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Motivation
Motivation behind the paper:

● Develop a more accurate and efficient method for 
classifying neutrino events in the NOvA (NuMI Off-axis νe 
Appearance)experiment. 

● Traditional methods for neutrino event classification: 
limited in accuracy and efficiency.

● The proposed deep learning model, CVN, can 
automatically learn features from raw data, which have 
the potential to improve classification process.

Motivation for our group project:

● By applying what we learn from this course and 
reproducing this experiment, gain a deeper 
understanding of CNN and its application in high-energy 
physics field.

● Practical experience in implementing and training deep 
learning models with high-dimensional data.

● Gain insights into the challenges and considerations 
involved in applying ML techniques to real-world HEP 
datasets, such as data preprocessing, model 
architecture design, and hyperparameter tuning.



Background NOvA Experiment

● Long-baseline neutrino oscillation experiment
● Goal: Study neutrino oscillations and properties
● Two detectors: Near Detector (ND) and Far 

Detector (FD)

Neutrino Event Classification

● Neutrinos interact with matter via weak force
● Crucial for understanding neutrino oscillations
● Different types of neutrino interactions produce 

distinct event signatures
● Traditional methods: limited accuracy and 

limited computational efficiency

Figure: https://arxiv.org/abs/1604.01444  
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Traditional 
Methods for 
Separating signal 
from background

 MLP(multilayer perceptron), K-Nearest 
Neighbors, BDT(boosted decision trees)

● Handcrafted features: The features used in 
these algorithms are usually manually designed 
and selected, which may not capture all the 
relevant information in the event data.

● Limited accuracy: Mistakes in the 
reconstruction of high level features from the 
raw data can lead to incorrect categorization of 
physics events [2].

● Computational efficiency: The processing of 
raw event data and feature extraction can be 
time-consuming, especially for large-scale 
experiments like NOvA.



Convolutional 
Neural Networks 
(CNNs) - 
Advantages[2]

Automatic feature extraction

● No need for manual feature engineering, extracts 
features automatically from the data by feature 
maps

● Hierarchical structure enables learning of complex 
patterns

Improved accuracy in image recognition tasks

● Better at capturing local and global information
● As a computer vision model, suitable for HEP 

measurements gained from detectors, which result 
in images of physics interactions[2].

Efficient Training and Inference

● Exploits GPU-based parallelism for faster training
● Weight sharing and pooling layers reduce the 

number of parameters
● Enables real-time processing and large-scale 

deployment



CVN 
Model - 
Structure

Convolutional Visual Network

● Developed using Caffe framework
○ Problems with the package so we finally used 

pytorch.
● Inspired by GoogLeNet, but have two different 

views of the same image. The channels 
corresponding to the X and Y views were split 
and each resulting image was sent down a 
parallel architecture based on GoogLeNet

● Multiple convolutional and Max-pooling layers
● NIN (network-in-network): Three inception 

modules for efficient feature extraction instead 
of nine in GoogLeNet. Final inception module 
extracts combined features [2]

● 1x1 convolution layers down-samples the 
number of feature maps and maintains the 
dimensionality of the input maps

Figure: https://arxiv.org/abs/1604.01444  
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Inception module ● Goal is to increase efficiency and capacity to 
learn without adding complexity

● A sub-network within the main network
● Takes a set of feature maps produced by the 

previous layer as input
● Distributes those feature maps to branches, 

each with filters at different scales 
● Outputs from these branches are then 

concatenated to be passed to the next layer 
with same number of feature maps and 
dimensions as input

● Allows for a diverse range of pattern learning 
without adding too much complexity [2]

Figure: https://arxiv.org/abs/1604.01444  
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Dataset Selection 
Complications

● Dataset in the original article is not publicly available 
● A similar dataset by our very own Prof. Javier 

Duarte! [4]
● due to troubles with previous datasets we had little 

time to familiarize ourselves with the current one.

The Data Set

● A collection of particle jets created from simulated 
proton-proton collisions

○ Center of mass: 13 TeV
○ Via Pythia 8

● For differentiating two possible jets originating from 
the collision

○ Hbb: jets from a Higgs boson decaying to a 
bottom quark-antiquark pair

○ QCD: Jets from quark or gluon jets 
originating from quantum chromodynamic

Source Image: A. M. Sirunyan et al., “Combined measurements of Higgs boson couplings in 
proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$,” European Physical Journal C, May 20, 
2019. https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-6909-y.pdf



Data Loading
Looked at 3 features

● Pfcand_ptrel: Transverse momentum of the PF 
candidate divided by the transverse momentum of 
the AK8 

● pfcand_etarel:Pseudorapidity of the PF candidate 
relative to the AK8 jet axis

● pfcand_phire:Azimuthal angular distance Δϕ 
between the PF candidate and the AK8 jet axis

● More features to be added in future model for better 
accuracy. 

How?

● Our database is stored in root files 
● Extracted the file contents into tensors PyTorch 

tensors 
● Tensors take the shape of 224,224,1 representing…

○ 224 pixels tall 
○ 224 pixels wide 
○ 1 channel of intensity 

● Training batch size: 500
● Testing size: 250



Training 
Simple Training

● Split up the data into training and testing sets 
● Selected training methods

○ Loss function: Cross Entropy 
○ Optimizer: SGD

● Fed batches of data into the CNN
● Computed the loss, backpropagated the error, and 

updated the weights using the optimizer.



PyTorch Library

Model Class 

● Instance of nn.Module (pytorch)
● super()
● Model connections in forward()

Inception Module 

● Own separate module, no pre-written one
● Called within CNNModel

[...]

[...]

[...]



PyTorch Library

Dataset, DataLoader

● Built in PyTorch classes
● Batching (do size = 2n )
● Number of workers => parallelization



Training 
Implementation

● Model initialized
● Choose device (CUDA if GPU available)
● Instantiate loss criterion
● Instantiate optimizer (SGD, etc)

● For each batch:
● Feed inputs through model (forward)
● Apply loss
● Backward (backpropagation)



Evaluation criteria 
& Results

Evaluation Criteria

● AUC: get something better than 0.5
● Accuracy in paper: 0.69

Problems

● Switched from Caffe to PyTorch on Sunday
● Forced to choose different dataset (corrupted)
● Debugging for ~ 100 years

Results

● Code runs!
● Loss goes down but not much: down to 0.40
● AUC = 50% ⇔ Random Classifier



Future Outlook
● Find out why it’s a random classifier:

○ Network architecture mismatch
○ Data loading not fully debugged (syntax okay)

● Make improvements:
○ Better paratimization 
○ Different loss functions
○ Different optimization schemes



Conclusion
…We used CVN structure inspired by the paper, 
modified it using pytorch, and used a different dataset 
to finish jet images classification task.

(what we’ve done)

We realized that indeed there are challenges in 
applying ML techniques to real-world HEP datasets 
(memory issues, data format incompatible with model, 
hyperparameters difficult to tune, etc.)

…

(possible improvements)

● Didn’t use Caffe
● We didn’t train for a whole week straight to train
● We didn’t have much computation power



Contributions Daniel Primosch: Model Creation and bug testing 

Quinn Picard: Data Selection and loading 

Anni Li: Model debugging, model training

Adolfo Partida: Data loading and optimizing 



Backup - LRN

Local Response Normalization:
LRN is a normalization technique used in CNNs to improve their performance. The idea behind 
LRN is to enhance the learned features in the network by emphasizing some activations while 
dampening others, based on their local neighborhood. This is particularly useful when dealing with 
high-activation features, as it helps the model generalize better by reducing the impact of very 
high activations.

Batch normalization provides the layer with two more trainable parameters. The gamma 
(standard deviation) and beta (mean) parameters are multiplied by the normalized result. This 
allows stack normalization and gradient descent to work together to "denormalize" the data by 
simply changing two weights per output. By adjusting all other related weights, data loss was 
reduced and network stability was improved.

BN can only be done in one way, but LRN has different directions for performing normalization 
between or within channels. [5]

Figure: https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac 
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Backup - GoogLeNet: 
GoogLeNet was proposed by research at Google (with the collaboration of various universities) in 2014 in 
the research paper titled “Going Deeper with Convolutions”. This architecture was the winner at the ILSVRC 
2014 image classification challenge. 

1×1 convolution : The inception architecture uses 1×1 convolution in its architecture. These convolutions 
decrease the number of parameters and enable increasing depth of the architecture.

Figure: https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/ 
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Backup - GoogLeNet: 
Global Average Pooling : In the previous architecture such as AlexNet, the fully connected layers are used at 
the end of the network, which contain the majority of parameters and causes an increase in computation 
cost. In GoogLeNet architecture, there is a method called global average pooling is used at the end of the 
network. This layer takes a feature map of 7×7 and averages it to 1×1. This also decreases the number of 
trainable parameters to 0 and improves the top-1 accuracy by 0.6%

Inception Module: The inception module is different from previous architectures such as AlexNet, ZF-Net. 
In this architecture, there is a fixed convolution size for each layer. In the Inception module 1×1, 3×3, 5×5 
convolution and 3×3 max pooling performed in a parallel way at the input and the output of these are 
stacked together to generated final output. The idea behind that convolution filters of different sizes will 
handle objects at multiple scale better.[1]

Figure: https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/ 
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