MjMxaJ5DgpKSlWN4GiEHV+gVZRIb/8rcU8NisD82aOCfk4fP/pi9mRGYtEcpzq6mqkp6db3QyKUNT5Bbr+kNce+uU9DyLQdC3mcPD9py9mR2YsEslxunbtanUTKApR58dVVELm6/Qy0HQt5nDx/acvZkdmLBLJcbZv386VAzQWs/x4/aFf/kYuA67BKdGsxcz3n76YHZmxSCTHyc7OtroJFAW/+fmb69CM1x8G5O/aw0hPL5vx/acvZkdmLBLJcTZs2ICcnByrm0ER8ptfsLkOzXj9YTO+CkRjWptoeg+98f2nL2ZHZkpErG6D7SilBAD42hDZyPypwNblvuc6NDOuP+w1Kj5tszl/p5ejufaQiOxDKQUAEBEVy+OyJ5Ecp6ioCLm5uVY3gyJUVFSE3LRa/9PY8FrDsPg7vdxSBSLff/pidmRm+55EpdSpAG4HMBTAAQArANwhIl+HcYwZAC4FkAOgDYC1AF4UkQV+9mdPIpGVXpnu/9TyoCnAjNfj2x6NXbxgTZMexFifXiYi67XKnkSl1NkAXoarnd8B6AQgH8DJSqkTReSzEI7xHIBLABwEsB5AI4CJAE5QSv0awFnCatBRiouLeV2NxoqLi5HDaWwi4j2ljSFWU9uEiu8/fTE7MrNtT6JSKgPAdriKuskistK9/U8AngRQDOAoEfG7jpBS6hgAKwFsAzBFRIrc2wcAeBOu3snLReQZ0/exJ1FjIuL5VEX6ERGoBae5rj/sN5Gnln3wVQwCwKrSSr/fMzknM6yVUyLF95++mJ2+WmNP4rkAkgHcYhSIACAic5RSUwGcAuAEAEsCHGOm+/Yuo0B0H2OzUupCAF8BuADAMz6+lzRVWlrKub40VlpaCqYXmL85Dr2Ny87w/DsWU9uEiu8/fTE7MrN7kQgAb/m47024isRTELhINH7al5rvEJGvlVJ7AQyLoo1kQz179rS6CRQF5tdUoFPIaSlJGNKj6TJqRkFo1TWHzE9fzI7M7FwkZgP4ybsH0IvRsxhsGNbnALYC+MF8h1IqBUAqAP/nZ0hLu3fvRu/eva1uBkVo9+7daM3pmYvCQKeQx2ZlxOUUcjj4/tMXsyMzWxaJynVyPROuawl92e2+7RvoOCJye4C7r4JrpPOysBtItsYF6vXWWvMLtFSewapTyOForfk5AbMjM1sWiQC6wNW2vX7uNz5adwj3wO4C9GoA98E1pc59EbSPbKyuro6/7DRWV1eH1pZeoKXyAOtPIYeD7z99MTsyS7C6ARFKdN/6Hdnsi1JqFIDPADzu/t4LReQbf/uPHDkSI0aMwIgRIzBy5EgMGzYMo0aNwtChQzF69Gjk5eV5bp999lkUFxdDRFBSUoK6ujqUl5ejuroau3btwu7du1FVVYXt27ejtrYWW7ZsQUNDAzZu3AjANYmp9+3mzZtRX1+Pbdu2oaamBhUVFaisrERlZSUqKipQU1ODbdu2ob6+Hps3b/Z5jI0bN6KhoQFbtmxBbW0ttm/fjqqqKuzevRu7du1CdXU1ysvLUVdXh5KSEogIiouLmxxDx+e0Z88exz0nJ+bk7zmVlZV53oMCZzwnXzmt3rwTM57+FL/5v+XNCsRfDOyCp8/sj5cvHoN7TuiCeTPHoG3NDts/p7q6OuzZs8dROTnxZ8/fc9q7d6/jnpPOOc2dOxfDhg1rVosMHz4cRx99tKcmycvLQ0ux5RQ47t6+egBlItJsqJVSqjeAMgDLRGRSCMdLBnAPgGvhKoy/hatA9DkhN6fA0VtVVRU6depkdTMoQlVVVej01nmOmALH31Q1gP9rDXVfKo/vP30xO321qilwRESUUrvgOu3si7F9R7BjKaV6AVgMIA+uaxlvB/CsiByKRVvJfmpra/mLTmO1tbXoZHUjYsDfKWRfxmVnaHVKORC+//TF7MjMlkWiWwmAiUqpPBFZZ7rvWPdtaaADKKXSALwLV4H4LoCLRCTw5GKkPf6S05tu+YU6sbX3oBODUwpDb7rlR4cxOzKzc5H4KlzL550BwFwkTvPaJ5ArAQwH8C8A5wRanYWcY9euXcjKyrK6GRShXbt2IcvqRoQhlImtdT+FHA6+//TF7MjM7kXiYwBuVkr9V0Q+BzzL8p0MYLWIrA1yjEsBHAJwBQvE1oPzfGmm/Etg2cOAe73mfiLATvPnQvsyehDtOLG1Ffj+0xezIzPbFokislcpdQGAVwCsVEp9CyADQC+4rkWcZeyrlMoE8IL7vxeKyC6lVBcA/QDUAXgxwHqUe0VkRgs9DbJASUkJBg0aZHUzKFTLHgY2Lvb8t8k7NTk17s0JJNDqJ0N6pOP1y8Zb1TTb4PtPX8yOzGxbJAKAiPxLKbUPwJ0AhsI1r+HbAK4Rke+9dm0HYIrXvwF4zlileN3nS0Ws2kv2wF9ymnH3ICK5I9B96OHtyanApOutaZMPwQaipCbb+tdp3PD9py9mR2a2/60mIovhGp0caJ+tMHVAiMiX5m3UOhQVFSE3N9iKjWQ73YcCs961TX7BlsfTYfUTK9glPwofsyMz2xeJROHiLzm92SW/QANSWtNAlHDZJT8KH7MjMxaJ5Dj8NKy3eOfnbwob41pD7wEprXEgSrj4/tMXsyMzFonkOPwlp7d4F4jBJrwem5WBeTPHxKlF+uP7T1/MjsxYJJLjbN68GQMGDLC6GRSheORn9B6aTyebJ7zmtYbh4/tPX8yOzFgkkuP07dvX6iZQFFo6P3+9h7zOMDb4/tMXsyMzFonkOBUVFfxlZ1emibMBABXfNtmlpfObs2RTk/9PzsnkdYYxxPefvpgdmbFIJMfJyGi+Ri7ZhGni7CbcE2e3dH7eA1TYexh7fP/pi9mRGYtEcpyamhqkptprpQ5yC2Hi7JbMr7CsyjPf4bjsDBaILYDvP30xOzJjkUiO07ZtW6ubQMG4J872pSXz8z7VzBVSWgbff/pidmTG35JE5HjGaObVWw6vmsJRy0REgbFIJMepr6+3ugkEhDRIxZdY5udvqpvJOZk81dxC+P7TF7MjMxaJ5Di8psYmQhik4kss8/NXILIXseXw/acvZkdmLBLJcSorK/nLLp589RgCh3sNAwxS8SWW+RkjmdNSkjA2K4NT3cQB33/6YnZkpkTE6jbYjlJKAICvjZ7q6+t5AXZL8VUQbl0e+HsGTQFmvB7yQ0SSX6D1l/fVNWBcdgZev2x8WMekyPD9py9mpy+lFABARFQsj8ueRHKcbdu2cWmpWIikIOw3sen/g/Qa+hJufqGsv8yRzPHD95++mB2ZsSfRB/YkUqsTbUFoFIO9RrVM+wK4eMGaJtcd+lt/maeZicip2JNIFKKioiLk5uZa3Qy9BBpkAsS1IAw3P66gYi98/+mL2ZEZexJ9YE8itTrzp7p6Dv0NMrGghzAQ72sQed0hEbV27Em0wOzZs5tty8/PR35+vgWtoVDx03AUAqyEEi+h5Odrahted2gPfP/pi9npoaCgAAUFBXF5LPYk+sCeRGp1jJ7EfhMtLxJDMf2ZlVhVWom0lCQM6ZHO6w6JqFVrqZ7EhFgejMgONm7caHUTKArB8issq8KqUtfyekN6pOP1y8Zj3swxLBBtgu8/fTE7MuP5GXKc/v37W90EioKv/LyvQTQKRICnmO2I7z99MTsy429Ycpzy8nJkZWVZ3Qz7inBN5XjxlZ+vaxABcHk9G+L7T1/MjsxYJJLjZGZmWt0Ee4twTeV4MedXWFblKRB5DaL98f2nL2ZHZiwSyXGqqqrQvn17q5thX0YPYphrKseLkZ9xitm7B3FsVgbmzRxjYesoGL7/9MXsyIxFIjkOf8mFyAbT3fhiFIi+ltrj6WX74/tPX8yOzFgkkuM0NDQE38mJfF1r6IuNrj/0paGhAXOWlDbZNjknk6eXNdFq338OwOzIjEUiOU5jY6PVTbBGsKX1zGxw/aFZYVkVHn2/GN9s/9mzjUvt6aXVvv8cgNmRGYtEcpyUlBSrm2ANf9ca+mKT6w+9+TrFPDknkwWiZlrt+88BmB2ZsUgkx6murkZ6errVzbCOTa81DMRfgchrEPXT6t9/GmN2ZMYikRyna9euVjeBQuRrBDPAU8w64/tPX8yOzLgsHznO9u3brW4CBVFYVoWLF6zBtLkrmhWI/zctiwWixvj+0xezIzP2JJLjZGdnW90ECsJX76FxenlY744WtYpige8/fTE7MmNPIjnOhg0brG4CBVFzwDXVRlpKEibnZGLRFRMwb+YYDO/Tiflpjvnpi9mRGXsSyXFycnKsbgKFaEiP9GYrqDA/vTE/fTE7MmNPIjlOUVGR1U2gKDA/vTE/fTE7MmNPIjlObm6u1U2ILYespAIcHs28fke1330cl18rw/z0xezIjEUiOU5xcbGzTps4YCUVg3nASmpy819BjsuvlWF++mJ2ZMYikRxn8ODBVjchtjRfScVQWFblKRDTUpIwNivD52TZjsuvlWF++mJ2ZMYikRyntLQU/fv3t7oZ4fN3Wtk4jazpSipzlmxCzYEGrCqt9Gwfm5XRbMCKQdv8CADz0xmzIzMWieQ4PXv2tLoJkQl2WtnGp5EN3kUhgCaFobdAy+1pmx8BYH46Y3ZkxiKRHGf37t3o3bu31c0IX6DTyjY+jWzwtf6yt3HZGUhNTsKVkwcGXFFF2/wIAPPTGbMjMxaJ5DhaLFDv69SypqeV/a2/PC47AwBCKgy9aZEf+cX89MXsyIxFIjlOXV2d/X/ZBTq1rMFpZYO/3sNFV0yIeP1lLfIjv5ifvpgdmbFIJMdJSNBgjnh/p5Ztflo52DWHxvrLkRaIgCb5kV/MT1/MjsxYJAYwe/bsZtvy8/ORn59vQWsoVElJNvux1vjUcqgDUYDoeg+92S4/Cgvz0xez00NBQQEKCgri8lhKROLyQDpRSgkA8LXR0/bt260bpeerINy63P/+g6YAM15v+XaFKJyiMNJrDoOxND+KGvPTF7PTl1IKACAiKpbH5ccGcpxOnTpZ9+DBprHpN/Hwv210atnf4BNvLVUUmlmaH0WN+emL2ZEZi0RynF27diErK6vlHyjQaWR/1xr2GtXy7QpDoOIwXkWhWdzyoxbB/PTF7MiMp5t94OlmvTU0NMT+2hqNTyObTyF783U6ORaDT6LRIvlR3DA/fTE7ffF0M1GISkpKMGjQoNgeVNPTyACCnkY2WF0cGlokP4ob5qcvZkdm7En0gT2J1Mz8qa6eQ01OIwOHexBXb6nEvroGpKUkYUiP5nOgxft0MhERxRZ7EolCVFRUhNzc3JY5uI2nrAk2MnlsVgbmzRxjRdPC0qL5UYtjfvpidmTGIpEcpzX+kgu2brJxKlkHrTE/J2F++mJ2ZMYikRwn6k/DgUYt25CvAtGqkcmxwN4MvTE/fTE7MuM1iT7wmsRWRNNRy96nls2nlWO18gkREemB1yQShWjz5s0YMGBAaDtrOmrZ34hlJxSIYeVHtsP89MXsyIxFIjlO3759Q9/Z6EG06ahlf3Mcrt9RDQCeEcs6nlb2J6z8yHaYn76YHZmxSCTHqaioaP7LztdpZeDwtYYWj1r2VwwGWjsZ0GfEcjh85kfaYH76YnZkxiKRHKfrga3AK38J/TpDwNVzaIFQ1kw2GINRDEbvodNkZGQE34lsi/npi9mRGYtE0puPHsL2wQpC7+sMAcuuNfQ3bY2/YtAJp5JDUVNTg9RUa4p2ih7z0xezIzMWiaSPcEciA74HnthkdZQ5SzY1+b9dlsWzWtu2ba1uAkWB+emL2ZEZi0SypygKwoMNB9GmQ2dbFYRmhWVVTU4xO2FUMhEROQuLRLKnSKamcReEeyoq0L179xZuYHD+BqMATQekTM7JZIHopb6+3uomUBSYn76YHZmxSCTrBVrhJIKpaexyTU2oA1KcOPgkGnbJjyLD/PTF7MiMRSJZL1CvYb/xYa9wUllZadkvO+/eQ/NchmatbUBKqKzMj6LH/PTF7MiMRSJZL9iE1mGK96nmQEvkAc6cy7Al2eFSAYoc89MXsyMzFolkHzGa0Hrbtm0tvrRUsMIQcE1l49S5DFtSPPKjlsP89MXsyIxFIjlOPApEX/MbAk0LQ55Gjgz/SOmN+emL2ZEZi0RynKKiIuTm5sbseOZRyuaeQxaGsRXr/Ci+mJ++mB2ZsUgkx4nml5yvaWsCrZ/M+Q1jj3+k9Mb89MXsyIxFIsVXoOluYiTcT8OhXF9oMJbMY89hy2Fvht6Yn76YHZmxSAxg9uzZzbbl5+cjPz/fgtZoKNxVU5JjM/VCqL/kjOLQ31yG3msosyiMH/6R0hvz0xez00NBQQEKCgri8lhKROLyQDpRSgkA8LWJ0ivTI141JRobN27EoEGDmmwL9TQyry+0nq/8SB/MT1/MTl9KKQCAiKiYHpeFUHMsEmNk/lRXz2EEq6ZEo6GhAUlJSWGdRp6ck8nC0CaM/EhPzE9fzE5fLVUk8qeBWl6M5j8MxigKd/9Ug5SUlIDzFxrYa2g/5eXlyMrKsroZFCHmpy9mR2YsEskRms9dWNvkfp5G1kdmZqbVTaAoMD99MTsyY5FI0fM1QAWI+ajlQOYs2dTk/xyFrK+qqiq0b9/e6mZQhJifvpgdmbFIpOgtezjwAJUYjFr2NfDE2/od1Z5///PCYZiY2yfqxyRr8I+U3pifvpgdmbFIpOgZPYjmASrA4UEqUQo0VY23yTmZyDmiXdSPR9ZpaPD9QYD0wPz0xezIjEUixU6MB6h49x4aPYVpKUkY0iPd5/7GqeXGxvqYtYHir7Gx0eomUBSYn76YHZmxSCQXf9cVhqKFrj301Xs4NisD82aOCfh91dXVAe8ne0tJSbG6CRQF5qcvZkdmLBLJJdh1haGI8bWH5t5Do6cwmOrqaqSn++5tJPtjfnpjfvpidmTGIpFcAl1XGIoYXHvYfBobl1B6D7117do1qnaQtZif3pifvpgdmbFIpKbiNPG1IdCqKN5zG4Zj+/bt6N+/fyybSXHE/PTG/PTF7MiMRSK1uEDT1/hbFWXRFRMintswOzs7ou8je2B+emN++mJ2ZMYikVqMURyGMnUNELtVUTZs2ICcnJyIv5+sxfz0xvz0xezIjEVia+RrJHMLjFD2VSB6r5tsiPWqKMuWLeMvOo0xP70xP30xOzJTImJ1G2xHKSUA4NjX5pXp/kcyD5oCzHg95EMFOpW8fkc19tU1IC0lCWOzMuK2PF5eXh7WrVvX4o9DLYP56Y356YvZ6UspBQAQERXL47In0UlCnevQ6DU0j2QOcYRyoMEmvoQ7OjlanOtLb8xPb8xPX8yOzFgkOkm4cx32Gx+019BXT6G/wjDQqeR4qquri+vjUWwxP70xP30xOzJjkegk4cx1GKTXMNRBJ7EabBJL/DSsN+anN+anL2ZHZiwSnSgGcx0GG3Rit8LQ24EDB6xuAkWB+emN+emL2ZFZgtUNIJeCggL/d5Z/+f/t3Xm4HFWdxvHvy5KwCMgiyjIkLCYRWUVGQDQIowEhDCMqoiCoLIoDbowLPgMq4OOo6KiPD4tLEBQnIiCLyDLKIhhgEJBFSBSSKAn7EgmBrL/545zmFt3Vfbv71r19c+/7eZ7z1O06dU6fqpO695eqOqfSYJNp+7dOHYxQLvu+u/7+LB859/845OwZ3DYn3VJeZ43V2GfSxlz68Tcz/djdX0o/OnLXtgPElvs2CMaMGTOk3zfU+zfSv8/9t3J/31D230g/liO572DkH8+h/r7B4CuJQ6GNASUTZs2EJ88qz5x7U2ffV/cO5bLnCmfNepqfzp/xsu3KnjWsYtDJ5ZdfztSpUwdURyeWLl06ZN8FQ79/I/373H8r9/cNZf+N9GM5kvsORv7xHOrvGwwOEqtWFhC2EeRNHAvMfaL/+sftWbp64eJlPPzMIp5nTS56aj8ePLsvACwdaLL6Ri1HJnf7SrzhYNVVV+11E2wA3H8rN/ffyst9Z/UcJFatvxHGTYK8mbNmMnHCxObl8kCTu1ZsXTov4a1zCgHfAoDWI5BnzZrFhAkTGvKH87OG7Rqx81uOEu6/lZv7b+XlvrN6DhLbNYA5CBcuXsZfF8Av1jqUB5eUB4KzlsxiwpLGoO0lS4ArlnDr7Jv7bWo7bzU55phpnHPsEf3WZWZmZqOT37hSovbGFTMzM7OVRdVvXPHoZjMzMzNr4CuJZmZmZtbAVxLNzMzMrIGDRDMzMzNr4CDRzMzMzBo4SDQzMzOzBqMqSJS0n6QZkhZKekrSZZJ2Huo6rHMV9d37JV0n6RFJT0r6naQjB6nJVlD1eaPkakkhya+JGEQVnXvjJU2TND/Xc7ukD0mqdLoOazTQ/svn2hGSbpb0tKRHJf1W0gGD2W7rk/tgnqRTuyg7sPM3IkZFAt4LLAUCuBd4OP/8IrDHUNXh1LO++0EuswS4C7gj/xzAxeSR/k7Ds/9K6jw+1xHAqr3ex5GaKjr3tgeeyeUeBWYAL+TPZ/R6H0dyqqj/fprLvADcAvyxUOdXer2PoyEB++fjfeqQ93+vd36IDvAG+aAsAnYvrK/9obkfWGWw63DqWd/tlredC7yusH4b4O6cd2yv93UkpsE4b4BtC0GGg8Rh3nek/5QFcCx9065tCfwdWAG8odf7OhJTRb87a8HJvcCmhfWTgMeA5cXfqU6V9+E6wGH5WHcUJFZ2/vb6IAzRgf54PignleRdlfP2Gew6nHrWd2fl7T5ckrdzzru51/s6ElPV5w0wBrgTeJL0gnIHicO47+j7D9o5JXlH5rzTer2vIzFV1H9fz9u9vyTvlJx3dK/3dSQm4ML8n6gopE6CxEp+946WZxIPzctLSvIuzsspQ1CHda6K475VXl5fnxERd5Juhe3QTeOsX1WfN6cCOwEfBRZ03yxrQxV9d1ReTivJ+xkwHvhOxy2zdlTRf2vnZZTkrcjLV3TYLmvPH4CzSRc5ruuifCW/e0dLkLglsCAi7i/Jm5GXrxuCOqxzVRz3W4AfAvPqMyStQfol9/xAGmlNVXbeSJoMnAicFxG/rKh91lwVfbcb8EJEzKjPiIilETE3Ip4YYDutXBX996u8/KKkTWsrJU0CjiM97/abAbbTSkTEtyPiYxHxMeAnXVRRye/eER8k5tFzGwNPNdnkybzcYjDrsM5Vddwj4uSIODoiFpdkfwJYHbix64ZaqSrPG0nrAeeRnmM7vpIGWlMV9t0mwGOSXinp+5LulrRA0h8kfVLSiP8b1AsV/u68FjgBmAD8NY+SvR24B1gLODQiHqim1VaVKn/3rlZVo4axDUn7+UyT/Kfzcu0m+VXVYZ0btOOeT6JPAqcDi/PSqlVl/30f2Bx4W0T8o4K2WWsD7jtJY0kPz/8DuJkUaNwPzCQ9C7w7cICkd0TEimb1WFeqPPfmk/pwQ9KV4ZonSKNlbfiprP/9vziozbE2kF9SVdRhnevquEvahfS8x7dy2SMi4k8Vt83611b/SToE+ADwzYjwFd/hoZ2+2yAvx5OeadsuInaIiH8GtgZuA/Yh3ba0odXuuXcY8EtSUDEVWB/YjNRnGwG/9TzBK6W2/3aOhiDxKWAZfb+w6tXWPzLIdVjnKj3uksZK+jrpj9NupFsmb4qI6QNtqJUacP9J2hw4E/gT8J+Vts5aqeLcK17FODIiZtY+RMR84Jj88VCsalWce2OAM0jTTe0XEVdExLMRMT8iziRNabQ2cFp1zbaKVPa3c8Tfbo6IkPQ46fJrmdr6pgerijqsc1Ued0mbkYb9b0d6HuNk0rQcy6toqzWqqP/2IV29mA9cWveCjlfn5ZWSVpAm9m0YIGGdq+j35ouSFpDmRry9JP9Pkp4jTbZtFaro3JtIeq7thoh4sCT/ItKjOnt23VAbFFX+7RwNVxIBHgLWlbRdSd4eeTl7COqwzg34uEtaB/g1KUD8NfD6iDjTAeKQqOq8eT2wb11aM+e9I3/eeGBNtTpV9N08YEzZqxPzoJVVgOcG1EprZqD9V7sVWTrzQ0QsIwWJ/j06PFXyu3e0BIk/z8t/K8k7qG6bwazDOlfFcT8B2JE0OemBEfF4NU2zNgyo/yLiJxGhsgTMyZutltddWlmrDao59y4B1iBdEa73ZtLtynu6aZz1a6D9N5MUBO4qqWGAQ362e13SG3Vs+KkmZun1rOJDkUi3q17IabfC+trraW4dijqcetZ3c0jPZ7yq1/sz2tJgnjek/wX7jSvDuO+AcaQrTbOBHQvrJwIP5Hre2et9HYmpov6rva3qF8B6hfUT6Hul6Qd6va8jPQFH0PkbVyr53dvznR/Cg/we+l50fTd9L7qeD2xb2G5j0uSgvwE27qYOp+HTd6RnLyKfKL9pkS7o9X6O1FTFudekXgeJK0HfAf+eA8VluY47gCW5nu/1eh9Hchpo/5FeNHBnLvMcaRLmuwt1Tuv1Po6G1CpIHOyYpec7P8QHel/S2zeeJw3pvxTYum6bcfS9J3FcN3U4DZ++A3YprGuVHun1Po7kVMW5V1Kng8SVpO9I06dckv9IPQZcDfxrr/dtNKSB9h9pgOuJwE2kEevzcv8d1Ot9Gy2pnyBxUGMW5UrMzMzMzF4yWgaumJmZmVkHHCSamZmZWQMHiWZmZmbWwEGimZmZmTVwkGhmZmZmDRwkmpmZmVkDB4lmZmZm1sBBopmZmZk1cJBoZmbDnqRTJEWX6Yhet99sZeQg0czMzAZE0nW1oLxu/bgc4H+i3TKjhaQd87EZtv+JcZBoZmbDXkR8OSJUn4C9CpuNL9smIn7So2YbjAe+BHyyp60YnnYiHZsje9qKFlbrdQPMzMxspfc34IEhKGNDyEGimZmZDUhEdHzLtJsyNrR8u9nMzEYFSZPzM3CX58+HSrpP0jJJk/O6aXmbU1rUMztvM7lJ/n6Szpd0r6TnJf1Z0pmSXttFm2vftaGkrST9SNLDkhZKmiHpu5I2bVF+FUnHS7pM0hxJT0u6MZfbrEW59SSdLOkWSY9LWiDpLknfkrRxyfa1gUXT8udx+VnD6/Mm4wsDicY1KbORpKV53WEt2vbFvM1TksbU5W0q6duSbshtfljSVZIOlKQWh7rZd4Wk5/LPb5R0vaQX6v99SNpO0o9zny/I6c+SzpO0a922k/OxOTev2qvZs5m5H06XdK2kJyU9mvftcEmrd7o/nfKVRDMzG3UkfQr4VsV1jgW+ARxfl/W6nD4s6YMRMb2L6ncHfgasW1i3W06HSDo0In5X157NgQuAt9TV9ZacDpN0dERcVFduHHAr8Oq6cjvm9EFJO0XEw13sR1MR8aSk3wHvAN4F/LTJpofk5QURsaTQ7qnANGDDwrbrApsBU4ALJR1WLNMuSW8GrgHWKsk7ALgMqA9C1yX1+wckvSciLu7wO/cg9fn4uqxXA28FjpJ0YEQs6KTeTvhKopmZjTY7kYK5a4C9gc2BGyuo94ukAHEZcDqwLfBKYB9S0DUGuEDS7l3UfT6wBmkAyJbApsD7gceBjYGLJa1fV+bHpGDwxVzutaQAagpwN7B+bs+WdeWmkQKR2cBUYANSwPNOYF6u44xWjY2IuXUDi+YUBhLNbVH0f/JyX0llAdkkYPv88dzC+onARbltNwKTgfWA7YBvAiuA9wDfadXuJsYAF5L2/d2k43h6/t4xpL4R8HtgD9KxWo8UyN1CirX+u1ZZRNyQj82RedX1hYFYtf3ZELiCFCDeA+yX920C8AVgca6/drwGR0Q4OTk5OTmtlIkUDERO4zrYdnqTbabl/FNa1DM7bzO5sG5zYFFef3hJmdVIwUsAMzrYv9mFNu9fkr8FsCDnf7Wwft9Cub1Lyq0F3JfzLyisX4MUgATw9pJyR+e8uXXrT8nrpzU55rNL6mooQwqqa9//rhZl7q1bf1lefy2wSkm5Y3P+cmDbDo5/7RjOAdYsyd8p578IrF+SP65Qx6vq8o7I668rKffdnHcfsEZJ/pRCvVOqPKeKyVcSzcxsNPpqxfUdCawJ3BYR59dnRsQy4NP5425lz/X14/cR8euSev8GfC9//FAh6/C8vDbqbkPncovoOwaHFJ7tW5105QxSwFjvPFJAvEdnzW9PRDwLXJ0/vqtkk/fm5bm1Ffm2+tT88YSIWFFS7hzgXtJVvf27aNq3I+KFkvVPAO8DDoqIZ0ryHyn83HBltIykVYFj8scTI+LF+m0i4mqg9u/hwHbq7YaDRDMzG22WkwKGKk3My/9tsc0dpKuNAG/ssP5LW+RdlpevkbR2/nmbvLymRbla3iqkW9hExHOkW+MA5+fBK9vXBn1ExOKImBcR8zpsfydqz2weUByYImk70i385aRn9Wpqx/6RiLi/rMJIl99uzh93LdumH3c1qXdeREyPiKuK6/OAoYl099zreGAs6bGFG1psd1NedrM/bfHAFTMzG20ej4jlFdc5IS9PknRSG9vXPz/Ynzkt8h4q/LwV6Rm2WpA4u1mhiHhC0iLSFa6tgZk56zBSoPYG4Ms5PS3pZuBK4FcR8WiH7e/EZaTbt+uRnhmtBWC1AStXRUTxCl3t2G9SNkK4RKfHHl5+RbBBHmRyALAz6ViOo++KbKdq+7Ma8Hwbg7K72Z+2+EqimZmNNosHWL5s6pGxHdaxTofbtxqRu7Twc+0WcbvTvdSC5Zf2KSL+Sro6dSBp8Mt80uCVqcCZwEOSPs0gyVcza7dSi7eca7ea69+gM9jHHpr8m5G0ltKUSjeTBpTsDTxPuvJ7GvC2Lr5rKPanLb6SaGZm1qZ8+3OTkqxZpOlhvhARXxuEr64fgVy0TeHnv+RlLdAb36yQpI3oCzD+UszLz/VdnhOStiIFPIeTBqOcIemeiLi2/V3oyHTgYOAgSR8FdiBdYXuGvtvrNbPycmZETBqk9jTzNdIVxMeB44DLo26KnS6mZ6ztzwvAK5o8YzkkfCXRzMysUdmgDYBdKP/bWfvDvmOzCiWtJmmXnDqdCHnvFnnvzMsn8sAPSEEiwNtblKvlrQAezG3cQdJnJB1b3DAiHoqIH5ECxdvy6ilttr0bVwALgVcBe9J3q/nnEVF/Va927LcpPJPZQNJr87EvC/K7Vbu6eVJEXFQSIG5TUqY/D5L6ZE3SdDulJG2R92dcF9/RFgeJZmZmfRbm5Zua5H+pyfqfk27dHixp5ybbHA/cTrpKtqzDdh0oabf6lUpvTand+i0O5qhNRD1F0l4l5dYGTs4fLy4EXpuQ5hU8S9L4+nJ5AEjtFvWzHbS/o8tpeSTx5fnjwTS/1Vy7PX4LsCpN+kfSPwF3ko5/N4FbM7Vbww0jkLPPF5vRZJuXrc99cWH+eFppAWkd0i3u20nzJQ4KB4lmZmZ9/piXb5N0am1CZ0lbSrqIdPWtYdBGRNwH/ID0bN81ko6TNF7SWKXX6X2FNIE3wDdysNUJAddKOlrS5pJeI+l9ub2vBP5BIaCIiCuB2tQ3Vyq9mm8rSetLmkIawTyJ9Kzj5wrfcxd9Ac9Fkt4i6RWS1pD0eklnk97+ErQeyV1vM0mv6XCfaxNFH0UakHN/RNzWZNtP5TZ9RunVijtLWlvSBpIOJs1RuTZwS0T8vsN2tHJHXn5J0lvzM4obStpH0pXARwrbTs1v5ak3qeQK6OdI/fBupVcq7i5p3fyavil5fzYnDWi6kMEyWBMwOjk5OTk5DXaiu8m0Z7fYZnVSAFWrczl9k1WvAD6b/yi/bDLtXHY94BeFsmXpax3uX20y7f8iBQ1ldT4O/EtJ2S1I06Q0a8tTlE9Y/dF+9iGA/6gr02wy7S3ycasdy+dq/dSsTKHsWNLVytp3frafY3UU6UpwszbfA2zU4fFv+W+L9PhBs35ZBJxACnZr6+4slN2zsH4JsKiu7gNJ8zA225+Hga0H8/zylUQzM7MsIpaSXqP3ZVJQ8SLp1vA1wL4R8fUWZRdExHuBQ4Ffkp6VWwQ8QAoUdo2Izzcr348rSdOrnEO62reQ9Gzg94GdIqLhql6kibYnk17JdwUwlxTw3kSagHv7KHmfcEScRXon9IW57QtJwdrdpDfS7BQR36gvVya34Tjgb6RR2E/z8tHYrcouBi7JH5fT/F3Ote1/SDpGZ5MC/YWkV+ndQAog3xART7bz3e2KiD+SAsXppIB+MSl4Oz9/33eBzwAzSKOebymUvQn4CunK9HLqrlBHxGWkVxB+h/TKv2eBx4A/ACcCEyLiwSr3p55ytGpmZmbDjKTZpBHKe0VEq4mVzSrnK4lmZmZm1sBBopmZmZk1cJBoZmZmZg0cJJqZmZlZAweJZmZmZtbAo5vNzMzMrIGvJJqZmZlZAweJZmZmZtbAQaKZmZmZNXCQaGZmZmYNHCSamZmZWQMHiWZmZmbW4P8BOlhcrkv3TrwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from sklearn.metrics import roc_curve, auc\n", "import matplotlib.pyplot as plt\n", "import mplhep as hep\n", "\n", "plt.style.use(hep.style.ROOT)\n", "# create ROC curves\n", "pt_split = 5.0\n", "fpr_deepset_lowb, tpr_deepset_lowb, threshold_deepset_lowb = roc_curve(\n", " y_test[track_pt <= pt_split, 1], y_predict[track_pt <= pt_split, 1]\n", ")\n", "fpr_deepset_highb, tpr_deepset_highb, threshold_deepset_highb = roc_curve(\n", " y_test[track_pt > pt_split, 1], y_predict[track_pt > pt_split, 1]\n", ")\n", "\n", "# plot ROC curves\n", "plt.figure()\n", "plt.plot(\n", " tpr_deepset_lowb,\n", " fpr_deepset_lowb,\n", " lw=2.5,\n", " label=\"DeepSet (low pT), AUC = {:.1f}%\".format(\n", " auc(fpr_deepset_lowb, tpr_deepset_lowb) * 100\n", " ),\n", ")\n", "plt.plot(\n", " tpr_deepset_highb,\n", " fpr_deepset_highb,\n", " lw=2.5,\n", " label=\"DeepSet (high pT), AUC = {:.1f}%\".format(\n", " auc(fpr_deepset_highb, tpr_deepset_highb) * 100\n", " ),\n", ")\n", "plt.xlabel(r\"True positive rate\")\n", "plt.ylabel(r\"False positive rate\")\n", "plt.ylim(0.001, 1)\n", "plt.xlim(0, 1)\n", "plt.grid(True)\n", "plt.legend(loc=\"upper left\")\n", "plt.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "If you finish this notebook, you can go back and retrain with different inputs. Replace the code above:\n", "```\n", "# WGET for colab\n", "if not os.path.exists(\"definitions_lorentz.yml\"):\n", " url = \"https://raw.githubusercontent.com/jmduarte/iaifi-summer-school/main/book/definitions_lorentz.yml\"\n", " definitionsFile = wget.download(url)\n", "\n", "with open(\"definitions_lorentz.yml\") as file:\n", " # The FullLoader parameter handles the conversion from YAML\n", " # scalar values to Python the dictionary format\n", " definitions = yaml.load(file, Loader=yaml.FullLoader)\n", "```\n", "with\n", "```\n", "# WGET for colab\n", "if not os.path.exists(\"definitions.yml\"):\n", " url = \"https://raw.githubusercontent.com/jmduarte/iaifi-summer-school/main/book/definitions.yml\"\n", " definitionsFile = wget.download(url)\n", "\n", "with open(\"definitions.yml\") as file:\n", " # The FullLoader parameter handles the conversion from YAML\n", " # scalar values to Python the dictionary format\n", " definitions = yaml.load(file, Loader=yaml.FullLoader)\n", "```" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.13" } }, "nbformat": 4, "nbformat_minor": 2 }