
Physics-informed Convolutional Neural
Networks for Temperature Field Prediction

of Heat Source Layout without Labeled Data*

Group 7

Peter Knauss, Thomas Sievert, Wenzhong Hu, Aashay Arora

Github

https://arxiv.org/pdf/2109.12482.pdf
https://github.com/aaarora/hsl-tfp

Motivation

2

● Partial Differential Equations (PDEs) are used to
model a wide range of physical phenomena,
including fluid dynamics, heat transfer, and
quantum mechanics etc.

● They can allow us to predict the path of a hurricane,
the behavior of a fluid in a pipeline, and the thermal
design and analysis of electronic systems. Therefore
knowing how to solve them fast and accurately is
very important.

● Although there are ways to solve them numerically,
these are usually computationally expensive.

● What if we are able to teach a ML model to solve
them faster?

3

But How?

Option 1: Supervised Learning

● Solve the PDEs using numerical methods and feed that into a DNN
○ Large amounts of training data are usually necessary to achieve reliable predictive performance.
○ Preparing sufficient simulation data is expensive and time-consuming

4

Physics Numerical
Integrator DNN Solution

Option 2: Unsupervised Learning - PINN

● Solve the PDEs by incorporating the physics within the loss function and then training
the model

Physics SolutionCNNLoss
Function

Very
Compute
Intensive

x N Training

Training

Heat Equation

● The heat equation is a PDE that describes the rate of flow of heat in/out of a
material, given the temperature of the environment.

● In 2+1 dimensions, it looks like

● We are looking for the steady-state solution i.e. the temperature field that satisfies
the Poisson equation for the given heat layout + boundary conditions.

5

Layout Setup

The training layout is a 2D conducting domain
with several rectangular heat sources. An
isothermal boundary of length δ and temperature
T0 in the bottom exchanges heat with external
circumstances. Other boundaries are adiabatic.

6

We train on 10k such layouts.

To validate the performance of the model, we compare against the solution from FDM.

Training the Model

7

Two Types of Boundary Conditions
● Dirichlet BCs

○ fixed boundary condition

● Specifies the value of the function when imposed on PDEs:

● f(x) = const. = T0 In problem

At isothermal sinks, T(x, y) = 298K.

8

Two Types of Boundary Conditions
● Neumann BCs

● Specifies the value of the first derivative of the function when imposed on PDEs:

Over adiabatic walls, the flux of heat is set to 0.

9

Physics Informed Loss Function
● The Loss function is derived from the Poisson Difference Equation.

○ We write the Poisson equation with the differentials approximated by the corresponding differences
to O(δr2), i.e.

● With these differences, the Poisson Equation becomes,

● Then the loss function is,

where

10

The loss function kernel then looks like,

added to the temperature contribution from the heat sources.

11

The form of the loss function is consistent with Jacobi iteration. In each back
propagation, the loss function guides the network to predict the temperature field
approximating the value of the next iteration.

CNN Architecture

● Multi-layered U-Net style CNN architecture
● Built off of sets of encoding and decoding block with a flatten block in the middle
● Encoding Block: 2 sets of convolutions, normalizations, and activation functions.

Pooling done between layers.
● Decoding Block: Same steps as Encoding Block, but with varying “middle

channels” instead of same throughout and concatenated to the encoding block
output.

● Flatten Block: “Transfer block” between encoding and decoding.

12

U-Net Architecture

● Using layers of the encoding and decoding blocks, we built up a U-Net architecture
very similar to the one shown in class.

13

● Our U-Net had 4 layers and a
flatten block.

○ Encoding channel changes: 3 - 64 -
128 - 256- 512

○ Center channels: 512 - 1024 - 512
○ Decoding channel changes: 1024/512

- 512/256 - 256/128 - 128/64

Dataset

14

200 x 200 pixels

Results

15

● Our results using unsupervised learning were well within our expected limit and
close to the results of the paper we are looking at.

● We used MAE (mean absolute error) across every run to validate, while also
checking CMAE - MAE on the components instead of over the whole domain.

16

Simple Layout
MAE - 0.0108
CMAE - 0.0106
Max - 0.0269

Complex Layout
MAE - 0.0262
CMAE - 0.0262
Max - 0.0752

● Our results using unsupervised learning were well within our expected limit and
close to the results of the paper we are looking at.

● We used MAE (mean absolute error) across every run to validate, while also
checking CMAE - MAE on the components instead of over the whole domain.

17

Simple Layout
MAE - 0.0108
CMAE - 0.0106
Max - 0.0269

Complex Layout
MAE - 0.0262
CMAE - 0.0262
Max - 0.0752

Unsupervised Learning

● Structure of error-map much simpler for SL than UL.
● SL predictions are consistently ~0.25K too cold as compared to the FDM truth.

○ Open question: Why is it biased towards colder temperatures?

18

Simple Layout
MAE - 0.0058
CMAE - 0.0061
Max - 1.164

Complex Layout
MAE - 0.0179
CMAE - 0.0178
Max - 1.844

Supervised Learning

Comparison with Supervised Learning

● UL performance between
2k-SL and 4k-SL.

● Max-AE worse for all sizes
of SL, suggests SL learns
global approx., but has
little accuracy locally.

19

Comparison with Supervised Learning

● UL performance between
2k-SL and 4k-SL.

● Max-AE worse for all sizes
of SL, suggests SL learns
global approx., but has
little accuracy locally.

20

Summary and
Conclusion

21

● We create a physics-informed CNN for temperature field prediction given a heat
source layout.

○ A loss function derived from the heat difference equation guides the network to map intensity
distributions to solution functions without any labelled data.

○ Impose hard Dirichlet and Neumann BCs to make the network converge.
○ Use a model based on the UNet framework.

● Performance of unsupervised learning model is similar to data-driven and
numerical techniques (MAE < 0.3 K)

● The method can be generalized to other PDEs as well as more complicated
domains.

22

Work in Progress

● Implement the model in Tensorflow and compare.
○ Some of torch functionality is not available in tensorflow, so we do some hand-waving.

■ For e.g. instead of reflected padding (only in torch), we use zero padding in tf.
○ Will be interesting to benchmark the two frameworks for PINNs
○ Hand-waving is just an ablation study.

23

Team Member Contributions

● Peter
○ U-Net building
○ UL & SL implementation

● Thomas
○ UL implementation
○ TF port

● Wenzhong
○ FDM
○ Loss Function

● Aashay
○ Overall coordination
○ FDM
○ Loss function
○ TF Port

24

Backup

Jacobi Iteration

Jacobi iteration is a numerical method used to solve linear equations by iteratively
approximate solution to the system of equations by successively updating each
component of the solution based on the current value.

26

Performance Metrics

27

Data Generation

28

Data Generation

29

