
Particle Tracking with a Graph
Neural Network
Group 3: Jason Weitz, Anthony Aportela, Dmitri Demler

Overview

• Reconstruct particle paths (from LHC)

• Use of the TrackML Kaggle dataset

• Data Preprocessing

• Creating a Graph Neural Network

• Comparison to a baseline

• Results

Our task

• Reconstruct Cern LHC collision events using graph neural networks

• Collection of too much info

• Need methods to discard what’s unnecessary

• Process of track reconstruction using ML

The Paper

• Challenges in determining particle path

• Traditional approach: Kalman Filter

• Poor scaling

• Use of GNNs as a solution

• Maintain accuracy, improve efficiency at
inference

Ju, Xiangyang, et al. "Graph neural networks for particle reconstruction in high energy physics detectors." arXiv preprint arXiv:2003.11603 (2020).

Dataset

• TrackML dataset

• X, Y, Z coordinates of hits in the calorimeter, Volume, etc.

• Steps taken for data preprocessing/ PCA

• Conversion to , , and Z

• Partition detector space into segments

η ϕ
η = − ln(tan(

Θ
2

))

ϕ = arctan(
y
x

)

Ju, Xiangyang, et al. "Graph neural networks for particle reconstruction in high energy physics detectors." arXiv preprint arXiv:2003.11603 (2020).

Coordinate Transformation
And Splitting Sectors

• Steps to transform coordinates

• Split into sectors in order to
handle the large data

• Biasing for higher energy
particles

Data Visualization

• Reconstructed particle paths

• Known particle IDs indicated by
color

• Each plot is a different event

• Dataset is spatially
coordinated

• Need to randomize

• 1 event ~ 100,000 hits

Data Preprocessing

• Create a point cloud object with all the data

• Create a PyTorch geometric graph object

• Each hit must be connected to every other node

• With 100,000 hits per event, number of edges is

• To solve: remove the mathematically impossible edge connects (remove dR>1.7)

= Θ(n2)

1010

dR = dϕ2 + dη2

Methods

• Implementation of a Graph Neural Network

• Edge classifier

• Two attempts

• Create a usable GNN from scratch

• Implementation of similar method from paper

• Facing some challenges with our original method

Creating and Training

• Basic idea is the same for both

• import spacial information (x,y,z)
and convert to (phi, eta, z)

• convert into graphs using a
CustomDataset class

• define a model, loss, and
optimizer

• iterate and reduce loss

The model
Two main methods (theirs)

• __init__() which defines the
architecture

• forward() defines how operations
between layers are preformed

• still trying to fully understand their
architecture

Our GNN

• Similar distilled version

• Running into memory issues
and/or multiple device issues

• Probably because our graphs are
~25Mb a pop

• Possible problem might be size
of imported dataframes

• solution could be making it so
graph is generated lazily from
directory

Other GNN

• 10-Layer Graph Temporal Convolutional
Network (graphTCN)

• 10 Layers containing:
• Node encoder

• Edge encoder

• Interaction Network

• More efficient graph creation

• 100 kb per graph (instead of 25mb)

Other GNN

• Sector split different from our
implementation

Point Cloud transformation

Results
Other GNN

• Trained on 70 Events in ~40 mins

• 96% accuracy

• 0.97 ROC-AUC

• After training, 0.5 seconds / event

ROC taken every epoch

Baseline Method Comparison

• Combinatoric geometric algorithm

• Creation of a candidate list

• Truncate the list

• Extends candidates

• Not much ML implementation

• Training data to calculate stats

• Accuracy ~ 79%

• 30 seconds / event

Next Steps

• Our method in progress

• Currently facing some challenges

• Future of GNNs for particle track reconstruction

