Interaction networks for the identification of boosted $H \rightarrow b\overline{b}$ decays

Arturo Sorensen, Danylo Drohobytsky, Fredy Ramirez, and Zihan Zhao

Background

- Colliding 'primary particles', produces jets of quarks and gluons
- A hadron is composed of multiple quarks held together by strong force (exchange of gluons)
- Hadrons compose jets, understanding them provides insight about primary particles in the collision
 - Higgs produces b quarks of 1.5ps lifetime, creating a second identifiable vertex where the decay occurs

Pictorial Representation of Jets

- Bottom quarks have a unique jet signature because hadrons containing these bottom quarks have a long enough lifetime in order for there to be a detectable displacement from the point of particle collision and their decay. The dotted lines of the b jets represent this.
- This results in a secondary vertex (SV) displaced from the primary vertex (PV)
- The focus is on H→bb (Higgs boson decaying to bottom quark antiquark pair), as the goal is to achieve higher accuracy in jet tagging by correctly classifying the input jets as either H→bb jets (signal) or QCD jets (background)

Benchmark Architecture

- Dense Keras model
- Input layer the same size as the number of features (in this case 27)
- Batch normalization
- Three hidden layers of sizes (64,32,32) with ReLU activation
- Output layer the same size as the number of labels (in this case 2) with softmax activation
- Trained using Adam optimizer
- Batch size of 1024
- For up to 100 epochs
- Enforcing early stopping on the validation loss with a patience of 10 epochs
- Categorical cross-entropy loss

Benchmark Performance

Graph Neural Network (GNN)

- While existing DL approaches have been successfully applied to jet tagging, particle jets involve multiple entities that are not easily encoded as images or lists.
 - Graphs provide a natural representation for such relational information.
- By placing charge particles and secondary vertices on a graph, the network can learn a representation of each particle-particle and particle-to-vertex interaction.
 - We can exploit this to categorize a given jet as a signal $(H \rightarrow b\overline{b})$ or background (QCD).
- The particle graph \mathscr{G}_p is constructed by connecting each particle to every other particle through $N_{pp} = N_p (N_p 1)$ directed edges.
 - For the graph \mathscr{G}_p , a receiving matrix (R_R) and sending matrix (R_S) are defined.

Particles and Vertices: Two Graphs

- Similarly, a particle-vertex graph \mathscr{G}_{pv} is constructed by connecting each vertex to each particle through $N_{pv} = N_p N_v$ directed edges.
 - We can also define matrices R_K and R_V , which connect particles and vertices.

- To setup the network between \mathscr{G}_p and \mathscr{G}_{pv} , we use two input collections:
 - N_p particles, each represented by a feature vector of length *P*.
 - N_v vertices, each represented by a feature vector of length *S*.
- For a single jet, the input consists of an *X* matrix containing input features of charged particles and *Y* matrix containing the input features of the SVs.

Interaction Network (IN) Model

- The particle feature matrix X is multiplied by the receiving and sending matrices R_R and R_S to build the particle-particle interaction feature matrix B_{nn} .
 - Similarly the particle-vertex interaction feature matrix B_{vp} is built (this uses X & Y matrix).
- These pairs are processed by the interaction functions f_{R}^{pp} and f_{R}^{pp} to build an internal representation of the particle-particle and particle-vertex interaction.
 - This results in an effect matrix E_{pp} and E_{vp} .
- The interaction functions f_{R}^{pp} and f_{R}^{pp} are expressed as a sequence of 3 dense layers with ReLu activation function after each layer.
- Although not shown here, we propagate the particle-particle (E_{pp}) and particle-vertex (E_{vp}) interaction back to the particles receiving them.

Interaction Network (IN) Model (cont.d)

- The next step consists of building the *C* matrix, by combining the input information for each particle (*X*) with the learned representation of the particle-particle ($\overline{E_{pp}}$) and particle-vertex ($\overline{E_{vp}}$) interactions.
- The final aggregator (f_O) combines the input and interaction information to build post-interaction representation of the graph, summarized by the matrix O.
- The final function that computes the classifier output preserves the permutation invariance of the input particles and vertices.
 - Here the sum along each row (corresponding to a sum over particles) of O is done to produce a feature vector \overline{O} .
- From here \overline{O} is passed on to function φ_C , which produces the output of the classifier.

Data processing

Download root files

Process root files

Read .h5 files during training and testing

- Source: <u>http://opendata.cern.ch/re</u> <u>cord/12102</u>
- Store in /home/ziz078/teams/grou p-2/Reproduction_of_IN/

data

•

- Run 'make_dataset.py'
- Benefits:
 - a. Choose
 - desired features
 - o b. Facilitate

training and

- testing
- Preprocess data
- Store processed data in /home/ziz078/teams/grou p-2/Reproduction_of_IN/ data/processed

• Load feature arrays, truth labels, etc.

Training the IN

• Hyper parameters

Hyper parameter	Value
Batch size	512
Number of epochs	70
Training dataset size	300k
Validation dataset size	100k

- Optimization algorithm: Adam
 - Learning rate: 1e-4

One epoch of training the IN

Training

- Load the training data in batches
 - Forward pass
- Back propagation

Validation

- Load the data in batches
 - Forward pass

Display results

- Training loss
- Validation loss
- Validation accuracy
- Time
- New best model

Save model

 Only save the model if the validation accuracy is higher than all previous epochs.

Training result

Evaluation

To be continued