Particle Tracking with a Graph
Neural Network

Group 3: Jason Weitz, Anthony Aportela, Dmitri Demler

Overview

* Reconstruct particle paths (from LHC)
 Use of the TrackML Kaggle dataset

e Data Preprocessing

» Creating a Graph Neural Network

 Comparison to a baseline

e Results

Our task

* Reconstruct Cern LHC collision events using graph neural networks
* Collection of too much info
* Need methods to discard what’s unnecessary

* Process of track reconstruction using ML

The Paper

Graph Neural Networks for Particle Reconstruction
in High Energy Physics detectors

Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Prabhat
Lawrence Berkeley National Laboratory
Berkeley, CA
xju@lbl.gov

* Challenges in determining particle path

Lindsey Gray, Thomas Klijnsma, Kevin Pedro, Giuseppe Cerati,
Jim Kowalkowski, Gabriel Perdue, Panagiotis Spentzouris, Nhan Tran
Fermi National Accelerator Laboratory
Batavia, IL

* [raditional approach: Kalman Filter

Jean-Roch Vlimant, Alexander Zlokapa, Joosep Pata, Maria Spiropulu
California Institute of Technology
Pasadena, CA

* Poor scaling

Sitong An Adam Aurisano, V Hewes
CERN, Geneva, Switzerland & University of Cincinnati
Camnegie Mellon University, Pittsburgh, PA Cincinnati, OH

Aristeidis Tsaris Kazuhiro Terao, Tracy Usher
Oak Ridge National Laboratory SLAC National Accelerator Laboratory
Oak Ridge, TN Menlo Park, CA

e Use of GNNs as a solution

Abstract

Pattern recognition problems in high energy physics are notably different from
traditional machine learning applications in computer vision. Reconstruction algo-
rithms identify and measure the kinematic properties of particles produced in high
energy collisions and recorded with complex detector systems. Two critical appli-
cations are the reconstruction of charged particle trajectories in tracking detectors
and the reconstruction of particle showers in calorimeters. These two problems
have unique challenges and characteristics, but both have high dimensionality,
high degree of sparsity, and complex geometric layouts. Graph Neural Networks
(GNNs) are a relatively new class of deep learning architectures which can deal
with such data effectively, allowing scientists to incorporate domain knowledge
in a graph structure and learn powerful representations leveraging that structure
to identify patterns of interest. In this work we demonstrate the applicability of
GNNs to these two diverse particle reconstruction problems.

 Maintain accuracy, improve efficiency at
inference

-
Q
S
Q
-
=
—
o
gy
L
T
7))
g
%
2
>
=
A
N
>
of
S
O
—
—
o
-
S
.
2
<
i
<

Ju, Xiangyang, et al. "Graph neural networks for particle reconstruction in high energy physics detectors." arXiv preprint arXiv:2003.11603 (2020).

o R RN ,
e e % N)
Featured Prediction Compeétition " ‘.\ Y /4 \
/ " A \
o - \
- \ §
\‘ ~

\
TrackML Particle’T

High Energy Physics particle t_r_é;;kl_ ofin CER
Hot™)

Dataset

CERN - 651 teams - 5 years ago

Overview Data Code Discussion Leaderboard Rules ea

e TrackML dataset

e X, Y, Z coordinates of hits in the calorimeter, Volume, etc.

« Steps taken for data preprocessing/ PCA ®
n ln(tan(?))
« Conversion to#, ¢, and Z

4

» Partition detector space into segments ¢ = ar Cm”(;

Ju, Xiangyang, et al. "Graph neural networks for particle reconstruction in high energy physics detectors." arXiv preprint arXiv:2003.11603 (2020).

Coordinate Transformation
And Splitting Sectors

def coord_convert(x,y,z):

e Steps to transform coordinates theta o np.arctans(np.sart(x s 2 + y # 2), 2)

eta = -np.log(np.tan(theta/2))
return phi, eta, z

e Split into sectors in order to
handle the large data

sector_splitter(df, n, m):

phi_bins = np.linspace(-np.pi, np.pi, n+l) # bins for phi angles
eta_bins = np.linspace(-4.5, 4.5, m+l) # bins for eta angles

* Biasing for higher energy S 0
partICIGS for j in range(m):

phi_mask = (phi_bins[i] < df['phi']) & (df['phi'] < phi_bins[i+1])
eta_mask = (eta_bins[j] < df['eta']) & (df['eta']l < eta_bins[j+1])

df_list.append(df[(phi_mask & eta_mask)])

return df_list

Data Visualization

 Reconstructed particle paths

 Known particle |IDs indicated by
color

 Each plot is a different event

 Dataset is spatially
coordinated

e Need to randomize

e 1 event ~ 100,000 hits

Data Preprocessing

* Create a point cloud object with all the data
* Create a PyTorch geometric graph object
. Each hit must be connected to every other node = O(n?)

« With 100,000 hits per event, number of edges is 1019

* TJo solve: remove the mathematically impossible edge connects (remove dR>1.7)

dR = \/dp? + di’

09 The, ﬁmp h S a Comp /alb

~-partte ﬁmphl leerv +e
o tor ndes core /a-b-e-lt/ ‘éi /'72/@)
and o ea%a are lobele by

/441/, 4(7[7) o Lohglhor of ot
foe o rodes we ar £0m Thy
Tz, trmck

Methods

Tracker Data (a) Graph Construction (b) Edge Classification (c) Track Construction

* Implementation of a Graph Neural Network
 Edge classifier

* [wo attempts
* Create a usable GNN from scratch
* |mplementation of similar method from paper

 Facing some challenges with our original method

Creating and Training

« Basic idea is the same for both

* import spacial information (x,y,z)
and convert to (phi, eta, z)

e convert into graphs using a
CustomDataset class

e define a model, loss, and
optimizer

e terate and reduce loss

dataframes = data_puller(1)

Split into train and test sets
train_dfs, test_dfs = train_test_split(dataframes, test_size=0.2)

Create custom datasets and dataloaders

train_dataset = CustomDataset(train_dfs)

test _dataset CustomDataset(test_dfs)

train_loader DatalLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DatalLoader(test_dataset, batch_size=32, shuffle=False)

device = torch.device("cuda" if torch.cuda.is_available() else '"cpu")

Define the parameters of the model
number of features per node
input_dim = 3

#size of hidden layer

hidden_dim = 64

#size of output

output_dim = 1

number hidden layers

num_layers = 1

Create the PFN model
model = GNN(input_dim, hidden_dim, output_dim, num_layers)
model = model.to(device)

Define the loss function and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

Train the model
for epoch in range(100):
total_loss = 0.0
for data in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, data.y)
loss.backward()
optimizer.step()
total _loss += loss.item()
print("Epoch %d, Loss = %f" % (epoch+1l, total_loss/len(dataloader)))

The model

Two main methods (theirs)

 init__() which defines the
architecture

* forward() defines how operations
between layers are preformed

o still trying to fully understand their
architecture

class EdgeClassifier(nn.Module):

def

def

__init__(

self,

node_1indim,
edge_indim,

L=4,
node_latentdim=8,
edge_latentdim=12,
r hidden_size=32,

o_hidden_size=32,

super()._ _init__ ()

self.node_encoder = MLP(node_indim, node_latentdim, 64,

self.edge_encoder = MLP(edge_indim, edge_latentdim, 64,

gnn_layers = []
for _1 in range(L):
fixme: Wrong parameters?
gnn_layers.append/(
IN(
node_latentdim,
edge_latentdim,
node_outdim=node_latentdim,
edge_outdim=edge_latentdim,
edge_hidden_dim=r_hidden_size,
node_hidden_dim=o_hidden_size,
)
)
self.gnn_layers = nn.ModulelList(gnn_layers)
self.W = MLP(edge_latentdim, 1, 32, L=2)

forward(self, x: Tensor, edge_index: Tensor, edge_attr:

node _latent = self.node _encoder(x)
edge_latent = self.edge_encoder(edge_attr)

for layer in self.gnn_layers:

node_latent, edge_latent = layer(node_latent, edge_index,

edge_weights = torch.sigmoid(self.W(edge_latent))

return edge_weights

Tensor)

-> Tensor:

edge_latent)

Dead kernel

O u r G N N The kernel has died, and the automatic restart has failed. It is possible the kernel cannot be restarted. If you are not

able to restart the kernel, you will still be able to save the notebook, but running code will no longer work until the

notebook is reopened.

Don't Restart Try Restarting Now

» Possible problem might be size
 Running into memory issues of imported dataframes
and/or multiple device issues

 Similar distilled version

e solution could be making it so
 Probably because our graphs are graph is generated lazily from
~25Mb a pop directory

RuntimeError: CUDA out of memory. Tried to allocate 22.68 GiB (GPU 0; 10.92 GiB total capacity; 3.60 GiB alread
y allocated; 6.44 GiB free; 3.64 GiB reserved in total by PyTorch)

RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu! (w
hen checking arugment for argument mat2 in method wrapper_mm)

H gnn-tracking / gnn_tracking (Public ®Watch 3 ~ %

<> Code (%) Issues 50 {9 Pullrequests () Actions [{] Projects [Wiki) Security |~ Insights
e I 5]
¥ main ~ $ 15 branc hes © 0 tags Go to file Add file ~ <> Code ~ Abol
Char
"(%2. klieret Abort on 10 consecutive OOM batches (#284) v 07c9a92 3 daysago ‘750 commits neur:
BB .github Better nam ing conven tion for environmen ts 4 months ago]
BB docs Nicer title for front page of docs 2 months ago S
he
BB environmen ts Remove misleading extensions 3 months ago
agn
s BB readme_assets Add banner image 7 months ago
® e e rT] 0 F
— ay r ra p p O ra O n VO u I O n a B8 src/gnn_tracking Abort on 10 consecu tive OOM batches (#284) 3 days ago M\

Network (graphTCN)

10 Layers containing:

e Node encoder
* Edge encoder data2352 s18
e |nteraction Network |

 More efficient graph creation

100 kb per graph (instead of 25mb)

Other GNN

o Sector split different from our
Implementation

event1 466

500 1000 1500
Z [mm]

Point Cloud transformation

RGSUltS ROC taken every epoch
Other GNN ROC Curve

—h
()
o

e Trained on 70 Events in ~40 mins

True Positive Rate

» 96% accuracy

10~

* 0.97 ROC-AUC

» After training, 0.5 seconds / event

0.6 0.8 1.0
False Positive Rate

Baseline Method Comparison

. . . . event test: event 1000: open, #hits=120939, #particles=12263, #truth=120939
 Combinatoric geometric algorithm
round 0 (120939 hits):
done round 0 (120939 hits): 37.824s
done event 1000: 37.825s

e Creation of a candidate list

event 1000 score: 0.7876
event test: event 1001: open, #hits=93680, #particles=8915, #truth=93680

. event 1001:
e Truncate the list round 0 (93680 hits):
done round 0 (93680 hits): 21.027s
done event 1001: 21.027s

e EXtendS Candidates event 1001 score: 0.7941

event test: event 1002: open, #hits=125504, #particles=12763, #truth=125504
event 1002:
round 0 (125504 hits):

) No't muCh ML |mp|ementat|on done round 0 (125504 hits): 42.315s

done event 1002: 42.315s

event 1002 score: 0.7881

o Training data 'to CaICUIate Stats event test: event 1003: open, #hits=104451, #particles=10261, #truth=104451

event 1003:
round 0 (104451 hits):
done round 0 (104451 hits): 25.342s

° Accuracy ~ 79% done event 1003: 25.343s

event 1003 score: 0.7912
score mean 0.7903 (std 0.0026)

® 30 SeCOndS / event Time taken: 128.972s

Next Steps

 Our method in progress
» Currently facing some challenges

 Future of GNNs for particle track reconstruction

