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This project attempts to recreate the study by Zhao et. al to predict the steady state solutions of
the heat equation for source layouts without any labeled data using a physics-informed convolutional
neural network. In particular, we employ the use of a loss function containing a penalty term derived
from the heat difference equation which guides the UNet architecture based neural network to learn
to map intensity distributions to the solution space with accuracy close to that achieved using
traditional numerical and data-driven techniques.

I. INTRODUCTION

Partial Differential Equations (PDEs) are used to
model a wide range of physical phenomena, including
fluid dynamics, heat transfer, and quantum mechanics
etc. One application of one family of PDEs, called the
heat equation, is to analyze the thermal design of elec-
tronic systems in the domain of the various electrical
components and find energy efficient designs. There-
fore, knowing how to solve them fast and accurately for
many design layouts becomes necessary. Although nu-
merical methods to solve the heat equation have existed
for decades, these are computationally expensive. Recent
developments in the area of physics-informed neural net-
works (PINNs) offers an avenue for finding faster ways
to solve this family of PDEs.

In this paper, based on the study by Zhao et. al ([1]),
we attempt to find the steady-state solutions of the heat
equation in a two-dimensional conducting domain with
appropriate boundary conditions using data-driven (su-
pervised) and unsupervised approaches. We compare
the performance of the two methods with traditional nu-
merical methods, namely the finite differences method
(FDM). The unsupervised approach, which is the focus
of this study uses a UNet based CNN and a physics-
informed loss function to guide the CNN towards the
temperature field solution, dicussed more in the Meth-
ods (III) section.

II. DATASET

For the temperature field prediction of heat source lay-
out (HSL-TFP), the training of the unsupervised model
is data-free, i.e. no labeled datasets are used. The physi-
cal knowledge is inbuilt into construction of the loss func-
tion which guides the network to the solution.
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In order to evaluate the performance of the model
use randomly generated heat source layout maps, Heat
sources are placed on a square shaped domain of 0.1 ×
0.1m2 surrounded by adiabatic walls, with an isother-
mal sink in the middle of the left boundary and 12 rect-
angular heat sources placed randomly in the domain as
showcased in Figure 1. We use 10000 maps of which
8000 are used for training, and the remaining are used
for validation and testing. The solution from the CNN is
compared against the FDM solution solved within the do-
main with appropriate boundary conditions. Two cases
of layouts were studied in the project: case 1 includes
20 0.01 × 0.01m2, 10000w/m2 heat sources, and case 2
includes 12 heat sources of varied sizes and intensities.

FIG. 1. Schematic of the square domain with several heat
sources.

III. METHODS

A. Physics-informed Loss

1. Boundary Conditions

A Dirichlet boundary condition was imposed for
(xi, yi) ∈ Diso, where Diso referred to isothermal sinks.
The condition applied in the project was
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T (xi, yi) = T0 = 298K, (xi, yi) ∈ Diso (1)

A Neumann boundary condition was imposed for
(xi, yi) ∈ Dadia to reflect the adiabatic walls surrounding
the domain, where Dadia = ∂D \Diso included all points
on the boundary excluding the isothermal sink.

Φ(xi, yi)·n̂ = −λ∇T (xi, yi)·n̂ = 0, (xi, yi) ∈ Dadia (2)

Where λ = 1Wm−1K−1 was the thermal conductivity
set to the domain.

2. Physics Loss Function

In obtaining a temperature-field prediction, the project
was essentially solving a boundary value problem with
Poisson’s equation as a prototype

∇(λ∇T (x, y)) = ϕ(x, y) (3)

Which followed the basic form of Poisson’s Equation
over a continuous domain. Here ϕ(x, y) was the cor-
rection due to the heat sources presented in the lay-
out, equaled the intensity (in Wm−2) of the heat source
for (x, y) ∈ Dheatsource; ϕ(x, y) = 0 for (x, y) ∈ D \
Dheatsource.

Solving the equation over a mesh, Poisson’s equation
was discretized using the finite difference method in 2D,
which utilized five points (the target point and its four
neighbors) to define an analog to the total derivative.
WLOG, the second partial derivative along the x-axis
was approximated from the Taylor expansion

T (xi + h, yj)− 2T (xi, yj) + T (xi − h, yj)

h2

=
∂2T (xi, yj)

∂x2
+O(h2)

(4)

Similarly for the second partial derivative along the
y-axis. The combined discretized equation was

4T (xi, yj)− T (xi − h, yj)− T (xi + h, yj)

−T (xi, yj − h)− T (xi, yj + h) =
h2ϕ(xi, yj)

λ

(5)

Where uniform discretization over the two directions
was applied. It was empirically found that the function
was better trained with an intermediate variable defined

T ′(xi, yj) = T (xi − h, yj) + T (xi + h, yj)

+T (xi, yj − h) + T (xi, yj + h) +
h2ϕ(xi, yj)

λ

(6)

And thus apply the following matrix as the convolution
kernel

0 1 0
1 0 1
0 1 0


Overall, the physics loss was obtained as

L =
1

|DI ∪Dadia|
∑
(x,y)

||T (xi, yj)−
1

4
T (xi, yj)

′||

(xi, yj) ∈ DI ∪Dadia

(7)

3. Loss Implementation

The Dirichlet BCs were enforced at the beginning of
each iteration so that the solution on the isothermal sinks
remained constant; the physics loss was thus defined over
the interior of the domain plus the adiabatic walls only.
The loss was also found to share essentially the same
form as the update rule for Poisson’s Equation using the
Jacobi iteration method; a parallel interpretation of how
our network was guided by the loss function via back
propagation during training.
The optimization of the loss landscape was a chal-

lenge as in PINNs in general. An online hard example
mining (OHEM) algorithm was applied to manipulate
the weight across regions with different losses, improving
the effectiveness of the optimizer over regions with large
losses (the hard examples) during back propagation. The
physics loss with OHEM incorporated was

L =
1

|DI ∪Dadia|
∑
(x,y)

wij ||T (xi, yj)−
1

4
T (xi, yj)

′||

(xi, yj) ∈ DI ∪Dadia

(8)

Where wij = η1 + η2
δij −max(δ)

max(δ) +min(δ)
was the weight,

and η1, η2 are hyperparameters for shifting and scaling;
δij = ||T (xi, yj)− T (xi, yj)

′|| was the error.

B. Neural Network Architecture

We used a CNN with U-Net architecture as it is able
to properly see both local and global differences in tem-
perature gradients, which influence the temperature at
any given point.
Our U-Net has each block built off of one max pool-

ing, then 2 sets of 2D convolutions, batch normalizations,
then a GELU (Gaussian Error Linear Unit) activation
unit. Each of these blocks allows us to see a subset of lo-
cality which is then transferred down the layers. Beyond
these blocks, we have 4 layers of encoding, one central
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layer, and 4 layers of decoding. Based on the paper,
we thought that this was a good middle ground between
enough global temperature comparison and not too long
to run the training.

We used the Adam optimizer with an Exponential De-
cay learning rate change with a gamma of 0.85. For our
hyperparameters, we used a batch size of 1, with 4 par-
allel ”workers” working at the same time.

FIG. 2. U-Net pipeline showing the architecture of the CNN.

As this is not a classification problem, we can not use
the normal measure of accuracy, so we will use the Mean
Absolute Error of both the entire domain (MAE) and the
components (CMAE) as well as the AE maximum (Max
AE) and the maximum temperature difference across the
domain (MT-AE). The paper was able to get the errors
shown in Table 1, so we will attempt to get within 1.25x
their errors for all metrics.

MAE CMAE Max-AE MT-AE

Case 1 0.0108 0.0109 0.0280 0.0140
Case 2 0.0275 0.0271 0.0925 0.0336

TABLE I. Paper Errors.

The code for our implementation can be found at
https://github.com/aaarora/hsl-tfp

IV. RESULTS

Our unsupervised learning results are presented in Ta-
ble 2 below.

MAE CMAE Max-AE MT-AE

Case 1 0.0108 0.0108 0.0269 0.0131
Case 2 0.0261 0.0262 0.0752 0.0314

TABLE II. Our Errors.

From this table, we can see that our losses matched
or very slightly ”beat” the errors presented in the paper.
While this is surprising, it is not entirely confusing as we
were starting with their work and building off of it while
also attempting to get the lowest test error possible so we

are able to limit our test errors without worrying about
other metrics.
Figures 3 and 4 show heatmaps comparing our

FDM prediction against our model’s temperature field
output for both Case 1 and Case 2 respectively. From
these, we can see that our errors are relatively randomly
distributed, but still well within our expected loss values.

FIG. 3. Case 1 layout loss heatmap.

FIG. 4. Case 2 layout loss heatmap.

V. COMPARISONS

A. Comparison with data-driven approach

To better benchmark the performance of the unsuper-
vised learning model, we also trained a supervised learn-
ing model for this problem. To do this, we computed the
FDM prediction for a given input layout, and trained
a CNN to match inputs to outputs. This is a classic
application of CNNs and a traditional way of applying
machine learning.
We ran the SL with a training dataset of 8000, and

tested it on a further 1000 layouts. Results for the SL
model are given in the table below.

MAE CMAE Max-AE MT-AE

Case 1 0.0058 0.0061 1.164 0.0096
Case 2 0.0179 0.0178 1.844 0.0268

TABLE III. Supervised learning errors.

For MAE, CMAE, and MT-AE the supervised model
performs slightly better than the unsupervised one. This
trend is shown more thoroughly in Fig. 5, where we can
see the trade off between unsupervised and supervised su-
periority. This model trend agrees with the general trend
anticipated for PINNs; PINNs perform best in regimes
where there’s less data, and traditional techniques per-
form best in regimes with lots of data.

https://github.com/aaarora/hsl-tfp
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FIG. 5. Bar chart showing the performance of unsupervised
learning and supervised learning at various training dataset
sizes. For this problem, unsupervised learning appears to be
comparable to suepervised learning with a training dataset
size of around 3k.

Interestingly, the performance of the supervised model
is significantly worse than the unsupervised on the Max-
AE metric. Max-AE is the maximum single-pixel dif-
ference between the true (FDM-predicted) tfp and the
model-predicted tfp. Therefore, Max-AE encodes some
information about the model’s performance locally, while
the other metrics are more global. It seems that although
supervised learning can – with enough data – surpass
physics-informed learning on tasks requiring only a global
average level of correctness, however, supervised learning
fails to learn much about the local structure.

Representative results for the supervised learning on a
specific layout are shown in Fig. 6 and 7.

FIG. 6. Case 1 layout loss heatmap for SL.

FIG. 7. Case 2 layout loss heatmap for SL.

The difference between the supervised and unsuper-
vised models is seen most clearly by looking at the asso-
ciated error heat maps. For supervised learning specifi-
cally, it seems to always predict a temperature of around
0.24K colder than the FDM prediction. We do not know

why this is, but it is likely the main contributor to the
poor performance on the Max-AE metric.
B. Comparison with Tensorflow implementation

The code used for all of the work discussed thus far was
written in Pytorch. As a further extension of the paper
– in addition to grounding this work in things we learned
in class – we decided to attempt to port the unsupervised
model to Tensorflow. In order to do this, we rewrote the
custom model and loss function in tf.Keras. We wanted
to also rewrite the dataloading in tf.Keras, but Pytorch’s
scheme for dataloading is complex and relies on many
built-in functions. Thus, we tried to simply turn the
loaded pytorch data in numpy arrays and then into tf
tensors, but this failed due to the specifics of how the
pytorch data is loaded.
As it stands, there is a ”tensorflow” branch of the

github that contains our work, however the tf version
of the model does not run.

VI. CONCLUSION

In this paper we look into a UNet based convolutional
neural network to solve for the steady-state solutions of
the head equation in a two-dimensional conducting do-
main with appropriate boundary conditions. We use a
physics-informed loss function to guide the CNN to map
intensity distributions to solution functions without any
labelled data and study to impose hard constraints on the
Dirichlet and Neumann boundary conditions to speed up
the convergence of the network. The performance we
achieve using the CNN is comparable to the data-driven
and numerical approach and only varies by 0.03 K across
the domain. The supervised learning outperforms the
PINN on global metrics with enough data, however the
PINN is consistently better at learning local structure.
Since the model can output the steady-state solutions
without seeing the explicit solutions, it can be employed
as a good alternative to solve this family of PDEs quickly.
A similar approach can be used to train CNN to solve
other PDEs in more complicated domains.
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