Manuscript Title: Subtitle

Evelyn Kimbirk Travis Beebeﬂ Noah Hoodﬂ Zice ZhaoEl and Michael Henc}m
University of California San Diego
(Group 1)
(Dated: March 24, 2023)

In this paper, we propose a deep learning model for image classification using a custom-designed
VGG based convolutional neural network (CNN) architecture. We use a dataset consisting of images
belonging to 37 different classes, and train our model using a combination of the binary cross-
entropy loss and the Adam optimizer with a learning rate of 0.001. The model is trained on a
dataset consisting of 61,578 training images, and 79,975 test images of galaxies. To evaluate the
performance of our model, we compare it to a simple baseline method using accuracy and mean
squared error (MSE) metrics. Our results show that the VGG6 model performs with a MSE of

0.0131 and accuracy of 0.7228 on the test set.

Overall, our proposed VGG6 model provides a

promising approach for image classification tasks, achieving high accuracy on a complex dataset
with multiple classes. Future work can explore future optimization of the model architecture and
hyperparameters to improve its performance even further.

I. INTRODUCTION

Recent advances in astronomical instrumentation and
space exploration have provided us with a wealth of data
about the universe, but also underscored the challenges
of dealing with the sheer amount and complexity of that
data. With the upcoming launch of telescopes such as
the James Webb Space Telescope and the Nancy Grace
Roman Space Telescope, we expect to generate unprece-
dented amounts of data about galaxies, raising the need
for new tools and techniques to analyze and interpret
that data.

One promising approach is to use machine learning al-
gorithms to classify galaxies based on their images. This
is not a new idea, as demonstrated by the Kaggle Galaxy
Zoo challenge held in 2014, which asked participants to
sort photos of galaxies into 37 different categories using
machine learning algorithms. The challenge called for us-
ing Boosted Decision Trees to sort the photos and used
a Mean Squared Error Loss between the predicted image
category and its true value as the placement method for
teams that took this challenge.

In this paper, we use the same dataset as the Kag-
gle challenge, but tackle the problem in a different way,
exploring the effectiveness of VGGs based on a recent
advance in machine learning technique known as VGG-
16 [1]. Our goal is to demonstrate the potential of VGG
algorithms in handling the vast and complex data gen-
erated by modern astronomical instruments as well as
to provide insights into the strengths and limitations of
neural networks in classifying galaxies.

* lkimbirk@ucsd.edu
T tIbeebe@ucsd.edu
¥ nhood@ucsd.edu
§ 12iz084Qucsd.edu
9 'mhench@ucsd.edu

II. DATASET

The dataset used in this paper is the Galaxy Zoo Chal-
lenge dataset [2], which contains 61,578 training images
and 79,975 test images of galaxies. Each image is a color
image of size 424x424 pixels and were classified by vol-
unteers according to the flowchart in Fig. [I} The dataset
also includes a training solution file with class probabili-
ties for each galaxy image.

Is the galaxy simply smooth and rounded,
with no sign of a disk?

How rounded is it?

Is there anything odd?

How prominent is the central bulge,
compared to the rest of the galaxy?

FIG. 1. The flowchart used by volunteers to classify galaxy
images for the Galazy Zoo Dataset

To prepare the data for model training, the train-
ing images were split into training, validation, and
test sets using an 80:20 split. The class probabili-
ties were converted into one-hot encoded labels using
the to_categorical () function from the Keras utility li-
brary [3].

To preprocess the image data, each image was cropped
to the central 128x128 pixel region using the OpenCV
library [4]. The galaxy depicted in the dataset are mostly
contained within the central 128x128 pixel region, so the

mailto:lkimbirk@ucsd.edu
mailto:tlbeebe@ucsd.edu
mailto:nhood@ucsd.edu
mailto:ziz084@ucsd.edu
mailto:mhench@ucsd.edu

images were cropped to reduce the amount of resources
needed to process the images. The pixel values of the
images were then normalized to be between 0 and 1 by
dividing each pixel value by 255. Finally, the training
and validation data were reshaped into a 4D tensor of
shape (n_samples, 128, 128. 3), where n_samples is the
number of images.

In summary, the dataset was preprocessed by cropping
the images to the central region, normalizing the pixel
values, and reshaping the data for use in a convolutional
neural network.

III. METHODS

The objective of this project was to build a machine
learning model to classify images into one of 37 cate-
gories. To achieve this, we used the VGG6 architecture,
which is a variation of the VGG model with 6 layers. The
VGG architecture is known for its simplicity, depth, and
strong performance in image classification tasks.

Our VGG-6 model, as seen in Fig. [2] consisted of six
convolutional layers with Rectified Linear Unit (ReLU)
activation functions, followed by two fully connected lay-
ers. The first two convolutional layers had 16 filters each,
while the next two had 32 filters each. The fifth layer had
256 neurons, and the output layer had 37 neurons, one
for each class. To reduce overfitting, we added dropout
layers after the first and fourth convolutional layers and
after the fully connected layer. Additionally, we included
batch normalization after the fourth convolutional layer.

FIG. 2. Model architecture of VGG-6

) coman [waxeoolingzn

lization [] elatten [§ vense
FIG. 3. Model Legend 1

The hyperparameters were chosen based on experimen- 2
tation. The learning rate of the Adam optimizer was 3
left as the default 0.001, which is a popular algorithm 4
for stochastic optimization of gradient descent. The loss
function used was binary cross-entropy, which is com- 5
monly used for multi-label classification tasks. We also

included two additional metrics: mean squared error,
for direct comparison against submissions to the Kag-
gle Galaxy Zoo Challenge, and accuracy, for a general
understanding of the performance of the model.

The dataset was stored in a pandas dataframe which
was then processed according to the procedure described
in the dataset section. The model was then trained for
50 epochs with a batch size of 256.

All of these described methods and more can be found
on our project github [5].

IV. RESULTS

In this study, we evaluated the performance of our pro-
posed model using three commonly used metrics: root
mean square error (RMSE), accuracy, and area under
the receiver operating characteristic (ROC) curve (AUC).
RMSE and accuracy were calculated using the model out-
puts, while the AUC was determined using a test dataset
from our sample.

The effectiveness of our model was compared against
submissions to the Galaxy Zoo competition, where the
top-performing submission achieved a RMSE of 0.07491
on 75% of the provided test data. In contrast, our model
achieved an RMSE of 0.11446 on our training data, which
would place our performance at the 94th position on the
competition leaderboard.

Following training, our model achieved an accuracy of
72.28% on the training data. These results provide valu-
able insights into the predictive capacity of our proposed
model and suggest potential avenues for further model
refinement and optimization.

To generate the AUC for all 37 labels, we transformed
each label in the test data to a binary value of 1 if the pre-
dicted probability was greater than 0.5 and 0 otherwise.
Notably, the ROC curve allows for the determination
of the model’s ability to discriminate between positive
and negative classes at varying classification thresholds.
Specifically, the ROC curve evaluates the true positive
rate (TPR) against the false positive rate (FPR) at dif-
ferent thresholds, providing a graphical depiction of the
model’s performance across all possible thresholds. As
such, each ROC curve provides insights into the model’s
capacity to effectively classify galaxies into their assigned
categories based on the majority of classifications made
by human labelers. The code that was used to generate
the AUC curves can be found at Lst. [l

Listing 1. AUC Curve Generation

from sklearn.metrics import

roc_curve , auc, RocCurveDisplay
test labels
for i in range(0, class_test.shape
[0]) :

for j in range(0, class_test.

shape[1]):

10
11
12
13

14

15

16
17

18
19

if float(class_test[i, j]) >

0.5:
class_test[i, j] = 1;
else:
class_test[i, j] =0
np.asarray (class_test , dtype = int)

plot roc curve for test
predictions w/ auc
for i in range(0, class_test .shape

[1]):

fpr, tpr, thresholds = roc_curve
(class_test[:,1], test_pred
[:,i], pos_-label="1")

roc_auc = auc(fpr, tpr)

display = RocCurveDisplay (fpr =
fpr,tpr = tpr, roc_auc =
roc_auc , estimator_name =
test _data')

display . plot ()

plt.savefig('paper/figs/
auc_plots/plot_' + str(i) + '
.png')

A table of the AUC for each label is shown at table [l
An AUC of over 95% was achieved in 10 of the labels.
31 of the categories have an AUC of at least 90%. Of
the remaining 6 categories, 5 of them have an AUC be-
tween 78% and 85%. Finally we have one outlier, label
19, which produced an AUC of 42%. The AUC curve
generated is shown at Fig[4] and it is immediately ob-
vious that there was an issue with identifying label 19.
The best AUC curves at 99% are shown in Fig [5] Fig @

Fig[1]

H Label [AUC [Label [AUC [Label [AUC [Label [AUC H

0 (094 1 (094 2 (094 3 |0.99
4 1094 5 (093 6 |[090| 7 [094
8 1080 9 |097| 10 [094| 11 |0.93
12 (078 13 |090| 14 |0.90| 15 |0.96
16 10.92| 17 [0.95| 18 [0.95| 19 |0.42
20 [0.82| 21 |096| 22 |096| 23 |0.93
24 1094 25 [097| 26 |0.99| 27 |0.99
28 1093 29 [094| 30 |091| 31 |0.85
32 1093 | 33 |095| 34 098] 35 |0.98
36 |0.85

TABLE I. All AUCs

The performance of the model shows that it is signif-
icantly better than random guessing. Furthermore, the
model has shown remarkable results in predicting specific
categories that a galaxy image can be classified into. Nev-
ertheless, the model’s overall performance still falls short
of optimal expectations, indicating there are still areas
that need improvement. Additionally, there exists better
models that provide superior performance outcomes in
the field, which can be used as a benchmark for further
development and improvement of this model.

1.0+

0.8 4

0.6 q

0.4 1

True Positive Rate

0.2 9

0.0 4 —— test data (AUC = 0.42)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIG. 4. AUC of Label 19

1.0 4

0.8 q

0.6 q

0.4 1

True Positive Rate

0.2 9

0.0 —— test data (AUC = 0.99)

T T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIG. 5. AUC of Label 3

V. CONCLUSION

In this study, we undertook the task of classifying a
large dataset of 79,975 images of galaxies, with a training
set comprising 61,578 images across 37 different classes.
The VGG6 algorithm was selected for its balance of per-
formance and computational efficiency, and we obtained
a classification accuracy of approximately 72% as well as
a Mean Squared Error of 0.11446. The accuracy rating is
exceptional given the technical limitations we faced dur-
ing the course of our research. Specifically, we encoun-
tered significant instability on DataHub, with frequent
kernel crashes, server timeouts, and difficulty in loading
code. These limitations significantly impeded our ability
to develop and test our models effectively.

Furthermore, the hardware available to use posed a
challenge, with the large RAM and GPU requirements
of the dataset resulting in heavier preprocessing of data
which possibly led to a loss of accuracy as well as a lack

1.0+

0.8 4

0.6 q

041

True Positive Rate

0.29

0.0 q —— test data (AUC = 0.99)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIG. 6. AUC of Label 26

1.0+

0.8 4

0.6 4

041

True Positive Rate

0.2

0.0 q —— test data (AUC = 0.99)

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

FIG. 7. AUC of Label 27

of VRAM on our RTC 3080 Ti GPU. As such, we were
limited to using simpler algorithms such as VGG6, with
larger and more complex models being impractical to
train given these hardware limitations.

In order to optimize our model for accuracy while mini-
mizing computational complexity, we developed a custom
model that was designed to achieve a good balance be-
tween performance and computational intensity. Due to
resource limitations, we were unable to use dedicated Al
computers with multiple GPUs, and thus had to make
our model as efficient as possible.

To accomplish this, we employed model compression
techniques to reduce the number of classes we needed
to consider during training. We discovered that only a
small subset of the available classes were present in the
majority of the galaxies in our dataset, allowing us to
focus our efforts on optimizing the accuracy of our model
for those specific classes.

[1] K. Simonyan and A. Zisserman, Very deep convolu-
tional networks for large-scale image recognition (2015),
arXiv:1409.1556 [cs.CV].

[2] |Galaxy zoo - the galaxy challenge| (2014).

[3] Tf.keras.utils tensorflow v2.12.0| (2023).
[4] |Opency library| (2023).
[5] |Groupl phys139-239 machine learning final project (2023).

https://arxiv.org/abs/1409.1556
https://www.kaggle.com/competitions/galaxy-zoo-the-galaxy-challenge/overview/description
https://www.tensorflow.org/api_docs/python/tf/keras/utils
https://opencv.org/
https://github.com/blackcomb-dev/phys139-239-final-proj

	Manuscript Title: Subtitle
	Abstract
	Introduction
	Dataset
	Methods
	Results
	Conclusion
	References

