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Background

e (Colliding ‘primary particles’, produces jets of quarks and gluons
A hadron is composed of multiple quarks held together by strong force
(exchange of gluons)
e Hadrons compose jets, understanding them provides insight about primary
particles in the collision
o  Higgs produces b quarks of 1.5ps lifetime, creating a second
identifiable vertex where the decay occurs

https://atlas.cern/Discover/Detector/Calorimeter

https://press.cern/resources/image/physics/infographics-gallery Rolf Landua



https://atlas.cern/Discover/Detector/Calorimeter
https://press.cern/resources/image/physics/infographics-gallery
https://www.linkedin.com/in/rolf-landua-40a8208a/?ppe=1

Pictorial Representation of Jets

e Bottom quarks have a unique jet signature
because hadrons containing these bottom
quarks have a long enough lifetime in
order for there to be a detectable
displacement from the point of particle
collision and their decay. The dotted lines
of the b jets represent this.

e This results in a secondary vertex (SV)
displaced from the primary vertex (PV)

e The focus is on H—bb (Higgs boson
decaying to bottom quark antiquark pair),
as the goal is to achieve higher accuracy
in jet tagging by correctly classifying the
input jets as either H—bb jets (signal) or
QCD jets (background)
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t—Wb-qgb



Benchmark Architecture

Dense Keras model

Input layer the same size as the number of features
(in this case 27)

Batch normalization

Three hidden layers of sizes (64,32,32) with ReLU
activation

Output layer the same size as the number of labels
(in this case 2) with softmax activation

Trained using Adam optimizer

Batch size of 1024

For up to 100 epochs

Enforcing early stopping on the validation loss with
a patience of 10 epochs

Categorical cross-entropy loss




Benchmark Performance
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Graph Neural Network (GNN)

While existing DL approaches have been successfully
applied to jet tagging, particle jets involve multiple
entities that are not easily encoded as images or lists.
o  Graphs provide a natural representation for such
relational information.

By placing charge particles and secondary vertices on a
graph, the network can learn a representation of each
particle-particle and particle-to-vertex interaction.

o We can exploit this to categorize a given jet as a (op)r  (pp)2 (pp)3 (pp)s (PP)s  (PP)s
signal (H—bb) or background (QCD). mf 1 1 0 0 0 0
Rr = p, ( 0 0 1 1 0 0 )
The particle graph & is constructed by connecting each ps \ 0 0 0 0 1 1
particle to every other particle through Npp = Np (Np—] ) (ep)1 (pp)2 (pp)s (pp)a (pP)s  (PP)o
directed edges. prf 0 0 1 0 1 0
o  For the graph Q; , a receiving matrix (R) and Rs = p, ( (1) (1J 3 (1) 8 (1) )

sending matrix (R,) are defined. P3




Particles and Vertices: Two Graphs
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Similarly, a particle-vertex graph 55; 18

constructed by connecting each vertex to

each particle through N = N N directed

pv p v
edges.
o We can also define matrices R, and

R, which connect particles and
vertices.
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e To setup the network between gp and S% » We use two
input collections:
o N particles, each represented by a feature vector
of length P.
o N vertices, each represented by a feature vector
of length S§.
e For a single jet, the input consists of an X matrix

containing input features of charged particles and Y
matrix containing the input features of the SVs.




Interaction Network (IN) Model

The particle feature matrix X is multiplied by the receiving
and sending matrices R, and R to build the
particle-particle 1nteract10n feature matrix B .
o  Similarly the particle-vertex interaction feature
matrix va is built (this uses X & Y matrix).

These pairs are processed by the interaction functions /77,
and /", to build an internal representation of the
particle-particle and particle-vertex interaction.

o  This results in an effect matrix Epp and Evp.

The interaction functions /7, and /', are expressed as a
sequence of 3 dense layers with ReLu activation function

after each layer.

Although not shown here, we propagate the
particle-particle (Epp) and particle-vertex (£ ) interaction
back to the particles receiving them.
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Interaction Network (IN) Model (cont.d)

The next step consists of building the C matrix, by
combining the input information for each particle (X) with
the learned representation of the particle-particle (E ) and
particle-vertex (E ) interactions.

The final aggregator (f,) combines the input and
interaction information to build post-interaction
representation of the graph, summarized by the matrix O.

The final function that computes the classifier output
preserves the permutation invariance of the input particles
and vertices.
o  Here the sum along each row (corresponding to a
sum over particles) of O i1s done to produce a
feature vector O.

From here O is passed on to function ¢ > Which produces
the output of the classifier.
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Data processing

J

Download root files Process root files

Read .h5 files during training
and testing

e Source: e  Run'make_dataset.py’' e Load feature arrays,
http://opendata.cern.ch/re e Benefits: truth labels, etc.
cord/12102 o a.Choose

desired features

b. Facilitate

training and

. testing

o  Preprocess data
e  Store processed data in

/home/z1z078/teams/grou
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http://opendata.cern.ch/record/12102
http://opendata.cern.ch/record/12102

Training the IN

e Hyper parameters e Optimization algorithm: Adam
o Learning rate: 1e-4

Hyper parameter Value
Batch size 512
Number of epochs 70
Training dataset size 300k

Validation dataset size 100k



One epoch of training the IN
Training

e Load the training
data in batches

e Forward pass

e Back propagation

Validation

e Loadthedatain
batches
e Forward pass

Display results

Training loss
Validation loss

Time
New best model

Save model

e Only save the
model if the
validation
accuracy is
higher than all

previous epochs.

Validation accuracy
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Training result
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Evaluation

To be continued
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