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Introduction

Studying dynamics of 
battery cathode during 
charging/discharging



Scientific Motivation

Thick-cathode Li-ion batteries have potential for higher 

energy density (crucial for EVs)

However,  electrochemical performance worsens when 

using thicker cathodes

Our goal is to understand the cause of these issues on a 

single-cathode-nanoparticle level

H. Zheng et al. / Electrochimica Acta 71 (2012) 258– 265 263



Experimental Details
Cathode

Secondary 

particles

Primary 

particles

We used micro-focused X-ray scattering to track the 

evolution of individual cathode primary particles

The location of each Bragg peak on our detector is a 

measure of a primary particle’s  lattice parameter

For our project, we aimed to use a CNN to extract 

peak location with sub-pixel resolution
X-ray scattering

Example Data



Experimental Details

Advanced Photon Source, Argonne National Lab



Data

Data frames are a function of charge/discharge state 

of the battery

The location of each Bragg peak on our detector is a 

measure of a primary particle’s  lattice parameter

For our project, we aimed to use a CNN to extract 

peak location with sub-pixel resolution



BraggNN



What is BraggNN?

A Deep-learning method for peak position detection

Conventional method involves 2D pseudo-Voigt peak fitting (not ideal for large data)

● BraggNN can determine the center of mass of a diffraction peak with sub-pixel precision.

Advantage of BraggNN:

● It is much faster than conventional 2D pseudo-Voigt peak fitting

~200 times faster with consumer hardwares and softwares

● It is more accurate than conventional method

It yields 15% better results on reconstructions using real data



How does BraggNN work?

Key ideas:

Convolutional Neural Network (CNN)

● Our CNN is acting as feature extractors. 

● Each CNN kernel is a neuron that learns to extract certain feature. 

Fully Connected Neural Network (FCN)

● Take the result from CNN as input, output the (x,y) coordinates. 

Architecture will be introduced in the next slide



CNN & FCN Architecture

Liu, Z., Sharma, H., Park, J.-S., Kenesei, P., Miceli, A., Almer, J., Kettimuthu, R. & Foster, I. (2022). BraggNN: fast X-ray Bragg peak analysis using deep learning. IUCrJ, 9, 104–113.



Summary on BraggNN

BraggNN uses fairly common CNN & FC architectures to achieve the desired result. (PyTorch Framework)

Feed-Forward Pass

● Turns the input patch into two floating point numbers
● The model loss is computed between the output and the ground truth

Back propagation

● Compute the gradient of each neuron’s weights w.r.t. Loss function using chain rule

Model Training - We train BraggNN model with a collection of input-output pairs. 

● Each pair contains the peak patch as input and the peak center position from 2D Voigt fitting as output
● 69,347 Peaks with 80% training and 20% validation and evaluation. .  

BraggNN has some pre-trained model which are good building blocks for our project. 



Applying BraggNN

● Started by using pre-trained model:

● Find peak roughly and then use BraggNN to 

precisely determine the location. 

● Generate movies to illustrate the peak location. 

During our developing:

We performed binning and patch filtering to improve 
model performance

We implemented scoring to better identify the peaks. 



findpeaks

BraggNN

BraggNN

● findpeaks() roughly identifies 

peak locations (pixel precision) 

using topological methods

● For each peak found, we 

generate an 11x11 patch and 

use it as input to BraggNN

● BraggNN determines peak 

location with sub-pixel 

precision

Filter peaks 

by 

prominence 

scoring

Bin data by 

(2x2)

Threshold 

low pixel 

counts to 0

Normalize 

patch, feed 

to BraggNN



● Peak location shown as (small) 

red cross)

● Without careful thresholding 

and filtering, noise gets picked 

up as peak



● Refining pixel threshold values 

and choosing only peaks with 

prominence >10 (on a scale 

from 0-255) yielded 

significantly better results

● Size of cross corresponds to 

peak prominence



findpeaks

- Uses topological data analysis to detect 

the peaks

- Persistent Homology
- Quantitative way of determining the 

most significant peaks

- Compares “birth” (peaks) vs “death” 

(located at saddle points, counts for 

lower peak)

- Persistence: difference between birth 

and death level

- Sorts by persistence levels



Model Performance

Good patches - 

Bad patches - 
BraggNN is trained only on “Good” 

patches, while our data has many 

instances of “Bad” patches

Errors computed by implementing 2D 

Gaussian fitting to patches and 

evaluating distance between Gaussian 

fit and BraggNN fit



Binning

128 x 128 64 x 64

Binning can decrease the number of 

“bad” patches, but at the cost of 

resolution



Patch Filtering

Exclude patches where maximum value 

is farther than 2 pixels from center in 

both x and y

128 x 128, filtered

128 x 128, unfiltered



Retraining BraggNN



Motivation

- As noted previously, our data is more 

nebulous compared to the BraggNN 

training data
- BraggNN trains of gold particles - 

sharp, well-defined, spaced peaks

- Our data is from coin cells - as we 

charge and discharge, lithium ions 

disrupt the crystal structure - defects 

makes the peaks less well-defined

BraggNN Data Sample

Sample from our data



Steps

1. Create the two HDF5 files required to train the model
a. Frames - 1 file containing the number of frames, and the resolution of the detector images

b. Peaks - 1 file containing the location of each peak, as well as the frame corresponding to the 

specific peak

2. Run the model.py code updated with our file names
a. Error: we consistently ran into the process being killed. As we executed the code, it would buffer, 

then report “Killed”. 

b. We determined this to be a process error rather than a memory error on our end, since running 

this on the original training data produced the same result.



Re-Write BraggNN



BraggNN, But Using TensorFlow

So far we have been focusing on implementing BraggNN on our own dataset. 

Our goals with rewriting BraggNN with our own CNN using TensorFlow were two-fold:

1. Create a CNN to find the diffraction peaks that did trained on our “messier” data, 

compared to the BraggNN data

2. Use the simpler language of TensorFlow compared to PyTorch to make the model simpler 

to understand

Result: Here, we ran out of time, and were unable to finish rewriting it with TensorFlow. We will 

attempt to finish that and submit with our finished code.



Thank you!

Contributions:

Data pre-processing, findpeaks() implementation - Boyan

Pre-trained BraggNN implementation - Andy

Animations of results - Donald

2D Guassian fitting for ground truth comparison - Sean

Efforts towards re-training BraggNN on our dataset - Aditya


