
DeepClean Neural Network for
Gravitational Wave Noise
Reduction

By John Choi, Matthew Vigil, Laura Jian, Preethi Karpoor

Group 5

Background and Motivation

● Recent Gravitational Wave (GW) observations have led to a spur in noise
reduction pipelines.

● The working principles of light interferometers allows numerous channels of
introduced noise.

● Using Machine Learning (ML) architectures such as autoencoders and
Convolutional neural networks (CNN’s), detection systems can learn to filter out
noise in the data.

● We are motivated to lower the sensitivity threshold for anomalous event
detections in order to expand our knowledge on GWs.

LIGO working Principle

● LIGO, a light interferometer system
uses light interference to detect shifts
or waves in spacetime.

● The arms of the interferometer are 2.5
miles long and have an accuracy of
1/10,000th the width of a proton.

● Due to the sensitivity, LIGO picks up
numerous channels of noise.

Types of Data

GW Strain Data: Auxiliary Witness Data (Noise, 21 Channels):

Working Concept for Noise Reduction/ Paper Introduction

● Our work based around replicating Ormiston et. al.’s work: Noise reduction in gravitational-wave
data via deep learning

● We are attempting to recreate the DeepClean Network for Noise reduction

● Our process is as follows:

○ Data Pre-Processing

○ Model Architecture

○ Model Training

○ Model Testing/Inference

○ Model Inference Post-Processing

○ Noise Reduction Pipeline

○ Result Analysis

Data Pre-Processing:
Batching
8th Order Butterworth Filter
Z-score / Standardization
Windowing

Presented by: John Choi

Batching:

● We performed batching on both the GW strain and witness channel data.

● Breaking up the original datasets into 1000 smaller sets of length 8192 data
points, or 2s of GW data at a 4096/s sampling rate.

● Attempted to make the batching as large as possible to maximize
training/validation data size.

8th Order Butterworth Filter

● Designed to be a band pass filter

● Pass band was decided from the cross-spectral density (CSD) and
power-spectral density (PSD) analysis of the Strain and Witness Channels

● The pass band used in this project was 0Hz to 0.3 Hz

● This removes any unwanted power contributions outside the CSD interactions

● The 8th Order characteristic gives this filter a roll off slope of -160 dB per
Decade

CSD (Left) and PSD (Right). Pass Band identification

Butterworth Filter and Application to Data

Z-score / Normalization

● Z-score was applied in order to mitigate any numerical instabilities in the
custom loss function.

● Applied to the Strain and the Witness noise data.

● When applied to Witness Noise data, we can remove any bias from a single
contributing channel

Z-Score of the Filtered Data

Windowing (WIP)

● To increase model efficiency, Ormiston et. al. windowed the data with an
overlap of 7.75 seconds

○ 96.875% of the total window size

● Testing data windowed with an overlap of 4 seconds

○ 50% of the total window size

● This is still being implemented as we have been able to train and test the
model without it

○ Windowing will be a feature we will test in order to see its changes on the overall performance

○ We expect this to slow training time.

Model Architecture:
DeepClean Structure
Layer Behavior/Parameters
Loss Function

Presented by: Matthew Vigil

Model Architecture: DeepClean

● Once the data is preprocessed, it is input
into DeepClean, a 1D Convolutional Neural
Network (CNN).

● DeepClean accepts a 21-channel set of
witness data and predicts the noise present
within the strain.

● The input is passed through multiple
1DConv layers for downsampling, then an
equal amount of 1DConvTranspose layers
for upsampling, building a set of
parameters.

● Validation takes in witness channel data and
produces the predicted noise using the
mapped parameters.

● This is postprocessed and subtracted from
the original strain, ‘cleaning’ the original
signal.

Layers, Inputs, Outputs

● The input layer accepts all 21 channels,
with each subsequent layer “learning”
features from layer to layer.

● CNN architecture allows for retention of
long time-series and long-term features.

● Each layer uses a stride=2 to half
time-series length, and double number
of channels and vice versa for
1DConvTranspose, ensuring same size
before output.

● Each layer except output is followed by
batch normalization (Batch1d) to improve
training efficiency.

Loss Function: Custom vs MSE

● DeepClean utilizes a custom
loss function to calculate
mapped parameters.

● The ASD and MSE components
(Eqn. 8) are summed, and
weighted with the term w to
focus on their spectral line or
broadband data, respectively.

● This custom loss would have to
be written in TensorFlow, so
preliminary training was done
using only MSE.

Model Parameters

● Use a nonlinear tanh activation function.
● Uses ADAM gradient descent.
● Padding is set to 0 to preserve time-series length.
● Kernel_size = 7 for all layers.
● Learning rate set to 1x10^-3.
● From literature, training typically takes 5-10 epochs.

Model Training/Testing:
Data Splitting
Loss Performance

Presented by: Matthew Vigil

Training Method

● Time-series data splits
should set validation as
the “latest” data.

● Strain and witness
channel data is split 4:1
training to test, with the
latest rows used as
testing data.

● Splitting and
pre-processing will be
integrated to validate
results.

Training Results

● Training loss fell below 5x10^-4 in
multiple runs, with convergence by
~8 epochs.

● Loss levels off by ~6 epochs, later
than described in Ormiston et. al.

● The model took ~35s to build, with a
training time of ~16s for 1st epoch
and a mean 2s for each subsequent
epoch, training on data of shape
(1638, 8192, 21).

Model Inference
Post-Processing:

Inverse Z-score
8th Order Butterworth Filter

Presented by: Laura Jian

Inverse Z-score

● After the model has made its
predictions from the Z-scored data
we applied an inverse Z-score to
the predictions

● We multiply by the Std Dev and
add the Mean back to all the data
points in the predicted noise

● This returns the predicted noise
datas original units and range
which is needed for the
subtraction pipeline

8th Order Butterworth Filter

● Since the original Witness Noise
Data was filtered, we need to apply
the same filter to the output
predictions

● Without filtering, we introduce
instabilities and power contributions
outside our desired pass band.

● We apply the same filter pass band
of 0Hz to 0.3Hz to the model
predicted noise

Noise Reduction:

Presented by: Laura Jian

Removing Noise & SNR
● To get our clean strain, we subtract our full bandwidth strain from our noise
● Signal-to-Noise Ratio (SNR), original-to-clean signal difference, and amplitude

spectral density (ASD) rato were used as metrics.

Result Analysis:

Presented by: Preethi Karpoor

Power Spectral Density

The final aim of Deep Clean Algorithm is to effectively
subtract the external noise to the best extent possible
and produce a clean signal. We see through the plots
above that the difference between the Power spectral
density(PSD) of output strain and input strain is indeed
very small, thereby leading to a large signal-to-noise

Amplitude Spectral Density
We can see
the cleaning
performance
again here
through the
Amplitude
Spectral
Density
(ASD) ratios
as well. ASD
is essentially
square root
of PSD.

Summary and Further Work

Presented by: Preethi Karpoor

Results

● Calculated SNRs were ~65-147 dB.
● Model training and validation near expectations from Ormiston et. al.
● Difference in ASD between clean and original strain was in the magnitude of

10^-27, with a original to clean ASD ratio in the magnitude of 1+1E10^-5.
● Preliminary DeepClean performance subtracted a maximum difference of

~8x10^-27 strain units at approximately 65 Hz.

Conclusion

● Future work would include:
○ Integrating pipeline components.
○ Implementation of the custom loss to add the ASD component.
○ Modifying window length adding/removing DeepClean layers to study

relation of training and prediction time vs. dataset size.
○ Modifying learning rate to test training performance.
○ Implementing minibatch feeding.

References

1. R. Ormiston, T. Nguyen, M. Coughlin, R. X. Adhikari, and E. Katsavounidis, “Noise reduction in gravitational-wave data via
deep learning,” Phys. Rev. Res., vol. 2, p. 033066, Jul 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevResearch.2.03306613

https://link.aps.org/doi/10.1103/PhysRevResearch.2.03306613

Acknowledgements

Our sincere gratitude to Alec Gunny and Prof. Duarte for their valuable
inputs and guidance!

GitHub Repository:

https://github.com/telmar3/PHYS139_FinalProject

