
 Using Convolutional Neural Networks For Fast X-Ray Bragg Peak Position

 Determination
 Aditya Sriram, Andy Wan, Boyan Stoychev, Donald Dean, Sean Chen

 Introduction

 Synchrotron X-ray experiments allow for advanced characterization of materials and devices,

 enabling data that contains rich information about nanoscale structural and electronic properties.

 In one such recent experiment performed at Argonne National Laboratory’s Advanced Photon

 Source, an intense X-ray beam was focused down to several microns, and used to study the

 evolution of the crystal structure of individual cathode primary particles in a Li-ion coin cell

 battery during charging/discharging cycles. This was done by locating spots in the sample where

 several Bragg diffraction peaks appeared on an X-ray detector, and repeatedly taking snapshots

 of these peaks over the course of one charge/discharge cycle.

 Figure 1: Scanning Electron Microscopy images of battery cathode material (left) and individual
 nanocrystals (middle). Coin-cell battery with hole for X-rays to pass through, mounted at the
 synchrotron beamline (right).

 Dataset

 The data from this experiment consists of several time-series of 2-D detector images containing

 multiple peaks. Figure 2 shows three example detector images.

 In this data, the position of each peak contains information about the crystal lattice size while the

 shape of it contains information about the particle size as well as strain in the crystal structure.

 Figure 2: Example dataset showing 2D detector images with Bragg peaks, showing how they shift in
 position as well as evolve in shape.

 Method

 The main goal during data processing of many X-ray scattering experiments, including our own,

 is to determine properties of Bragg peaks on detector images. Traditionally this is done using

 2-D Gaussian fitting, but with ever-increasing sizes of datasets, deep-learning methods were

 implemented to significantly speed up fitting.

 BraggNN is a Deep Learning (DL), neural network based, supervised model developed at

 Argonne National Laboratory. It is capable of determining the center of mass of a bragg peak

 with sub-pixel precision. The general idea of such a neural network is to extract higher level

 features from the input, often in the level of pixels, through a hierarchy of multi-layer

 frameworks. Previous studies have shown that Convolutional Neural Networks (CNN) are

 parameter efficient due to the translational-invariant property of its representations [1].

 Additionally, convolutional weight-sharing, where the same weights are shared across the entire

 image, is also proven to be beneficial for good model performance [1].

 BraggNN is able to precisely determine the center-of-mass of the bragg peak much faster than

 conventional 2-D Gaussian fitting. When applied to a test dataset, BraggNN gives errors of less

 than 0.29 and 0.57 pixels, relative to the conventional method, for 75% and 95% of the peaks,

 respectively. When applied to a real experimental dataset, a 3D reconstruction that used peak

 positions computed by BraggNN yields 15% better results on average as compared to a

 reconstruction obtained using peak positions determined using conventional 2D pseudo-Voigt

 fitting. With consumer-level computers, BraggNN is able to perform nearly 200 times faster than

 conventional fitting methods [1].

 The architecture of BraggNN consists of a series of CNN layers and Fully Connected (FCN)

 layers (Figure 3). Each CNN kernel is acting as an artificial neuron that extracts a particular

 feature (edges, colors, etc) and each neuron has 3 × 3 × c learn-able weights plus one learn-able

 bias to convolve a feature map (a 3D volume shaped as height × width × depth/channel) with c

 channels [1]. In between the layers, a ReLU activation function is used to yield the features. The

 3D feature map produced by the last CNN layer is reshaped into a 1D vector before feeding it

 into the first FC layer [1].

 Figure 3: BraggNN architecture

 Similar to the CNN layers, each FC layer contains multiple neurons with the same number of

 learnable weights plus one learnable bias. N neurons in a layer will generate an output vector of

 dimension N, which will be fed into the next layer and so on. Each neuron in a FC layer is

 connected to all neurons in the previous layer and the output function has no activation function.

 The model loss is defined as the norm, computed between the model output and the 𝑙
 2

 ground-truth (via Gaussian fitting). The gradient of each neuron’s learnable weights are

 computed using back propagation and updated by the gradient descent method. Training iterates

 the feed-forward and back-propagation process on different (Bragg peak patch, ground truth

 center) pairs many times, until the model no longer makes noticeable progress in minimizing the

 -norm [1]. 𝑙
 2

 Results

 For most of our project, we used a pre-trained BraggNN model and tested its performance on our

 dataset, compared to conventional 2D Gaussian fitting. As a first step, we simulated an 11x11

 patch containing a Bragg peak and random noise, with a 100:1 signal to noise ratio. The

 pre-trained BraggNN model we used takes 11x11 sized patches with min-max normalization as

 input. Feeding our simulated patch to the model showed very precise results, with an error of

 only 0.062 pixels (Figure 4)

 We then moved on to test it on a sample detector image from our data. Since the Bragg peaks in

 our data are significantly noisier and more irregular than the data used to train the model, we had

 to carefully optimize our pre-processing, as well as criteria used to identify peaks on a detector

 image.

 Figure 4: Model fit on simulated Figure 5: Raw data (left); Binned and Masked data (right)
 patch containing a Bragg peak

 Because the model works on 11x11 patches that contain a single peak, we needed to roughly

 locate Bragg peaks on our detector, and generate patches around those to feed to the model as

 input. To achieve this, we utilized the module ‘findpeaks’ (GitHub Link). The topology method

 of findpeaks returns a list of peak locations on a 2D image, as well as a persistence score that

 shows how prominent that peak is.

https://github.com/erdogant/findpeaks

 Figure 6: Example output from findpeaks’s topology method on our detector image, showing 14 peak
 locations

 We then filter the peaks based on their persistence score, and generate 11x11 patches centered on

 each peak. We then pass these patches as input to the model, which outputs a more accurate peak

 location with sub-pixel precision. Figure 7 shows some examples of input patches from our real

 data, together with the model fit. Values within each patch are normalized to (0-1) range.

 Figure 7: BraggNN output using real data

 Figure 8 shows the entire detector image with peak positions roughly determined by findpeaks,

 and more precisely fitted with the BraggNN model.

 Figure 8: Detector image with ‘findpeaks’ output (left); Detector image with BraggNN output (right).
 The size of the black cross corresponds to the peak’s persistence score. Note that not all peaks from
 findpeaks() could be fitted with BraggNN successfully, either due to being too close to the detector
 edge, or due to containing more than one peak within a patch

 In order to evaluate the performance of the pre-trained model on our data, we also implemented

 2D Gaussian fitting on patches to compare against the model fit. Figure 9 shows some examples

 of those results - as expected, the model performs best on sharp, well-defined peaks since those

 resemble the data it was trained on the most.

 Figure 9: Comparison between BraggNN and Gaussian fits on a sharp peak (left), elongated peak
 (middle) and broad peak (right). As expected, the BraggNN model performs best on sharp, symmetrical
 peaks since it was trained on a very clean dataset. For the right patch containing a broad peak, both
 BraggNN and especially the Gaussian fit failed to accurately capture the peak location.

 We then ran the pipeline described above on an entire dataset consisting 480 frames. We included

 two tunable parameters: minval was the threshold below which detector pixel values were set

 to 0, and minscore was the threshold for persistence score determined by findpeaks to pass a

 particular peak as input to BraggNN. Figure 10 shows the errors between the BraggNN and

 Gaussian fits for two pairs of minval and minscore values - as expected, the error is smaller

 when using higher threshold values, since those will filter out noisier patches and focus on ones

 containing sharp, well-defined peaks.

 Figure 10: Errors as a function of frame number for two different sets of parameter values.

 For the lower threshold values, we present our results using an animation that overlays each

 detector frame from the dataset with the peak locations as determined by the model. (link)

 Conclusion

 The goal of our project was to understand how the BraggNN model works by using a pre-trained

 model to fit Bragg peaks in our data, as well as re-train it on our data. We successfully developed

 a pipeline to feed our data into the pre-trained model, and saw that it can perform very well on

 clean, sharp Bragg peaks, but its performance deteriorates significantly when the peaks are less

 symmetrical and sharp. Our attempts to re-train the model were plagued with multiple issues that

 we ran out of time to troubleshoot, but a potential future solution would be to re-create the model

 architecture from scratch. More future work would include further refinement to filtering what

 we classify as a peak to feed to the model, as well as some padding methods at detector edges to

 allow for fitting of peaks near the edge.

https://drive.google.com/file/d/1-v4nUq1YZzNaTXYz5vGmwebHzFsq3ixy/view?usp=share_link

 References

 [1] Liu, Z., Sharma, H., Park, J.-S., Kenesei, P., Miceli, A., Almer, J., Kettimuthu, R. & Foster, I.

 (2022). BraggNN: fast X-ray Bragg peak analysis using deep learning. IUCrJ, 9, 104–113.

 [2] Link to our GitHub repository: https://github.com/miwan1/PHYS139_Group6_Project

https://github.com/miwan1/PHYS139_Group6_Project

