
Convolutional Visual Network for
Classification of Jet Images

PHYS 139/239 Final Project
Group 4
Daniel Primosch, Quinn Picard
Anni Li, Adolfo PartidaGithub Link:

https://github.com/danprim/phys239_project

https://github.com/danprim/phys239_project

Motivation
Motivation behind the paper:

● Develop a more accurate and efficient method for
classifying neutrino events in the NOvA (NuMI Off-axis νe
Appearance)experiment.

● Traditional methods for neutrino event classification:
limited in accuracy and efficiency.

● The proposed deep learning model, CVN, can
automatically learn features from raw data, which have
the potential to improve classification process.

Motivation for our group project:

● By applying what we learn from this course and
reproducing this experiment, gain a deeper
understanding of CNN and its application in high-energy
physics field.

● Practical experience in implementing and training deep
learning models with high-dimensional data.

● Gain insights into the challenges and considerations
involved in applying ML techniques to real-world HEP
datasets, such as data preprocessing, model
architecture design, and hyperparameter tuning.

Background NOvA Experiment

● Long-baseline neutrino oscillation experiment
● Goal: Study neutrino oscillations and properties
● Two detectors: Near Detector (ND) and Far

Detector (FD)

Neutrino Event Classification

● Neutrinos interact with matter via weak force
● Crucial for understanding neutrino oscillations
● Different types of neutrino interactions produce

distinct event signatures
● Traditional methods: limited accuracy and

limited computational efficiency

Figure: https://arxiv.org/abs/1604.01444

https://arxiv.org/abs/1604.01444

Traditional
Methods for
Separating signal
from background

 MLP(multilayer perceptron), K-Nearest
Neighbors, BDT(boosted decision trees)

● Handcrafted features: The features used in
these algorithms are usually manually designed
and selected, which may not capture all the
relevant information in the event data.

● Limited accuracy: Mistakes in the
reconstruction of high level features from the
raw data can lead to incorrect categorization of
physics events [2].

● Computational efficiency: The processing of
raw event data and feature extraction can be
time-consuming, especially for large-scale
experiments like NOvA.

Convolutional
Neural Networks
(CNNs) -
Advantages[2]

Automatic feature extraction

● No need for manual feature engineering, extracts
features automatically from the data by feature
maps

● Hierarchical structure enables learning of complex
patterns

Improved accuracy in image recognition tasks

● Better at capturing local and global information
● As a computer vision model, suitable for HEP

measurements gained from detectors, which result
in images of physics interactions[2].

Efficient Training and Inference

● Exploits GPU-based parallelism for faster training
● Weight sharing and pooling layers reduce the

number of parameters
● Enables real-time processing and large-scale

deployment

CVN
Model -
Structure

Convolutional Visual Network

● Developed using Caffe framework
○ Problems with the package so we finally used

pytorch.
● Inspired by GoogLeNet, but have two different

views of the same image. The channels
corresponding to the X and Y views were split
and each resulting image was sent down a
parallel architecture based on GoogLeNet

● Multiple convolutional and Max-pooling layers
● NIN (network-in-network): Three inception

modules for efficient feature extraction instead
of nine in GoogLeNet. Final inception module
extracts combined features [2]

● 1x1 convolution layers down-samples the
number of feature maps and maintains the
dimensionality of the input maps

Figure: https://arxiv.org/abs/1604.01444

https://arxiv.org/abs/1604.01444

Inception module ● Goal is to increase efficiency and capacity to
learn without adding complexity

● A sub-network within the main network
● Takes a set of feature maps produced by the

previous layer as input
● Distributes those feature maps to branches,

each with filters at different scales
● Outputs from these branches are then

concatenated to be passed to the next layer
with same number of feature maps and
dimensions as input

● Allows for a diverse range of pattern learning
without adding too much complexity [2]

Figure: https://arxiv.org/abs/1604.01444

https://arxiv.org/abs/1604.01444

Dataset Selection
Complications

● Dataset in the original article is not publicly available
● A similar dataset by our very own Prof. Javier

Duarte! [4]
● due to troubles with previous datasets we had little

time to familiarize ourselves with the current one.

The Data Set

● A collection of particle jets created from simulated
proton-proton collisions

○ Center of mass: 13 TeV
○ Via Pythia 8

● For differentiating two possible jets originating from
the collision

○ Hbb: jets from a Higgs boson decaying to a
bottom quark-antiquark pair

○ QCD: Jets from quark or gluon jets
originating from quantum chromodynamic

Source Image: A. M. Sirunyan et al., “Combined measurements of Higgs boson couplings in
proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$,” European Physical Journal C, May 20,
2019. https://link.springer.com/content/pdf/10.1140/epjc/s10052-019-6909-y.pdf

Data Loading
Looked at 3 features

● Pfcand_ptrel: Transverse momentum of the PF
candidate divided by the transverse momentum of
the AK8

● pfcand_etarel:Pseudorapidity of the PF candidate
relative to the AK8 jet axis

● pfcand_phire:Azimuthal angular distance Δϕ
between the PF candidate and the AK8 jet axis

● More features to be added in future model for better
accuracy.

How?

● Our database is stored in root files
● Extracted the file contents into tensors PyTorch

tensors
● Tensors take the shape of 224,224,1 representing…

○ 224 pixels tall
○ 224 pixels wide
○ 1 channel of intensity

● Training batch size: 500
● Testing size: 250

Training
Simple Training

● Split up the data into training and testing sets
● Selected training methods

○ Loss function: Cross Entropy
○ Optimizer: SGD

● Fed batches of data into the CNN
● Computed the loss, backpropagated the error, and

updated the weights using the optimizer.

PyTorch Library

Model Class

● Instance of nn.Module (pytorch)
● super()
● Model connections in forward()

Inception Module

● Own separate module, no pre-written one
● Called within CNNModel

[...]

[...]

[...]

PyTorch Library

Dataset, DataLoader

● Built in PyTorch classes
● Batching (do size = 2n)
● Number of workers => parallelization

Training
Implementation

● Model initialized
● Choose device (CUDA if GPU available)
● Instantiate loss criterion
● Instantiate optimizer (SGD, etc)

● For each batch:
● Feed inputs through model (forward)
● Apply loss
● Backward (backpropagation)

Evaluation criteria
& Results

Evaluation Criteria

● AUC: get something better than 0.5
● Accuracy in paper: 0.69

Problems

● Switched from Caffe to PyTorch on Sunday
● Forced to choose different dataset (corrupted)
● Debugging for ~ 100 years

Results

● Code runs!
● Loss goes down but not much: down to 0.40
● AUC = 50% ⇔ Random Classifier

Future Outlook
● Find out why it’s a random classifier:

○ Network architecture mismatch
○ Data loading not fully debugged (syntax okay)

● Make improvements:
○ Better paratimization
○ Different loss functions
○ Different optimization schemes

Conclusion
…We used CVN structure inspired by the paper,
modified it using pytorch, and used a different dataset
to finish jet images classification task.

(what we’ve done)

We realized that indeed there are challenges in
applying ML techniques to real-world HEP datasets
(memory issues, data format incompatible with model,
hyperparameters difficult to tune, etc.)

…

(possible improvements)

● Didn’t use Caffe
● We didn’t train for a whole week straight to train
● We didn’t have much computation power

Contributions Daniel Primosch: Model Creation and bug testing

Quinn Picard: Data Selection and loading

Anni Li: Model debugging, model training

Adolfo Partida: Data loading and optimizing

Backup - LRN

Local Response Normalization:
LRN is a normalization technique used in CNNs to improve their performance. The idea behind
LRN is to enhance the learned features in the network by emphasizing some activations while
dampening others, based on their local neighborhood. This is particularly useful when dealing with
high-activation features, as it helps the model generalize better by reducing the impact of very
high activations.

Batch normalization provides the layer with two more trainable parameters. The gamma
(standard deviation) and beta (mean) parameters are multiplied by the normalized result. This
allows stack normalization and gradient descent to work together to "denormalize" the data by
simply changing two weights per output. By adjusting all other related weights, data loss was
reduced and network stability was improved.

BN can only be done in one way, but LRN has different directions for performing normalization
between or within channels. [5]

Figure: https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac

https://towardsdatascience.com/difference-between-local-response-normalization-and-batch-normalization-272308c034ac

Backup - GoogLeNet:
GoogLeNet was proposed by research at Google (with the collaboration of various universities) in 2014 in
the research paper titled “Going Deeper with Convolutions”. This architecture was the winner at the ILSVRC
2014 image classification challenge.

1×1 convolution : The inception architecture uses 1×1 convolution in its architecture. These convolutions
decrease the number of parameters and enable increasing depth of the architecture.

Figure: https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

Backup - GoogLeNet:
Global Average Pooling : In the previous architecture such as AlexNet, the fully connected layers are used at
the end of the network, which contain the majority of parameters and causes an increase in computation
cost. In GoogLeNet architecture, there is a method called global average pooling is used at the end of the
network. This layer takes a feature map of 7×7 and averages it to 1×1. This also decreases the number of
trainable parameters to 0 and improves the top-1 accuracy by 0.6%

Inception Module: The inception module is different from previous architectures such as AlexNet, ZF-Net.
In this architecture, there is a fixed convolution size for each layer. In the Inception module 1×1, 3×3, 5×5
convolution and 3×3 max pooling performed in a parallel way at the input and the output of these are
stacked together to generated final output. The idea behind that convolution filters of different sizes will
handle objects at multiple scale better.[1]

Figure: https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

References
[1] https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/
[2] https://arxiv.org/abs/1604.01444 A Convolutional Neural Network Neutrino Event Classifier
A. Aurisano,a,1 A. Radovic,b,1 D. Rocco,c,1 A. Himmel,d M.D. Messier,e E. Niner,d G. Pawloski,c F.
Psihas,e A. Sousaa and P. Vahle
[3] https://arxiv.org/abs/1511.05190 Luke de Oliveira, Michael Kagan, Lester Mackey, Benjamin
Nachman, and Ariel Schwartzman. Jet-images — deep learning edition. J. High Energy Phys.,
07:069, 2016.
[4]Duarte, Javier; (2019). Sample with jet, track and secondary vertex properties for Hbb tagging
ML studies HiggsToBBNTuple_HiggsToBB_QCD_RunII_13TeV_MC. CERN Open Data Portal.
DOI:10.7483/OPENDATA.CMS.JGJX.MS7Q
[5] https://iq.opengenus.org/local-response-normalization/

https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/
https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1511.05190
https://iq.opengenus.org/local-response-normalization/

