Comparison of Two Convolutional Neural Networks in Jet Image Classification

Anni Li Adolfo Partidam Quinn Picardﬂ and Daniel Primosc}ﬁ
University of California San Diego
(Group 4)
(Dated: March 24, 2023)

Abstract: In this PHYS 139/239 Final Project, we applied two variations of Convolutional Neural
Networks (CNNs) to identify Higgs Bosons from the background (QCD jets). The first model is
CVN (Convolutional Visual Network) [I], which is used to identify neutrino interactions based on
data provided by NOvA. The second model is B-CNN (Bilinear CNN) [2], which is used to perform
fine-grained classifications. We used the dataset of jet images [3], and the result shows that B-CNN
performs better than CVN in this classification task, achieving 87.39% accuracy and 0.86 AUC for

2,500 test images.

I. INTRODUCTION

Particle physics is a highly complex and data-intensive
field that involves the study of the fundamental building
blocks of matter and their interactions. With the advent
of advanced technologies and experimental techniques,
particle accelerators can generate an enormous amount
of data, which needs to be analyzed effectively to draw
meaningful conclusions. Convolutional Neural Networks
(CNNs) have emerged as a powerful tool for data analy-
sis in particle physics due to their ability to extract fea-
tures automatically and efficiently from large datasets.
CNNs have been successfully applied in particle physics
for tasks such as event classification, object recognition,
and anomaly detection. In this paper, we will discuss
the advantages of using different CNN models outlined
in Convolutional visual network for neutrino events (Sut-
ton and Barto 2016) [I], and Bilinear cnn models for
fine-grained visual recognition (Lin, RoyChowdhury, and
Maji 2015) [2], for data analysis in particle physics.

II. DATASET

The CVN network that we were originally trying to
emulate was trained on a neutrino images dataset that
we couldn’t gain access to. We eventually settled on an-
other image based dataset which aimed to separate Higgs
Boson decay jets from background noise. The dataset,
Sample with jet, track and secondary vertex properties
for Hbb tagging ML studies, consists of Pythia 8 simu-
lated proton-proton collision events at a center-of-mass
energy of 13 TeV (Duarte 2019) [4]. We pulled 20,000
images from the dataset for training, but it had an im-
balance of Higgs Boson and QCD data, we reduced the
number of QCD images to match the number of Higgs
Boson images which brought our sample size down to just

* labli@Qucsd.edu

T lapartidalizarraga@ucsd.edu
t lgpicard@Qucsd.edu

§ |dprimosc@ucsd.edu

over 5000. The data was processed into PyTorch tensors
and the labels were converted from a one-hot format to
a single binary vector for better compatibility with our
neural network. Testing images were uploaded in a sim-
ilar manor with a sample of 2500 images. Labels were
truncated from the original six types to a binary system
labeled if the image was a Higgs Boson or QCD event.

III. METHODS
CONVOLUTIONAL VISUAL NETWORK

We reproduced this network according to the paper A
Convolutional Neural Network Neutrino Event Classifier
by A.Aurisano et.al [I], but made some modifications
because we used a different dataset. The original model
uses a similar structure as GoogLeNet but has two differ-
ent views of the image, X view and Y view. The model
takes two parallel frames to pass these two views simul-
taneously and combines them by an inception module
at the end followed by an average polling and softmax
output. However, the original dataset used in the pa-
per is not publicly available, so we chose the Jet Image
Datase [4], which does not include two views of the im-
age. Therefore, we only constructed one branch of this
model.

Filter
Concatenation

3x3 Convolution

5x5 Convolution 1x1 Convolution

1x1 Convolution

1x1 Convolution 1x1 Convolution 3:3 Pooling

Previous Layer

FIG. 1. Model of an inception module.Takes a set of feature
maps produced by the previous layer as input then distributes
those feature maps to branches, each with filters at different
scales. The outputs from these branches are then concate-
nated to be passed to the next layer with same number of
feature maps and dimensions as input .


mailto:a5li@ucsd.edu
mailto:apartidalizarraga@ucsd.edu
mailto:qpicard@ucsd.edu
mailto:dprimosc@ucsd.edu

The model uses a NIN (Network-in-Network) struc-
ture, in which a main network contains several sub-
networks. The sub-network, called inception modules,
is shown in figure [Il Each branch of the inception mod-
ule takes a set of feature maps produced by the previous
layer as input, then distributes those feature maps to
branches, each with filters at different scales [I]. The
outputs from these branches are then concatenated to be
passed to the next layer with the same number of fea-
ture maps and dimensions as the input. Using several
inception modules allows for a diverse range of pattern
learning without adding too much complexity, which in-
creases the efficiency and capacity to learn.

Softmax Output

Avg Pooling
6«5

Inception
Module

Inception
Module

Inception
Module

Max Pooling
3x3, stride 2

Max Pooling
3x3, stride 2

Inception
Module

Inception
Module

Inception
Module

Inception
Module

Max Pooling
3x3, stride 2

Max Pooling
3x%3, stride 2

LRN LRN

Convolution Convolution
3x3 3x3

Convolution Convolution
1x1 1x1

LRN LRN

Max Pooling
3x3, stride 2

Max Pooling
3x3, stride 2

Convolution
Tx7, stride 2

Convolution
Tx7, stride 2

FIG. 2. Diagram of the CVN architecture used. Only a single
branch was used in our model unlike the dual branch archi-
tecture used here.

The main network figure [2] starts with a 7x7 convolu-
tion layer, then passes to a 3x3 max pooling layer fol-
lowed by an LRN (Local Response Normalization). The
output then is passed to a 1x1 convolution layer, which
down-samples the number of feature maps and maintains
the dimensionality of the input maps. Then the output
is passed through a 3x3 convolution layer, an LRN, and

a 3x3 max pooling layer. Further, two inception modules
are inserted to extract complex features. After a 3x3 max
pooling layer and two inception modules, the output is
processed by a 1x1 average pooling and a softmax for
the final output. The original paper sets the final aver-
age pooling layer to 6x5 because they have three classes
with two views. For our dataset, we only have one view
and one label class, therefore we set the average pooling
layer as 1x1.

The hyperparameters for this model are chosen with
manual experiments. Since the model keeps predicting
all zeros for every point, we think tuning hyperparame-
ters cannot be much helpful. The final settings are learn-
ing rate=0.0005, batch size=32, loss function=NLLLoss,
and optimizer=SGD with momentum=0.9. We trained
the model 20 epochs and it takes less than 5 minutes in
total. Since we noticed that data in the test set are not
balanced, we added a threshold in the test function. We
found that when the threshold < 0.5, the model would
predict everything as 1, and when the threshold > 0.5,
the model would predict everything as 0. We therefore
determined to use another model to see if we can find a
better solution to this classification task.

BILINEAR CNN

Since the predictions using the CVN are too sensi-
tive to unbalanced data, we assume CVN’s are not ef-
fective at distinguishing trivial differences between im-
ages. This reminds us of the fine-grained classification
problem, which is to distinguish subordinate categories
within a larger category, such as recognizing species of
birds or models of cars. Since the input objects in this
kind of problem are very similar in shape, models used
for fine-grained classification would be experts at distin-
guishing trivial differences between classes. Unlike a tra-
ditional CNN, which uses a single feature extractor, B-
CNN leverages two feature extractors to capture different
aspects of the input images. The two feature extractors
in the B-CNN model share their weights, allowing for
more efficient learning of the image features. By com-
bining these two feature extractors, the model can learn
more expressive and discriminative representations of the
input data. In our implementation, the VGG16 model
with batch normalization is used as the backbone fea-
ture extractor. We set pretrained=False so that the
VGG16 model is initialized with random weights to be
trained from scratch on our own dataset.

The forward pass of the model starts by duplicating the
single-channel input to create a 3-channel input, which
is required by the VGG16 model. The input is then
passed through both feature extractors. Each feature
extractor generates a feature map, and these maps are
pooled using global average pooling to obtain compact
feature representations. Next, the model computes the
outer product of these two feature representations us-
ing a bilinear layer. This bilinear operation is designed



CNN stream A

"

FIG. 3. The image is passed though CNN A and B and then
their outputs are combined using a matrix outer product and
average pooled to obtain the bilinear feature representation.
This is then passed through a linear and softmax layer to get
class predictions. [I] .

to capture higher-order interactions between the features
learned by the two extractors. The output of the bilin-
ear layer is used to make predictions for the specified
number of classes. In the training loop, we added a vali-
dation process with early stopping to prevent the model
from over-fitting too much. We set patience=10 so that
if the validation loss is higher than the best validation
loss ten times, the training would stop. In practice, we
notice that the model heavily overfits the data, so we set
a weight decay=1e-5 in our optimizer Adam with learn-
ing rate 0.0001. Furthermore, we used cross entropy
loss to calculate the training loss. The time it takes per
epoch is much longer, which is approximately one minute
per epoch. For possible improvements, we consider using
optuna to automatically find the best hyperparameters.
However, since it takes too long for the optimization pro-
cess to finish, we did not apply this in our project. Fur-
thermore, we can also modify the layers with different
settings to make the model fit our jet dataset better and
explore other loss functions for binary classification.

For details about the our code used, please visit jour
GitHub repository| or go to the url https://github.
com/danprim/phys239_project.git

image CNN

(c) fully shared

FIG. 4. Model showing a B-CNN feature function where all
computations are shared (VGG-M).

IV. RESULTS

The CVN model was trained using Stochastic Gradi-
ent Descent (SGD) with a learning rate of 0.0005 with

momentum 0.9 and ran for only 20 epochs. The training
loss was computed using Negative Log-Likelihood (NL-
LLLoss). The training and testing data was loaded in
batches of 32. However as mentioned before, the network
predicted only ones for threshold > 0.5 or 0 if threshold
< 0.5. This gave us a constant loss of 0.685 for all epochs
and a AUC roc curve of around 0.55, meaning that the
classifications were almost entirely random.

The B-CNN model was trained using the ADAM opti-
mizer with a learning rate of 0.0001 and a decay of 1le™5.
The loss was computing using CrossEntropyLoss. The
data was once again fed in batches of 32. The model was
trained for a maximum of 100 epochs but early stopping
was implemented, determined by null improvements on
validation loss, giving us an average of 22 epochs com-
pleted in total. The model gave us a final training loss of
0.27, with an accuracy of 87.39% and a AUC roc curve
of 0.86.

Loss Curves

—— Taining Loss
30 Validation Loss

05 R\
0.0 25 5.0 15 10.0 125 150 175
Epoch

Training Loss

06864

0.6862

0.6860
& 06858
3

0.6856

0.6854

06852

0.6850

0.0 25 5.0 75 00 125 150 175
Epoch

FIG. 5. Graphs comparing the loss from 17 epochs between
the B-CNN (top) and the CVN (bottom) model.

As seen here the B-CNN showed a great improvement
on classification when compared to the CVN model. The
B-CNN model outperforms the CVN model in terms of
loss, accuracy, and AUC. It also shows that the B-CNN
model is much better suited for fine-grained classification
problems.

V. CONCLUSION

In this project, we compare the performance of Con-
volutional Visual Networks (CVN) and Bilinear Convo-
lutional Neural Networks (B-CNN) for classifying Higgs


https://github.com/danprim/phys239_project.git
https://github.com/danprim/phys239_project.git
https://github.com/danprim/phys239_project.git
https://github.com/danprim/phys239_project.git

ROC Curve
10 P
l”
e

0.8 o
L 7
) -
-4
v 06 -
= -7
= -
E -~
w 04 -
& 7

f”
02 -
I’
-
,:’ ROC curve (area = 0.88)
00 T T T T
0.0 0z o4 06 08 10

False Positive Rate

Receiver Operating Characteristic

10 P
a”
-

0.8 g
¥ e
] -
&
v 06 ol
z -
= ’I
E e
v 04 P
& e

f‘(
02 -
)/
-
fr' ROC curve (area = 0.55)
0.0
0.0 02 04 06 0.8 10

False Positive Rate

FIG. 6. Graphs comparing the ROC curves of the B-CNN
(top) and the CVN (bottom) model.

Boson Events from background noise in jet images cre-
ated in proton-proton simulated collisions. The CVN
showed poor performance in the classification, classifying
everything as a Higgs Boson Event or everything back-
ground noise. This returned an almost entirely random
classification with an AUC of 0.55. Meanwhile the B-
CNN proved to be much more accurate, achieving an
AUC of 0.86, and correctly classifying the events with an
accuracy of 87.39%.

We further conclude from this work that the perfor-
mance of a neural network can depend sensitively on the
type of images under consideration. Much care needs
to be applied when translating a model that worked for
one dataset to another, even if the general type of out-
put, e.g. particle detector images, is the same. Our
approach can be further optimized by applying the op-
tuna library for possible improvements to training perfor-
mance and improving other hyperparamter and/or loss
function choices.

[1] R. S. Sutton and A. G. Barto, “Convolutional vi-
sual network for mneutrino events,” arXiv preprint
arXiv:1604.01444, 2016.

[2] T.-Y. Lin, A. RoyChowdhury, and S. Maji, “Bilinear cnn
models for fine-grained visual recognition,” arXiv preprint
arXiv:1504.07889, 2015.

[3] J. Duarte, “Sample with jet, track and secondary vertex
properties for hbb tagging ml studies,” CERN Open Data
Portal, 2019.

[4] J. A. Maestre et al, “Jet-images:
inspired techniques for jet tagging,”
arXiw:1511.05190, 2015.

Computer vision
arXiv preprint



	Comparison of Two Convolutional Neural Networks in Jet Image Classification
	Abstract
	Introduction
	Dataset
	Methods
	Convolutional Visual Network
	Bilinear CNN
	Results
	Conclusion
	References


