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 Introduction 

 Synchrotron  X-ray  experiments  allow  for  advanced  characterization  of  materials  and  devices, 

 enabling  data  that  contains  rich  information  about  nanoscale  structural  and  electronic  properties. 

 In  one  such  recent  experiment  performed  at  Argonne  National  Laboratory’s  Advanced  Photon 

 Source,  an  intense  X-ray  beam  was  focused  down  to  several  microns,  and  used  to  study  the 

 evolution  of  the  crystal  structure  of  individual  cathode  primary  particles  in  a  Li-ion  coin  cell 

 battery  during  charging/discharging  cycles.  This  was  done  by  locating  spots  in  the  sample  where 

 several  Bragg  diffraction  peaks  appeared  on  an  X-ray  detector,  and  repeatedly  taking  snapshots 

 of these peaks over the course of one charge/discharge cycle. 

 Figure 1:  Scanning Electron Microscopy images of battery cathode material (left) and individual 
 nanocrystals (middle). Coin-cell battery with hole for X-rays to pass through, mounted at the 
 synchrotron beamline (right). 

 Dataset 

 The  data  from  this  experiment  consists  of  several  time-series  of  2-D  detector  images  containing 

 multiple peaks. Figure 2 shows three example detector images. 



 In  this  data,  the  position  of  each  peak  contains  information  about  the  crystal  lattice  size  while  the 

 shape  of  it  contains  information  about  the  particle  size  as  well  as  strain  in  the  crystal  structure. 

 Figure 2:  Example dataset showing 2D detector images  with Bragg peaks, showing how they shift in 
 position as well as evolve in shape. 

 Method 

 The  main  goal  during  data  processing  of  many  X-ray  scattering  experiments,  including  our  own, 

 is  to  determine  properties  of  Bragg  peaks  on  detector  images.  Traditionally  this  is  done  using 

 2-D  Gaussian  fitting,  but  with  ever-increasing  sizes  of  datasets,  deep-learning  methods  were 

 implemented to significantly speed up fitting. 

 BraggNN  is  a  Deep  Learning  (DL),  neural  network  based,  supervised  model  developed  at 

 Argonne  National  Laboratory.  It  is  capable  of  determining  the  center  of  mass  of  a  bragg  peak 

 with  sub-pixel  precision.  The  general  idea  of  such  a  neural  network  is  to  extract  higher  level 

 features  from  the  input,  often  in  the  level  of  pixels,  through  a  hierarchy  of  multi-layer 

 frameworks.  Previous  studies  have  shown  that  Convolutional  Neural  Networks  (CNN)  are 

 parameter  efficient  due  to  the  translational-invariant  property  of  its  representations  [1]. 

 Additionally,  convolutional  weight-sharing,  where  the  same  weights  are  shared  across  the  entire 

 image, is also proven to be beneficial for good model performance [1]. 

 BraggNN  is  able  to  precisely  determine  the  center-of-mass  of  the  bragg  peak  much  faster  than 

 conventional  2-D  Gaussian  fitting.  When  applied  to  a  test  dataset,  BraggNN  gives  errors  of  less 

 than  0.29  and  0.57  pixels,  relative  to  the  conventional  method,  for  75%  and  95%  of  the  peaks, 

 respectively.  When  applied  to  a  real  experimental  dataset,  a  3D  reconstruction  that  used  peak 



 positions  computed  by  BraggNN  yields  15%  better  results  on  average  as  compared  to  a 

 reconstruction  obtained  using  peak  positions  determined  using  conventional  2D  pseudo-Voigt 

 fitting.  With  consumer-level  computers,  BraggNN  is  able  to  perform  nearly  200  times  faster  than 

 conventional fitting methods [1]. 

 The  architecture  of  BraggNN  consists  of  a  series  of  CNN  layers  and  Fully  Connected  (FCN) 

 layers  (Figure  3).  Each  CNN  kernel  is  acting  as  an  artificial  neuron  that  extracts  a  particular 

 feature  (edges,  colors,  etc)  and  each  neuron  has  3  ×  3  ×  c  learn-able  weights  plus  one  learn-able 

 bias  to  convolve  a  feature  map  (a  3D  volume  shaped  as  height  ×  width  ×  depth/channel)  with  c 

 channels  [1].  In  between  the  layers,  a  ReLU  activation  function  is  used  to  yield  the  features.  The 

 3D  feature  map  produced  by  the  last  CNN  layer  is  reshaped  into  a  1D  vector  before  feeding  it 

 into the first FC layer [1]. 

 Figure 3:  BraggNN architecture 

 Similar  to  the  CNN  layers,  each  FC  layer  contains  multiple  neurons  with  the  same  number  of 

 learnable  weights  plus  one  learnable  bias.  N  neurons  in  a  layer  will  generate  an  output  vector  of 

 dimension  N,  which  will  be  fed  into  the  next  layer  and  so  on.  Each  neuron  in  a  FC  layer  is 

 connected to all neurons in the previous layer and the output function has no activation function. 

 The  model  loss  is  defined  as  the  norm,  computed  between  the  model  output  and  the  𝑙 
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 ground-truth  (via  Gaussian  fitting).  The  gradient  of  each  neuron’s  learnable  weights  are 

 computed  using  back  propagation  and  updated  by  the  gradient  descent  method.  Training  iterates 

 the  feed-forward  and  back-propagation  process  on  different  (Bragg  peak  patch,  ground  truth 



 center)  pairs  many  times,  until  the  model  no  longer  makes  noticeable  progress  in  minimizing  the 

 -norm [1].  𝑙 
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 Results 

 For  most  of  our  project,  we  used  a  pre-trained  BraggNN  model  and  tested  its  performance  on  our 

 dataset,  compared  to  conventional  2D  Gaussian  fitting.  As  a  first  step,  we  simulated  an  11x11 

 patch  containing  a  Bragg  peak  and  random  noise,  with  a  100:1  signal  to  noise  ratio.  The 

 pre-trained  BraggNN  model  we  used  takes  11x11  sized  patches  with  min-max  normalization  as 

 input.  Feeding  our  simulated  patch  to  the  model  showed  very  precise  results,  with  an  error  of 

 only 0.062 pixels (Figure 4) 

 We  then  moved  on  to  test  it  on  a  sample  detector  image  from  our  data.  Since  the  Bragg  peaks  in 

 our  data  are  significantly  noisier  and  more  irregular  than  the  data  used  to  train  the  model,  we  had 

 to  carefully  optimize  our  pre-processing,  as  well  as  criteria  used  to  identify  peaks  on  a  detector 

 image. 

 Figure 4:  Model fit on simulated  Figure 5:  Raw data (left); Binned and Masked data (right) 
 patch containing a Bragg peak 

 Because  the  model  works  on  11x11  patches  that  contain  a  single  peak,  we  needed  to  roughly 

 locate  Bragg  peaks  on  our  detector,  and  generate  patches  around  those  to  feed  to  the  model  as 

 input.  To  achieve  this,  we  utilized  the  module  ‘findpeaks’  (  GitHub  Link  ).  The  topology  method 

 of  findpeaks  returns  a  list  of  peak  locations  on  a  2D  image,  as  well  as  a  persistence  score  that 

 shows how prominent that peak is. 

https://github.com/erdogant/findpeaks


 Figure 6:  Example output from findpeaks’s topology  method on our detector image, showing 14 peak 
 locations 

 We  then  filter  the  peaks  based  on  their  persistence  score,  and  generate  11x11  patches  centered  on 

 each  peak.  We  then  pass  these  patches  as  input  to  the  model,  which  outputs  a  more  accurate  peak 

 location  with  sub-pixel  precision.  Figure  7  shows  some  examples  of  input  patches  from  our  real 

 data,  together  with  the  model  fit.  Values  within  each  patch  are  normalized  to  (0-1)  range. 

 Figure 7:  BraggNN output using real data 

 Figure  8  shows  the  entire  detector  image  with  peak  positions  roughly  determined  by  findpeaks, 

 and more precisely fitted with the BraggNN model. 



 Figure 8:  Detector image with ‘findpeaks’ output (left);  Detector image with BraggNN output (right). 
 The size of the black cross corresponds to the peak’s persistence score. Note that not all peaks from 
 findpeaks() could be fitted with BraggNN successfully, either due to being too close to the detector 
 edge, or due to containing more than one peak within a patch 

 In  order  to  evaluate  the  performance  of  the  pre-trained  model  on  our  data,  we  also  implemented 

 2D  Gaussian  fitting  on  patches  to  compare  against  the  model  fit.  Figure  9  shows  some  examples 

 of  those  results  -  as  expected,  the  model  performs  best  on  sharp,  well-defined  peaks  since  those 

 resemble the data it was trained on the most. 

 Figure  9:  Comparison  between  BraggNN  and  Gaussian  fits  on  a  sharp  peak  (left),  elongated  peak 
 (middle)  and  broad  peak  (right).  As  expected,  the  BraggNN  model  performs  best  on  sharp,  symmetrical 
 peaks  since  it  was  trained  on  a  very  clean  dataset.  For  the  right  patch  containing  a  broad  peak,  both 
 BraggNN and especially the Gaussian fit failed to accurately capture the peak location. 



 We  then  ran  the  pipeline  described  above  on  an  entire  dataset  consisting  480  frames.  We  included 

 two  tunable  parameters:  minval  was  the  threshold  below  which  detector  pixel  values  were  set 

 to  0,  and  minscore  was  the  threshold  for  persistence  score  determined  by  findpeaks  to  pass  a 

 particular  peak  as  input  to  BraggNN.  Figure  10  shows  the  errors  between  the  BraggNN  and 

 Gaussian  fits  for  two  pairs  of  minval  and  minscore  values  -  as  expected,  the  error  is  smaller 

 when  using  higher  threshold  values,  since  those  will  filter  out  noisier  patches  and  focus  on  ones 

 containing sharp, well-defined peaks. 

 Figure 10:  Errors as a function of frame number for two different sets of parameter values. 

 For  the  lower  threshold  values,  we  present  our  results  using  an  animation  that  overlays  each 

 detector frame from the dataset with the peak locations as determined by the model.  (link) 

 Conclusion 

 The goal of our project was to understand how the BraggNN model works by using a pre-trained 

 model to fit Bragg peaks in our data, as well as re-train it on our data. We successfully developed 

 a pipeline to feed our data into the pre-trained model, and saw that it can perform very well on 

 clean, sharp Bragg peaks, but its performance deteriorates significantly when the peaks are less 

 symmetrical and sharp. Our attempts to re-train the model were plagued with multiple issues that 

 we ran out of time to troubleshoot, but a potential future solution would be to re-create the model 

 architecture from scratch. More future work would include further refinement to filtering what 

 we classify as a peak to feed to the model, as well as some padding methods at detector edges to 

 allow for fitting of peaks near the edge. 

https://drive.google.com/file/d/1-v4nUq1YZzNaTXYz5vGmwebHzFsq3ixy/view?usp=share_link
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