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Overview

• Reconstruct particle paths (from LHC)


• Use of the TrackML Kaggle dataset


• Data Preprocessing


• Creating a Graph Neural Network


• Comparison to a baseline


• Results



Our task

• Reconstruct Cern LHC collision events using graph neural networks


• Collection of too much info


• Need methods to discard what’s unnecessary


• Process of track reconstruction using ML



The Paper

• Challenges in determining particle path


• Traditional approach: Kalman Filter


• Poor scaling


• Use of GNNs as a solution


• Maintain accuracy, improve efficiency at 
inference

Ju, Xiangyang, et al. "Graph neural networks for particle reconstruction in high energy physics detectors." arXiv preprint arXiv:2003.11603 (2020).



Dataset

• TrackML dataset


• X, Y, Z coordinates of hits in the calorimeter, Volume, etc.


• Steps taken for data preprocessing/ PCA


• Conversion to , , and Z


• Partition detector space into segments
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Ju, Xiangyang, et al. "Graph neural networks for particle reconstruction in high energy physics detectors." arXiv preprint arXiv:2003.11603 (2020).



Coordinate Transformation
And Splitting Sectors

• Steps to transform coordinates


• Split into sectors in order to 
handle the large data


• Biasing for higher energy 
particles



Data Visualization

• Reconstructed particle paths


• Known particle IDs indicated by 
color


• Each plot is a different event


• Dataset is spatially 
coordinated


• Need to randomize


• 1 event ~ 100,000 hits



Data Preprocessing

• Create a point cloud object with all the data


• Create a PyTorch geometric graph object


• Each hit must be connected to every other node 


• With 100,000 hits per event, number of edges is  


• To solve: remove the mathematically impossible edge connects (remove dR>1.7)
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Methods

• Implementation of a Graph Neural Network


• Edge classifier


• Two attempts


• Create a usable GNN from scratch


• Implementation of similar method from paper


• Facing some challenges with our original method



Creating and Training

• Basic idea is the same for both


• import spacial information (x,y,z) 
and convert to (phi, eta, z)


• convert into graphs using a 
CustomDataset class


• define a model, loss, and 
optimizer


• iterate and reduce loss



The model
Two main methods (theirs)

• __init__() which defines the 
architecture


• forward() defines how operations 
between layers are preformed


• still trying to fully understand their 
architecture



Our GNN

• Similar distilled version


• Running into memory issues 
and/or multiple device issues


• Probably because our graphs are 
~25Mb a pop

• Possible problem might be size 
of imported dataframes


• solution could be making it so 
graph is generated lazily from 
directory



Other GNN

• 10-Layer Graph Temporal Convolutional 
Network (graphTCN)


• 10 Layers containing:
• Node encoder

• Edge encoder

• Interaction Network

• More efficient graph creation


• 100 kb per graph (instead of 25mb)



Other GNN

• Sector split different from our 
implementation

Point Cloud transformation



Results
Other GNN

• Trained on 70 Events in ~40 mins


• 96% accuracy


• 0.97 ROC-AUC


• After training, 0.5 seconds / event

ROC taken every epoch



Baseline Method Comparison

• Combinatoric geometric algorithm


• Creation of a candidate list


• Truncate the list


• Extends candidates


• Not much ML implementation


• Training data to calculate stats


• Accuracy ~ 79%


• 30 seconds / event



Next Steps

• Our method in progress


• Currently facing some challenges


• Future of GNNs for particle track reconstruction


