
Application of Neural Networks to Neutrino Interaction Identification

Haoyang Li,∗ Carlos Pareja,† Jay Sun,‡ and Sahil Bhalla§

University of California, San Diego

(Physics 139 Winter 2023 - Group 8)
(Dated: March 24, 2023)

In this project, we build and train 3 different neural networks in order to compare their respective
performance in differentiating particle interaction images from LArTPC.

I. INTRODUCTION

Neutrinos are hard to be directly detected as they
rarely interact with materials. However, the product
particles of neutrino interactions can be detected and
tracked via liquid argon time projection chambers
(LArTPCs), which record the trace and energy deposit
of the product particles. In [1], Aurisano et al. used a
convolutional neural network (CNN) that takes in the
side and top views of LArTPC’s digitized data to classify
the product particles in neutrino interactions. They
named the architecture convolutional visual network
(CVN).

In particular, we are interested in the CVN’s inception
module and the two-view design. The inception module
allows extracting features with inception fields of differ-
ent sizes at the same depth. The two-view design en-
ables the CVN independently generate features for dif-
ferent views and then merges them later, which is alter-
native to the common solution that treats different views
of the digitized detector data as different channels. We
rebuilt the CVN model and also built two other networks
(ResNet41, 2-View ResNet) along the way for compari-
son. The 2-View ResNet replaced the inception modules
with residual connections while ResNet41 uses residual
connections and treats different views as different input
channels. Our goal is to compare the performances of the
three models on classifying neutrino interactions’ prod-
uct particles. The project aims to evaluate the inception
module and the two-view design as potential designs for
future neutrino detection tasks.

II. DATASET

Our dataset includes two ROOT files of simulated
digitized detector views of LArTPCs. The ROOT file
of the training set can be found here, and the testing
set can be found here. The training set consists of 50k
events, and the test set has 40k events. Each event

∗ hal113@ucsd.edu
† cpareja@ucsd.edu
‡ k8sun@ucsd.edu
§ s2bhalla@ucsd.edu

has 3 views (XY, YZ, ZX). The XY view of the first
event in the training set is shown in Fig. 1. Fig. 2
shows the distribution of momentum in 3 orthogonal
directions (x, y, and z), implying that the simulated
particles have no preferred direction in our dataset. The
simulated detector was a cube and all views have the
same size (256 × 256). However, in [1], the two views
of the CVN input was chosen according to the beam
direction and the detector geometry, which implies that
a machine learning model could benefit more in our
dataset by providing all three views. For consistency,
we followed [1] and picked the first two views. Each
event has a PDG ID that indicates the type of partcicle,
which transformed to a one-hot encoded target when
training. The five types of particles in our dataset are
electron, muon, photon, pion, and proton. Every class is
balanced in the dataset, so a random guess would yield
20% accuracy. Our fundamental goal is to achieve an
accuracy that can beat 20%.

FIG. 1. An electron event in the XY view of the dataset.

We wrote notebooks (github-
folder/notebooks/root2hdf5.ipynb) to convert the
ROOT files into .h5 file, and then further convert to
.npy. Around 5% of the events in our dataset has
more than one track and were disgarded. Recall that
each ’view’ has a dimension of [256, 256]. Because
the structure of CVN only takes in 2 images. For
consistency, we feed the first 2 views as input data
into all our networks (CVN, ResNet41, 2 view ResNet).
Every image is normalized before we feed them into the
models.

http://www.stanford.edu/~kterao/public_data/v0.1.0/2d/classification/five_particles/train_50k.root
http://www.stanford.edu/~kterao/public_data/v0.1.0/2d/classification/five_particles/test_40k.root
mailto:hal113@ucsd.edu
mailto:cpareja@ucsd.edu
mailto:k8sun@ucsd.edu
mailto:s2bhalla@ucsd.edu


2

FIG. 2. The distribution of momentum in 3 basis directions.

III. METHODS

FIG. 3. CVN Architecture

Convolutional Visual Network (CVN) is a convolu-
tional neural network architecture developed by Aurisano
et al. [1]. A schematic of CVN from [1] is shown in
Fig. 3. In [1], the authors utilize the CVN architecture
in 3 in order to accomplish neutrino interaction classifica-
tion. This architecture is split between x-view data and
y-view data where both of these networks are running in
parallel and their outputs are then concatenated along
the channels dimension. Both x-view and y-view data
are of dimensions [N, 1, 256, 256] where N is our batch
size that we utilize. Throughout our research we utilized
many different batch sizes to determine which batch size

would have our network run faster but ultimately we ran
the network with a batch size of 64. According to the
authors from [1], the CVN architecture in Fig. 3 was in-
spired from the GoogLeNet architecture which is known
for its success in many Computer Vision tasks such as
image classification and object detection. GoogLeNet is
most known for its use of the Inception Module archi-
tecture which will be further discussed later. One key
difference between the work the authors in [1] conduct in
comparison to traditional use of CNN’s for image classifi-
cation is that instead of passing a network two dimensions
of images such as a [N, 2, 256, 256], we instead split these
two channels and pass the image data into separate but
identical networks in order for these networks to extract
as much information for each channel dimension. Tra-
ditionally, most image datasets consists of images that
have dimensions of [C,H,W ] where C is the channels di-
mension consisting of three channels for the respective
Red, Green, Blue (RGB) channels and H is the height of
the image while W is the width of the image all in pixels.

FIG. 4. ReLU activation function

Our implementation of the CVN architecture in Fig. 3
was developed in the PyTorch deep learning framework.
In our code we implemented and utilized a total of four
PyTorch modules. A PyTorch module is a class for all
PyTorch Neural Network modules. PyTorch modules are
also able to be nested with each other and this is some-
thing we heavily utilized to implement the architecture
in Fig. 3. The first PyTorch module we implemented
was for a simple convolutional block that we nested in
our Inception Modules. In all of our convolutional layers
we utilized the Rectified Linear Unit (ReLU) activation
function in Fig. 4 in order to introduce nonlinearities to
our network.

The second PyTorch module we implemented was the
Inception Module architecture in Fig. 5. The Inception
Module is utilized in deep neural networks in order to
reduce the computational expense when training these
networks on large datasets and it is also utilized for di-
mensionality reduction. In the order of left to right in
Fig. 5, we first start with taking in the data from our
previous layer and applying a 1x1 Convolution. The 1x1
convolution is special because this allows the network to
learn more across the channel depth of the image. A 1x1
convolution is also beneficial due to the dimensionality



3

reduction it provides such as reducing the height, width,
and channels of the image. Next in the Inception Module
we have the 1x1 convolution followed by a 3x3 convolu-
tion as well as a 1x1 convolution followed by a 5x5 con-
volution. The purpose of the 3x3 and 5x5 convolutions
here are to learn different spatial patters of the image
at different kernel sizes. The ability to learn these rep-
resentations at different kernel sizes of our convolutions
is important because this allows the network to have a
better performance in its classification task as it will be
able to learn distinct features from our image data. Fi-
nally, in the Inception Module we have the 3x3 pooling
layer followed a 1x1 convolution. This final branch of
the Inception Module starts with a down sampling of the
height and width of our image data with a 3x3 average
pool. However, we add padding in this pooling layer in
order to maintain the same height and width of the other
branch outputs within our Inception module and finally
we pass the output of 3x3 average pooling to our last
1x1 convolution. Next, we concatenate the outputs of all
branches in our Inception Module along the channels di-
mension as pass in this data to the next step in the CVN
architecture in Fig. 3.

The third PyTorch module we implemented was the
generic x-view and y-view model. This PyTorch module
consisted of implementing both the left and right branch
of the CVN architecture in Fig. 3. In this architecture we
start with taking in our data with shape [N, 1, 256, 256]
then passing it along a 7x7 convolutional layer, then a
max pooling layer. Next, we have a Local Response Nor-
malization (LRN), the LRN is used because of our use
of the ReLU activation function for each convolutional
layer in our architecture. We can see in Fig. 4 that
the ReLU activation function is unbounded therefore we
need a method to normalize our values and to prevent
this unbounded nature. The use of LRN comes from the
field of Neurobiology because we want to encourage lat-
eral inhibition which is the ability of excited neurons to
limit the capacity and activity of surrounding neurons.
In other words, this translates to our research because
in our CVN we want to be able to boost the active neu-
rons that are firing and have larger activations but we
first need to normalize our data before we can determine
which ReLU neurons have largest activations. After pass-
ing our data through more convolutional layers, pooling
layers, and performing LRN we arrive at the Inception
modules. In this PyTorch module we call three Incep-
tion Modules that we constructed as PyTorch modules
for each view of the data.

Our final PyTorch module consisted of combining all
of our previous PyTorch modules and having a single
callable module that can implement the entire architec-
ture in Fig. 3. This module combines the outputs of
both the x-view and y-view networks along the channels
dimension then passes in this data to another Inception
Module, then we perform a max pool. In order to per-
form our classification task, we introduce two fully con-
nected layers in order to expand our data. The number

of neurons in the first fully connected layer is the result
of the C ∗H ∗W of the previous layer before passing it
into the fully connected layer. Next we apply the ReLU
activation function to this first fully connected layer and
pass our outputs to our final fully connected layer which
has output dimensions of five for our five classes in our
classification task. Finally, we end the network by ap-
plying the softmax activation function to our final fully
connected layer in order to attain the probabilities that
each image class corresponds to the image being passed
in.

FIG. 5. Inception Module

ResNet50 (Fig. 6) is known for its iconic skip connec-
tions and its strong capability to classify image data.
ResNet50 was one of the models we want to compare
classification performance with CVN. However, they are
quite different in the number of parameters. To make the
2 models’ number of parameters comparable, we decided
to exclude ResNet50’s conv5 block. A detailed descrip-
tion of ResNet architecture can be found in [2]. The
model becomes ResNet41 7, as there are 9 layers in the
cfg3 block that we excluded. ResNet41 is the second
model we ended up using, instead of ResNet50. When
training ResNet41, we used droupout 0.2 to prevent over-
fitting.

FIG. 6. Original ResNet-50 Network Visualization.

The third model we chose is a mix of CVN and



4

FIG. 7. ResNet-41 Network Visualization.

ResNet. We replaced all the CVN’s inception modules
with ResNet’s skip connections. We name it ’2 view
ResNet.’ The architecture backbone of the network is
from CVN, and we swapped out the inception module
and use the skip connection from ResNet.

For all 3 networks, we use Adam as the optimizer, cross
entropy as loss function, initial learning rate of 0.0005.
And we train each of the nework for 150 epochs. 2-view
ResNet has 3.12 million parameters. The number of pa-
rameters of NesNet41 is around 3.78 million. CVN has
around 6.29 million parameters.

IV. RESULTS

FIG. 8. CVN Accuracy and Loss Curves

Fig.8 shows overfitting of network and this could also
be due to only utilizing 10% of the dataset for training
and another 10% for validation. We can see from the
start that our training data is achieving a lower loss than
our validation data which means that our training data
could be memorizing our training data and it’s not per-
forming well on unseen data.

In our accuracy curves of our CVN network in Fig.
8 we can also see that that we achieve a much higher
accuracy with our training data while our validation data
peaks at an accuracy of around 60%.
The results of ResNet41 Fig.9 and 2 view ResNet

Fig.10 both shows some amount of overfitting like CVN.

FIG. 9. ResNet41 Accuracy and Loss Curves

And we believe the analysis we did in CVN can also be
applied here.

FIG. 10. 2-view-ResNet Accuracy and Loss Curves

V. CONCLUSION

Due to the limited CPU speed on DSMLP, we are not
able to load the whole dataset onto DSMLP. We chose
to only use 10% of the dataset as training data, and an-
other 10% for testing and validation purposes. These
two 10% subsets are mutually exclusive. Once we switch
to a different platform which could allow us to train a
even larger dataset, we expect to see less overfitting in
all 3 graphs. Based on the accuracy plots of the 3 net-
works, it is still unclear which network would be the
best classifier, because all 3 of them exhibits some de-
gree of overfitting. But based on the performance of our
3 models after 150 epochs of training, CVN has maxi-
mum validation accuracy of 64.2%, ResNet41 and 2-view
ResNet achieved 60.8% and 59.8%, respectively.
All of our code for this project can be found in our

github page.

https://github.com/cpareja3025/phys139-239_final_project


5

[1] A. Aurisano, A. Radovic, D. Rocco, A. Himmel,
M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa,
and P. Vahle, A convolutional neural network neutrino
event classifier, Journal of Instrumentation 11 (09),

P09001.
[2] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learn-

ing for image recognition, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2016)
pp. 770–778.

https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1088/1748-0221/11/09/P09001
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90

	Application of Neural Networks to Neutrino Interaction Identification
	Abstract
	Introduction
	Dataset
	Methods
	Results
	Conclusion
	References


