
Using Graph Neural Networks for Particle Reconstruction

Jason Weitz,∗ Dmitri Demler,† and Anthony Vizcáıno Aportela‡

University of California San Diego

(Group 3)
(Dated: March 23, 2023)

This paper proposes the use of Graph Neural Networks (GNNs) as an alternative solution to
the challenges of track reconstruction in high energy physics experiments. The paper highlights
the difficulties of accurately determining particle paths in real-time when detectors capture more
information than can be recorded, and when hits are densely packed while also taking uncertainties
into account. By leveraging abstract associations between hits, GNNs offer a promising approach
to the particle track reconstruction problem. Our application of a GNN is influenced by the use of
this neural network architecture as done in the paper “Graph Neural Networks for Particle Recon-
struction in High Energy Physics Detectors” (Ju, et al. 2020). This paper focuses on demonstrating
the applicability of GNNs to the specific problem of charged particle trajectory reconstruction in
tracking detectors and presents a new approach that can help improve accuracy and scalability in
high energy physics experiments.

I. INTRODUCTION

The reconstruction of particle collision events in high
energy physics experiments, such as those at the Large
Hadron Collider (LHC), presents a complex pattern
recognition task for particle detectors such as ATLAS
and CMS. These detectors capture more information
than we have the ability to record in real time. As a
result the detectors need to have the ability to choose
what information to discard. This is done by partially
reconstructing particle events in real time and discrimi-
nating based on those results. One of the many sub-tasks
involved in this process is track reconstruction, where
the paths of particles resulting from collisions are re-
built from signals detected in a sub-detector called the
tracker[1].

Loosely speaking, the tracker is a cylindrical grid of
sensors which surrounds the point of collision and records
information about the time and location a potential par-
ticle may have passed through. The resulting data is a
point cloud of particle locations in space, and the task of
track reconstruction involves connecting these points to
form plausible paths for each particle, while eliminating
implausible ones[1].

The challenge of track reconstruction lies in the dif-
ficulty of quickly and accurately determining the path
of each particle, particularly when the hits are densely
packed, while also taking the uncertainties associated
with the coarseness of the sub-detector into account.
This challenge is further compounded by the upcoming
High Luminosity upgrade to the LHC, which is expected
to result in an increase in the number of hits per event[1].

Historically, track reconstruction has been approached
using the Kalman Filter, a combinatorial search algo-
rithm that has been highly tuned for performance in

∗ jdweitz@ucsd.edu
† ddemler@ucsd.edu
‡ aaportel@ucsd.edu

FIG. 1. On the left is a toy representation of how hits may be
connected by edges in space. On the right is an isomorphic
representation of the same graph. An example of how the
data may be divided is represented by the dotted line. Note
there are no edges crossing this line.

current LHC conditions. However, this approach is in-
trinsically sequential and presents scalability challenges,
as it is inefficient to parallelize and scale to the expected
increase in hits per event[1].

An alternative solution to this challenge is the use of
Graph Neural Networks (GNNs), which can leverage ab-
stract associations between hits and offer a promising
approach to the particle track reconstruction problem.
GNNs effectively consider this dimensionality, sparsity,
and complexity - therefore it is a competent algorithm
to use in the case of particle tracking. The task involves
demonstrating the applicability of GNNs to the specific
problem of charged particle trajectory reconstruction in
tracking detectors. Our application of a GNN is influ-
enced by the use of this neural network architecture as
done in the paper, “Graph Neural Networks for Parti-
cle Reconstruction in High Energy Physics Detectors”[1].
The methods proposed in this paper look to apply this
machine learning algorithm to accurately reconstruct the
trajectories of charged particles at the LHC.

mailto:jdweitz@ucsd.edu
mailto:ddemler@ucsd.edu
mailto:aaportel@ucsd.edu


2

FIG. 2. Visualization for particle hits.

II. DATASET

The dataset utilized in this study is the TrackML Par-
ticle Tracking Challenge dataset, which was made avail-
able by Kaggle[2]. This dataset was originally used as
part of a competition in 2018, with the aim of devel-
oping machine learning models that can accurately re-
construct particle tracks from 3D points generated by
proton collisions in silicon detectors. The dataset com-
prises several files, including a test.zip file containing
125 events, a train {1,2,3,4,5}.zip file with the full
training dataset containing 8850 events split into five
files, a train sample.zip file containing the first 100
events from the training dataset, and detectors.zip file
containing information about the detector geometry.

Each event in the dataset is made up of 3D points for
particles generated from collisions caused by protons at
the LHC. The training dataset provides the recorded hits,
along with the ground truth relationship to particles and
the initial parameters of the particles. In contrast, the
test dataset only includes the recorded hits. The dataset
is provided in a .csv format, and each event comprises
four files: hits, hit cells, particles, and event ground truth
relationship.

The event hit file contains five values for each respec-
tive hit, including a hit id that numerically identifies
the hit within the event, x, y, z to indicate the posi-
tion of the hit, volume id to identify the detector group,
layer id to identify the detector layer within the group,
and module id to identify the detector module within
the layer.

The event truth file maps hits to the state of the true
particle at the measured hit. Each entry has one map-
ping for a hit and particle, and includes a hit id, a
particle id that identifies the true particle by associat-
ing zero values when the hit did not come from a particle,
but rather from detector noise, tx ty tz for the true co-
ordinates of the hits, tpx, tpy, tpz for the true particle
momentum, and weight, where the total sum of weights
in one event is one and each hit has a weight.

Finally, the event particles file provides values for each
particle, including particle id, vx, vy, vz for initial
position, px, py, pz for initial momentum, q for particle
charge, and nhits for the number of hits generated by a
particle.

FIG. 3. Visualization of a random sampling of true tracks.

III. METHODS

A. Preprocessing

The dataset provided by Kaggle contains a series of hits
in the calorimeter, each represented by three cartesian
coordinates denoting their location in space.

However, the use of cartesian coordinates for this pur-
pose is suboptimal as it fails to capture the intrinsic prop-
erties of the particles in terms of their momentum and
frames of reference. To overcome this limitation, we have
incorporated a data preprocessing step that converts the
cartesian coordinates into polar-like coordinates (ϕ, η, z)
to better comprehend the position of the hits and their
relationship with other hits. In particular, we utilize the
pseudo-rapidity η as it provides a more accurate char-
acterization of the distribution of highly boosted post-
collision particles. By using these polar coordinates, we
can conveniently divide the graphs into sectors, which fa-
cilitates a detailed analysis of the data, as elaborated in
subsequent sections.

The primary challenge in this study has been the
conversion of a list of coordinates into a graph that is
both descriptive and memory-efficient. A fully connected
graph can be naively constructed by labeling all the edges
with information encoding the solid angle between points,
but this approach scales poorly with the square of the
number of nodes. Given that each event in the dataset
contains approximately 105 hits, constructing a graph for
each event in this manner would result in a graph with on
the order of 1010 edges. Fortunately, physical constraints
can be leveraged to greatly reduce the number of edges
required for accurate representation of the data.

To generate the training graphs, we adopted three
main strategies. First, we imposed a solid angle threshold
to remove edges that are unlikely to be related. Specifi-
cally, it is unlikely that a hit on one side of the detector
will correlate with a hit on the other. Second, we em-
ulated time series by assuming that hits on consecutive
rings of the tracker are related to each other in time.
Hence, hits on the same ring are likely part of differ-
ent tracks. Third, we subdivided the detector into cone-
shaped regions emanating from the point of collision to



3

FIG. 4. True particle paths versus all edges.

reduce the number of edges while preserving track in-
formation. This can be accomplished with ϕ and η, as
high-momentum particles tend to curve less in the mag-
netic field and can be confined to cone-shaped regions.

To transform the columnar hit data into graph data,
we first converted the data from rectilinear to cylindri-
cal coordinates (x, y, z) → (ϕ, η, z). Next, we split the
resulting data-frame into smaller data-frames, each lo-
calized to a region in the detector. For each data-frame,
we defined a fully connected graph whose nodes are la-
beled by the rows of the data-frame (ϕ, η, z). We then la-
beled each edge by the difference of the first two columns
of adjacent nodes (∆ϕ,∆η), and removed any edges in
which the solid angle is less than a certain threshold

(∆R <
√
∆ϕ2 +∆η2). Finally, we removed any edges

between nodes that are within a similar concentric ring
of the detector. The resulting pseudo-code can be sum-
marized as follows:

1. Convert data-frame from rectilinear to cylindrical
coordinates (x, y, z) → (ϕ, η, z)

2. Split data-frame into a list of smaller data-frames,
each localized to a region in the detector

3. For each data-frame, define a fully connected graph
with nodes labeled by rows of the data-frame
(ϕ, η, z)

4. Label each edge by the difference of the first two
columns of adjacent nodes (∆ϕ,∆η)

5. Remove any edges with solid angle less than a cer-

tain threshold (∆R <
√

∆ϕ2 +∆η2)

6. Remove any edges between nodes that are within a
similar concentric ring of the detector

B. Description of Model

In this study, we follow closely the edge classifier
model[3] derivative of the original paper. It aims to pre-
dict the probability that a given edge is a “true” edge.
Specifically, the model takes a list of edges and returns
a list of probabilities that describe the likelihood of each
edge being part of a track. To achieve this, the model

FIG. 5. Process to determine probabilities that edges are true.

first takes in the list of nodes and edge attributes, which
are then encoded using a pair of multi-layered percep-
trons. The resulting encoding is iteratively connected to
an interaction network, which refines the representation
through multiple iterations. Finally, the edge attribute
encoding is fed into another multi-layered perceptron,
and the output layer produces a list of numbers between
0 and 1, representing the probabilities of each edge be-
ing part of a track. A visual description of the model is
included in figure 5

C. Baseline Comparison

We decided to compare the performance of a combi-
natoric geometric algorithm[4] with that of the machine
learning-based GNN for track reconstruction in particle
physics data. We chose this baseline algorithm to provide
insight into the trade-offs between different modeling ap-
proaches. Ideally, we would have compared our results to
the Kalman filter, which is a widely-used algorithm for
track reconstruction. However, we found the implemen-
tation of the Kalman filter to be challenging due to its
complexity.
The combinatoric geometric algorithm we used was a

participant in the Kaggle competition from which we col-
lected our data. This algorithm achieved a proficient ac-
curacy and placed 5th in the competition. The algorithm
creates a candidate list of possible tracks by selecting
combinations of two or three hits between detector lay-



4

FIG. 6. ROC curve over 10 epochs for the GNN.

ers. The list is then truncated based on the most likely
tracks, and the candidate tracks are extended by deter-
mining the nearest hit based on an idealized trajectory
post-fitting. Notably, this algorithm does not implement
much machine learning, making it an attractive baseline
for comparison with the GNN.

IV. RESULTS

The implementation of the Github code yielded im-
pressive results, achieving an accuracy of 96.3% already
in the first epoch. The accuracy increased to 96.7% after
10 epochs, indicating the model’s ability to learn from
the data over time. The ROC analysis further validated
these results, with an AUC of 97.8% at epoch 1 and a
98.3% AUC at epoch 10.

In contrast, the baseline method that uses a combina-
toric geometric algorithm achieved an approximate ac-
curacy of 79%. Notably, this was accomplished with a
processing time of 30 seconds per event, while the GNN
achieved results from an event in just 0.5 seconds dur-
ing inference. However, it is important to note that the
training time for the GNN was not considered in this
comparison, and it may require more computational re-

sources to train the model effectively. Despite this, once
trained, the GNN is capable of producing results rapidly
and efficiently.

V. CONCLUSION

Machine learning programs have an inherent disadvan-
tage to their mathematical counterparts in initial train-
ing time. The mathematical methods don’t have a train-
ing step and as a result their initial running time is faster
than GNN’s. However GNN’s are faster in more practi-
cal situations: when these methods are implemented on
the triggers at the LHC they will come pre-trained and
the computation time of the GNN can be 60 times faster
than the mathematical alternatives.
Despite the need for more memory when training,

GNN’s show great potential in particle tracking, thanks
to their ability to combine the abstraction of CNN’s and
the feature retention of RNN’s. This is particularly im-
portant given the enormous amount of data being pro-
cessed by sensors, with rates of up to 100Tb/s that need
to be reduced to 10 Gb/s [5]. Both speed and accuracy
are crucial in this context, and GNN’s can offer both.
We learned how tricky data processing can be with

GNN’s and an efficient preprocessing method can expo-
nentially improve a network’s computation time. Fur-
thermore, we learned how hard setting up the input of
a GNN can be. We think that if we further limit the
possible particle tracks by using more proven physical
restrictions we could increase time efficiency and accu-
racy. Furthermore, we think that a good idea is to split
the event data into sectors in a more natural way that
does not bias particles of a certain energy.

VI. EXTERNAL LINKS

https://github.com/AnthonyAportela/physML group3

ACKNOWLEDGMENTS

We would like to thank Javier Duarte, Kilian Lieret,
and Edwin Steiner.

[1] X. Ju, S. Farrell, P. Calafiura, D. Murnane, L. Gray,
T. Klijnsma, K. Pedro, G. Cerati, J. Kowalkowski, G. Per-
due, et al., Graph neural networks for particle recon-
struction in high energy physics detectors, arXiv preprint
arXiv:2003.11603 (2020).

[2] T. P. T. Challenge, Trackml particle tracking chal-
lenge dataset, https://www.kaggle.com/competitions/

trackml-particle-identification/data (2018), ac-
cessed on: March 22, 2023.

[3] K. Lieret, gnn-tracking: A library for graph neu-
ral networks in object tracking, https://github.com/

gnn-tracking (2021), accessed on: March 22, 2023.
[4] E. Steiner, Trackml solution, https://github.com/

edwinst/trackml_solution (2018).
[5] A. M. Deiana, N. Tran, J. Agar, M. Blott,

G. Di Guglielmo, J. Duarte, P. Harris, S. Hauck,
M. Liu, M. S. Neubauer, et al., Applications and tech-
niques for fast machine learning in science, Frontiers in
big Data 5, 787421 (2022).

https://www.kaggle.com/competitions/trackml-particle-identification/data
https://www.kaggle.com/competitions/trackml-particle-identification/data
https://github.com/gnn-tracking
https://github.com/gnn-tracking
https://github.com/edwinst/trackml_solution
https://github.com/edwinst/trackml_solution

	Using Graph Neural Networks for Particle Reconstruction
	Abstract
	Introduction
	Dataset
	Methods
	Preprocessing
	Description of Model
	Baseline Comparison

	Results
	Conclusion
	External Links
	Acknowledgments
	References


