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Background and Motivation

● Recent Gravitational Wave (GW) observations have led to a spur in noise 
reduction pipelines.

● The working principles of light interferometers allows numerous channels of 
introduced noise. 

● Using Machine Learning (ML) architectures such as autoencoders and 
Convolutional neural networks (CNN’s), detection systems can learn to filter out 
noise in the data. 

● We are motivated to lower the sensitivity threshold for anomalous event 
detections in order to expand our knowledge on GWs.



LIGO working Principle

● LIGO, a light interferometer system 
uses light interference to detect shifts 
or waves in spacetime.

● The arms of the interferometer are 2.5 
miles long and have an accuracy of 
1/10,000th the width of a proton. 

● Due to the sensitivity, LIGO picks up 
numerous channels of noise. 



Types of Data

GW Strain Data: Auxiliary Witness Data (Noise, 21 Channels):



Working Concept for Noise Reduction/ Paper Introduction

● Our work based around replicating Ormiston et. al.’s work: Noise reduction in gravitational-wave 
data via deep learning

● We are attempting to recreate the DeepClean Network for Noise reduction

● Our process is as follows:

○ Data Pre-Processing

○ Model Architecture

○ Model Training

○ Model Testing/Inference

○ Model Inference Post-Processing

○ Noise Reduction Pipeline

○ Result Analysis



Data Pre-Processing:
Batching
8th Order Butterworth Filter
Z-score / Standardization
Windowing
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Batching:

● We performed batching on both the GW strain and witness channel data.

● Breaking up the original datasets into 1000 smaller sets of length 8192 data 
points, or 2s of GW data at a 4096/s sampling rate.

● Attempted to make the batching as large as possible to maximize 
training/validation data size. 



8th Order Butterworth Filter

● Designed to be a band pass filter

● Pass band was decided from the cross-spectral density (CSD) and 
power-spectral density (PSD) analysis of the Strain and Witness Channels

● The pass band used in this project was 0Hz to 0.3 Hz

● This removes any unwanted power contributions outside the CSD interactions

● The 8th Order characteristic gives this filter a roll off slope of -160 dB per 
Decade



CSD (Left) and PSD (Right). Pass Band identification



Butterworth Filter and Application to Data



Z-score / Normalization

● Z-score was applied in order to mitigate any numerical instabilities in the 
custom loss function.

● Applied to the Strain and the Witness noise data. 

● When applied to Witness Noise data, we can remove any bias from a single 
contributing channel



Z-Score of the Filtered Data



Windowing (WIP)

● To increase model efficiency, Ormiston et. al. windowed the data with an 
overlap of 7.75 seconds

○ 96.875% of the total window size

● Testing data windowed with an overlap of 4 seconds

○ 50% of the total window size

● This is still being implemented as we have been able to train and test the 
model without it

○ Windowing will be a feature we will test in order to see its changes on the overall performance

○ We expect this to slow training time.



Model Architecture:
DeepClean Structure
Layer Behavior/Parameters
Loss Function
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Model Architecture: DeepClean

● Once the data is preprocessed, it is input 
into DeepClean, a 1D Convolutional Neural 
Network (CNN).

● DeepClean accepts a 21-channel set of 
witness data and predicts the noise present 
within the strain.

● The input is passed through multiple 
1DConv layers for downsampling, then an 
equal amount of 1DConvTranspose layers 
for upsampling, building a set of 
parameters.

● Validation takes in witness channel data and 
produces the predicted noise using the 
mapped parameters. 

● This is postprocessed and subtracted from 
the original strain, ‘cleaning’ the original 
signal.  



Layers, Inputs, Outputs

● The input layer accepts all 21 channels, 
with each subsequent layer “learning” 
features from layer to layer.

● CNN architecture allows for retention of 
long time-series and long-term features.

● Each layer uses a stride=2 to half 
time-series length, and double number 
of channels and vice versa for 
1DConvTranspose, ensuring same size 
before output. 

● Each layer except output is followed by 
batch normalization (Batch1d) to improve 
training efficiency. 



Loss Function: Custom vs MSE

● DeepClean utilizes a custom 
loss function to calculate 
mapped parameters. 

● The ASD and MSE components 
(Eqn. 8) are summed, and 
weighted with the term w to 
focus on their spectral line or 
broadband data, respectively. 

● This custom loss would have to 
be written in TensorFlow, so 
preliminary training was done 
using only MSE. 



Model Parameters

● Use a nonlinear tanh activation function.
● Uses ADAM gradient descent. 
● Padding is set to 0 to preserve time-series length.
● Kernel_size = 7 for all layers.
● Learning rate set to 1x10^-3.
● From literature, training typically takes 5-10 epochs.



Model Training/Testing:
Data Splitting
Loss Performance
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Training Method

● Time-series data splits 
should set validation as 
the “latest” data. 

● Strain and witness 
channel data is split 4:1 
training to test, with the 
latest rows used as 
testing data.

● Splitting and 
pre-processing will be 
integrated to validate 
results.



Training Results

● Training loss fell below 5x10^-4 in 
multiple runs, with convergence by 
~8 epochs.

● Loss levels off by ~6 epochs, later 
than described in Ormiston et. al.

● The model took ~35s to build, with a 
training time of ~16s for 1st epoch 
and a mean 2s for each subsequent 
epoch, training on data of shape 
(1638, 8192, 21).



Model Inference 
Post-Processing:

Inverse Z-score
8th Order Butterworth Filter
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Inverse Z-score

● After the model has made its 
predictions from the Z-scored data 
we applied an inverse Z-score to 
the predictions

● We multiply by the Std Dev and 
add the Mean back to all the data 
points in the predicted noise

● This returns the predicted noise 
datas original units and range 
which is needed for the 
subtraction pipeline



8th Order Butterworth Filter

● Since the original Witness Noise 
Data was filtered, we need to apply 
the same filter to the output 
predictions

● Without filtering, we introduce 
instabilities and power contributions 
outside our desired pass band. 

● We apply the same filter pass band 
of 0Hz to 0.3Hz to the model 
predicted noise



Noise Reduction:
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Removing Noise & SNR 
● To get our clean strain, we subtract our full bandwidth strain from our noise
●  Signal-to-Noise Ratio (SNR), original-to-clean signal difference, and amplitude 

spectral density (ASD) rato were used as metrics. 



Result Analysis:
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Power Spectral Density 

The final aim of Deep Clean Algorithm is to effectively 
subtract the external noise to the best extent possible 
and produce a clean signal. We see through the plots 
above that the difference between the Power spectral 
density(PSD) of output strain and input strain is indeed 
very small, thereby leading to a large signal-to-noise 



Amplitude Spectral Density 
We can see 
the cleaning 
performance 
again here 
through the 
Amplitude 
Spectral 
Density 
(ASD) ratios 
as well. ASD 
is essentially 
square root 
of PSD.



Summary and Further Work
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Results

● Calculated SNRs were ~65-147 dB. 
● Model training and validation near expectations from Ormiston et. al.
● Difference in ASD between clean and original strain was in the magnitude of 

10^-27, with a original to clean ASD ratio in the magnitude of 1+1E10^-5.
● Preliminary DeepClean performance subtracted a maximum difference of 

~8x10^-27 strain units at approximately 65 Hz. 



Conclusion

● Future work would include:
○ Integrating pipeline components.
○ Implementation of the custom loss to add the ASD component. 
○ Modifying window length adding/removing DeepClean layers to study 

relation of training and prediction time vs. dataset size. 
○ Modifying learning rate to test training performance.
○ Implementing minibatch feeding.
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GitHub Repository: 
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