
DeepClean Neural Network for Gravitational Wave Noise Reduction
John Choi, Matthew Vigil, Laura Jian, Preethi Karpoor

University of California, San Diego
Group 5

Dated: 24th March, 2023

Processing of gravitational wave (GW) strain is necessary for astrophysical study of stellar bodies. Machine learning
algorithms present an efficient tool to remove noise as demand for increased precision of GW diagnostic techniques

increase. A replication of the noise subtraction pipeline developed by Ormiston et. al[1] designed to remove
instrumental noise from a LIGO GW dataset is discussed and analyzed.

I. Introduction
Gravitational waves (GW) represent strains or
distortions in space-time. These waves are currently
being studied using the Laser Interferometer
Gravitational Wave Observatory (aLIGO). The
observations of these GW signals are heavily obscured
by transient and periodic instrumental noise sources.

FIG. 1 - LIGO’s working principle

Machine learning algorithms have become methods of
interest for efficiently increasing instrumental detection
sensitivity.

In this work, we attempted to replicate the
DeepClean convolutional neural network (CNN),
wherein the auxiliary channel signals (of non
astrophysical origin) are passed through a regression
pipeline to estimate the noise coupled with the strain
signal incorporating machine learning techniques.

Window length and batch sample size have
been noted as a strong influencer on model
performance. Window size was used as a variable to test
model loss, training time, signal-to-noise ratio (SNR),
and ASD ratio.

II. Dataset
Our dataset consists of GW strain time series alongℎ(𝑡)
with 21 channels of auxiliary witness data

which records noise from several possible𝑤
𝑖
(𝑡)

sources.
The witness channels could be sourced from the
environment or could be auxiliary interferometric
channels containing witnessed noise without the signal.

FIG. 2 - Strain data

The dataset was split into 80% training and 20%
validation (test) sets. The training data was produced by
randomly sampling the dataset and slicing portions of
raw signal at a set window length. The sampling rate
was 4096/s. It is good practice to validate time-series
models on the latest data available. For this reason,
validation data was sampled by slicing the largest fifth
of indices from the original dataset.

III. Methods
Data Pre-processing

Following the literature, several pre-processing
techniques were applied to the original dataset before
feeding it into the network. The pre-processing was



applied to both the strain data and the witness channel
data.

The pre-processing pipeline applied in this
work differed from Ormiston’s in several ways. The
anti-imaging filter was not necessary in our
reproduction as our strain data and our witness data
were sampled at the same frequency. Furthermore, we
did minimal windowing for the initial scope of the
project. The processes we did adopt were the data
normalization, band-pass filtering, and calculation of
ASD for the witness data.

A Cross Spectral Density Analysis and Power
Spectral Density Analysis was performed on each
witness channel with respect to the strain data and each
witness channel. After performing the CSD and PSD
analysis, the frequencies that carried the largest
contributions to the data were estimated to be between 0
and 0.3 Hz.

FIG. 3 - Finding pass-band frequencies via Cross
Spectral Analysis

FIG. 4 - Finding pass-band frequencies via Power
Spectral Analysis

After, an 8th order band-pass Butterworth filter was
built. This is to account for nonlinear coupling between
the witness data and the strain data. Therefore, this
filtering was only applied to the witness channels, and

not the strain data.This filtered any unnecessary power
contributions from any of the witness channels outside
the pass band of interest. As a result, we built the pass
band to be between those with a slope decline of 160
dB/Dec.

FIG. 5 - Training and Validation data before (left) and
after (right) applying 8th order Butterworth Filter for 0

to 0.3Hz.

With the Butterworth filter built, we were able to pass
the witness channels through the filter in order to reduce
the power contributions from outside 0 Hz to 0.3 Hz.

Normalization was applied to both sets of
strain and witness data using scipy’s StandardScaler.
This was to ensure that there was no single witness
channel that would overpower the contributions to the
SNR, and to reduce the possibilities of numerical
complications in the computing of the custom loss
function. Although the custom loss was not integrated
into the file model (See Subsection Neural Network
Architecture/Training), we maintained the normalization
step to remove channel bias in model training.



FIG. 6 - Training and Validation data after
normalization.

Neural Network Architecture/Training
DeepClean is a 1-dimensional CNN designed

to accept the pre-processed witness channel data,
outputting a set of predicted noise. Data shape and size
is given special care, due to the need for predicted noise
to be subtracted from the test strain. For this reason,
DeepClean is symmetrically built, with an equal amount
of 1DConv and 1DConvTranspose layers. Each layer
accepts the output from the layer before it, running a
kernel across the sample. The 1DConv layers
downsample the data, while the 1DConvTranspose
layers upsample, preserving data shape. The result is the
retention of model parameters as the data is passed from
layer to layer. CNNs are known for their ability to retain
long-term features and long time-series data, which
makes this architecture particularly advantageous for
noise reduction.

FIG. 7 - DeepClean architecture. This was the model
replicated for this work[ 1 ].

Ormiston et. al. utilizes a custom loss function for
DeepClean, composed of both an ASD and MSE term.
These terms are weighted using a hyperparameter ,𝑤
which can be adjusted based on the dataset. Due to the
nature of our model implementation, this function
would need to be written in TensorFlow, using only
TensorFlow operations. Time did not permit the
implementation of this function into our model so
instead, we used the standard mean-squared error from
TensorFlow. We expect this to negatively affect our
testing and validation loss, and the output noise
prediction.

Table 1: Constant DeepClean
Hyperparameters

Kernel size 7
Activation
function

tanh

Padding same
Loss MSE
Initial Learning
Rate

1 · 10−3

Optimizer ADAM
Batch size 32
Max epochs 10

Table 2: DeepClean Run data
parameters

Run 1 2 3

Window
Length (s)

2 4 8

Data size 8192 16384 32768

Three runs were conducted to test model performance.
Window length was modified for each run, from 2s to 8s
(Table 2).



FIG. 8 - Overall workflow of noise subtraction
pipeline[1 ].

 
Data Post-processing

The predicted noise generated from DeepClean
must be post-processed before subtraction and analysis.
This includes un-normalizing both the test strain data
and the predicted noise, and applying an additional 8th
order Butterworth band pass filter. Ormiston et. al.
includes an anti-imaging filter to upsample the noise
prediction. This was conducted due to the different
sampling rates of the witness data and strain data. Since
both our witness and strain data were sampled at the
same rate, this step was not necessary.

The predicted noise and test strain data were
un-normalized, returning the data to its original units
and range. This is necessary to directly subtract the
predicted noise from the test strain. To do this we
multiplied our predicted noise by their standard
deviations and added back their means. We then applied
an 8th order Butterworth filter, to reduce possible
instabilities and power contributions. Frequencies
outside of 0 to 0.3Hz were filtered, similar to the
pre-processing procedure. After post-processing, the
predicted noise was subtracted from the strain validation
data.

FIG. 9 - Clean strain after subtracting predicted noise.

IV. Results
The model training gave poor results, with both

training and validation loss converging near 1 across 10
epochs. Validation loss was measured below training
loss in some runs, with training and validation loss
diverging in others. This indicates model underfitting. It
is likely the lack of an ASD term in the loss function did
not allow for proper training, leaving a skewed result. It
is also possible there is an amount of data leakage, as
the training set is a randomized sampling of time
windows within the dataset, and validation is
non-randomized samples of the last fifth of data indices.
Ormiston et. al. implemented data randomization in
their model to prevent possible contamination between
training and validation, but that was not included in this
work. Validation of the model on test witness data was
successful, but implementation of the custom loss is
necessary in order to validate the rigor of the following
results.

Ormiston compared the performance of the
DeepClean pipeline to the application of a Wiener filter,
a non-ML method. In the interest of time this method
was not implemented during study. Instead, we
attempted to replicate multiple benchmarks within
Ormiston, including the signal-to-noise ratio (SNR) and
amplitude spectral density (ASD) ratio between the
original and clean strain.

The SNR is calculated by:

(1)      𝑆𝑁𝑅 =  
𝑃

𝑠𝑖𝑔𝑛𝑎𝑙

𝑃
𝑛𝑜𝑖𝑠𝑒

where the power of the signal and noise is the root mean
score of each respective dataset.

(2)      1
𝑁  

𝑛 = 0

𝑁−1 

∑ 𝑥(𝑛)2

Our final SNR across all three runs was ~143-147 dB.
To further compare our clean strain with the

original, we generated an amplitude spectral density for
each to compare. Since the changes in ASD were small,
a ratio was generated to see the effects of the noise. he
resulting model produced a minimum ASD ratio of
0.9994 at approximately 100 Hz, with a measured SNR
between 143-147 dB between iterative runs. Compared
to an ASD ratio spread from approximately 0.5 to 1.5
across all frequencies, our model replication showed
low effectiveness in noise subtraction versus the
literature.



FIG.10 - ASD comparison of Clean and Original Strain

FIG.11 - ASD ratio between original and clean strain

V. Conclusion
An attempt at replicating the custom loss function
described in Ormiston et. al. resulted in multiple errors
and challenges including implementation of the custom
loss function, data leakage, and high model error. In
future work it would be necessary to compare the
performance between the standard MSE loss and a
successfully constructed custom loss.
Acknowledgments
Special thanks to Doctor Javier Duarte and Alec Gunny
for their insight and guidance throughout this work.

VI. Data Availability
All code for this work can be found in the GitHub
repository.

VII. References
1. R. Ormiston, T. Nguyen, M. Coughlin, R. X.
Adhikari, and E. Katsavounidis, “Noise reduction in
gravitational-wave data via deep learning,” Phys. Rev.
Res., vol. 2, p. 033066, Jul 2020. [Online]. Available:
https://link.aps.org/doi/10.1103/PhysRevResearch.2.033
06613
2. Mohd Aszemi, Nurshazlyn & Panneer Selvam,
Dhanapal Durai Dominic. (2019). Hyperparameter
Optimization in Convolutional Neural Network using
Genetic Algorithms. International Journal of Advanced
Computer Science and Applications. 10. 269 - 278.
10.14569/IJACSA.2019.010063

https://github.com/telmar3/PHYS139_FinalProject

