Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm
Final version due: Wednesday, January 25, 2023, 5:00pm

Policies
® Draft version due 5:00pm, Friday, January 20 on Gradescope (report and code).
¢ Final version due 5:00pm, Wednesday, January 25 on Gradescope (report and code).

* You are free to collaborate on all of the problems, subject to the collaboration policy stated in the
syllabus.

* You should submit all code used in the homework. Please use Python 3 and sklearn version >0.18
for your code, and that you comment your code such that the TA can follow along and run it without
any issues.

Submission Instructions

PLEASE NOTE that there are two steps to submitting your Homework. Both must be submitted by the
deadline.

® Please submit your report as a single .pdf file to Gradescope under “Homework 1 Report Draft” or
“Homework 1 Report Final”. In the report, include any images generated by your code along with
your answers to the questions. For instructions specifically pertaining to the Gradescope submission
process, see https://www.gradescope.com/get_started#student-submission.

¢ Please submit your code as a .zip archive to Gradescope under “Homework 1 Code Draft” or “Home-
work 1 Code Final”. The .zip file should contain your code files. Submit your code either as Jupyter
notebook .ipynb files or .py files.

https://www.gradescope.com/get_started#student-submission

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm
Final version due: Wednesday, January 25, 2023, 5:00pm

1 Basics [16 Points]

Relevant materials: lecture 1

Answer each of the following problems with 1-2 short sentences.
Problem A [2 points]: What is a hypothesis set?

Problem B [2 points]: What is the hypothesis set of a linear model?
Problem C [2 points]: What is overfitting?

Problem D [2 points]: What are two ways to prevent overfitting?

Problem E [2 points]: What are training data and test data, and how are they used differently? Why
should you never change your model based on information from test data?

Problem F [2 points]: What are the two assumptions we make about how our dataset is sampled?

Problem G [2 points]: Consider the machine learning problem of classifying neutrino interaction events
as in slide 14 of lecture 1. What could X, the input space, be? What could Y/, the output space, be?

Problem H [2 points]: What is the k-fold cross-validation procedure?

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm
Final version due: Wednesday, January 25, 2023, 5:00pm

2 Bias-Variance Tradeoff [39 Points]

Relevant materials: lecture 1

Problem A [5 points]: Derive the bias-variance decomposition for the squared error loss function. That is,
show that for a model fg trained on a dataset S to predict a target y(z) for each z in the input space X,

Es [Eout (fs)] = E;[Bias(x) 4+ Var(z)] 1)
given that F'(x) is the “average function” over all possible datasets .S
F(z) = Es [fs(z)])

the out-of-sample error for a particular trained model is

Eou(fs) = Ea [(fs(2) - y(@))’] ®

and we define the bias for a given data sample Bias(z) by how much the average function deviates from
the target function

Bias(x) = (F(z) — y(x)) @)
and the variance for a given data sample Var(z) measures
Var(z) = Es [(fs(x) — F(2))?] (5)
Problem B [5 points]: When there is noise in the data, the out-of-sample error is
Eout(fs) = Eu 2 [(fs(x) — 2())?] (6)

where z(z) = y(z) + €. If € is a Gaussian-distributed random variable with mean of zero and variance o2,
show that the bias-variance decomposition becomes

Es [Eout (f5)] = Eq[Bias(x) + Var(2)] + o %
Hint: Given the mean of e is zero,
E, .l = By e = Ecfe] =0 ®)
Likewise,
Es.[?] = E[e®] = Ec[(c ~ Eld)?] = o 9)

by the definition of variance.

Problem C [14 points]: In the following problems, you will explore the bias-variance tradeoff by producing
learning curves for polynomial regression models.

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm
Final version due: Wednesday, January 25, 2023, 5:00pm

A learning curve for a model is a plot showing both the training error and the cross-validation error as a
function of the number of points in the training set. These plots provide valuable information regarding
the bias and variance of a model and can help determine whether a model is over- or under-fitting.

Polynomial regression is a type of regression that models the target y as a degree-d polynomial function of
the input z. (The modeler chooses d.) You don’t need to know how it works for this problem, just know
that it produces a polynomial that attempts to fit the data.

Use the provided 2_notebook.ipynb Jupyter notebook to enter your code for this question. This note-
book contains examples of using NumPy’s polyfit and polyval methods, and Scikit-learn’s KFold
method; you may find it helpful to read through and run this example code prior to continuing with this
problem. Additionally, you may find it helpful to look at the documentation for Scikit-learn’s learning_-
curve method for some guidance.

The dataset bv_data.csv is provided and has a header denoting which columns correspond to which
values. Using this dataset, plot learning curves for 1st-, 2nd-, 6th-, and 12th-degree polynomial regression
(4 separate plots) by following these steps for each degree d € {1,2,6,12}:

1. For each N € {20, 25, 30,35, ...,100}:
i. Perform 5-fold cross-validation on the first IV points in the dataset (setting aside the other points),
computing the both the training and validation error for each fold.

¢ Use the mean squared error loss as the error function.

¢ Use NumPy’s polyfit method to perform the degree-d polynomial regression and NumPy’s
polyval method to help compute the errors. (See the example code and NumPy documen-
tation for details.)

* When partitioning your data into folds, although in practice you should randomize your
partitions, for the purposes of this set, simply divide the data into K contiguous blocks.

ii. Compute the average of the training and validation errors from the 5 folds.

2. Create a learning curve by plotting both the average training and validation error as functions of N.

Problem D [3 points]: Based on the learning curves, which polynomial regression model (i.e. which
degree polynomial) has the highest bias? How can you tell?

Problem E [3 points]: Which model has the highest variance? How can you tell?

Problem F [3 points]: What does the learning curve of the quadratic model tell you about how much the
model will improve if we had additional training points?

Problem G [3 points]: Why is training error generally lower than validation error?

Problem H [3 points]: Based on the learning curves, which model would you expect to perform best on
some unseen data drawn from the same distribution as the training data, and why?

https://docs.scipy.org/doc/NumPy/reference/routines.polynomials.poly1d.html
https://docs.scipy.org/doc/NumPy/reference/routines.polynomials.poly1d.html

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm
Final version due: Wednesday, January 25, 2023, 5:00pm

3 The Perceptron [14 Points]

Relevant materials: lecture 2

The perceptron is a simple linear model used for binary classification. For an input vector x € R?, weights
w € R?, and bias b € R, a perceptron f : R? — {—1, 1} takes the form

d
f(x) = sign ((Z wz;m) + b)

The weights and bias of a perceptron can be thought of as defining a hyperplane that divides R? such that
each side represents an output class. For example, for a two dimensional dataset, a perceptron could be
drawn as a line that separates all points of class +1 from all points of class —1.

The perceptron learning algorithm (PLA) is a simple method of training a perceptron. First, an initial guess
is made for the weight vector w. Then, one misclassified point is chosen arbitrarily and the w vector is
updated by

w1 = we +y(t)x(t)
biv1 = b +y(t),

where x(t) and y(t) correspond to the misclassified point selected at the ™ iteration. This process continues
until all points are classified correctly.

The following few problems ask you to work with the provided Jupyter notebook for this problem, titled
3_notebook.ipynb. This notebook utilizes the file perceptron_helper.py, but you should not need
to modify this file.

Problem A [8 points]: The graph below shows an example 2D dataset. The + points are in the +1 class
and the o point is in the —1 class.

Figure 1: The green + are positive and the red o is negative

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm
Final version due: Wednesday, January 25, 2023, 5:00pm

Implement the update_perceptron and run_perceptron methods in the notebook, and perform the
perceptron algorithm with initial weights w; = 0,ws = 1,0 = 0.

Give your solution in the form a table showing the weights and bias at each time step and the misclassified
point ([z1, z2],y) that is chosen for the next iteration’s update. You can iterate through the three points in
any order. Your code should output the values in the table below; cross-check your answer with the table
to confirm that your perceptron code is operating correctly.

t|b w wy | T x2 | Y
0|0 O 1 1 -2 | +1
111 1 -1]10 3 +1
212 1 2 1 -2 | +1
313 2 0

Include in your report both: the table that your code outputs, as well as the plots showing the perceptron’s
classifier at each step (see notebook for more detail).

Problem B [4 points]: A dataset S = {(x1,1), -, (xn,yn)} C R? x R is linearly separable if there exists a
perceptron that correctly classifies all data points in the set. In other words, there exists a hyperplane that
separates positive data points and negative data points.

In a 2D dataset, how many data points are in the smallest dataset that is not linearly separable, such that no
three points are collinear? How about for a 3D dataset such that no four points are coplanar? Please limit
your solution to a few lines—you should justify but not prove your answer.

Finally, how does this generalize for an N-dimensional set, in which no < N-dimensional hyperplane
contains a non-linearly-separable subset? For the N-dimensional case, you may state your answer without
proof or justification.

Problem C [2 points]: Run the visualization code in the Jupyter notebook section corresponding to ques-
tion C (report your plots). Assume a dataset is not linearly separable. Will the PLA ever converge? Why or
why not?

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm
Final version due: Wednesday, January 25, 2023, 5:00pm

4 TensorFlow Playground [14 Points]

The purpose of this problem is to build some intuition around linear models and neural networks.

Problem A [6 points]: Navigate your web browser to the TensorFlow Playground (https://playground.
tensorflow.org/#networkShape=&¢dataset=xor&discretize=true). Select the checkerboard pat-
tern for the data, which is known as the XOR dataset. The data is sampled from a 2D probability density
distribution represented by (z1,x2). The regions z1,z2 > 0 and z1, 22 < 0 have a target value y = +1 and
are shown as blue data points, while the regions z; > 0,22 < 0 and z; < 0,22 > 0 have a target value of
y = —1 and are shown as orange data points.

First, select a linear model with no hidden layers. For the features, select the two independent variables z;
and z,. Can you fit the data with this linear model? Why or why not? What happens if you add the feature
T122?

Now, return the features to just (z1, z2) and start adding hidden layers. What's the smallest neural network
(least number of layers and least number of neurons per layer) you can create that fits the training data
“perfectly” (i.e. a training loss <0.001)? What is the corresponding test loss? Detail your hyperparameter
choices by providing a screenshot and the URL to your solution (the URL contains all your settings choices).

Problem B [8 points]: Navigate your web browser to the TensorFlow Playground https://playground.
tensorflow.org/#dataset=spiral&ediscretize=true. Select the spiral pattern for the data.

Using all the features available, find a solution that fits the training data. What training and test error do
you achieve? Is this a low bias/high variance or high bias/low variance model? How do you know?

Using only (x1, x2), find a solution that fits the training data. What training and test error do you achieve?
Is this a low bias/high variance or high bias/low variance model? How do you know?

For both solutions, detail your hyperparameter choices by providing a screenshot and the URL to your
solution (the URL contains all your settings choices).

Bonus: Can you find two engineered features that would allow you to find a solution with a linear model?

https://playground.tensorflow.org/#networkShape=&dataset=xor&discretize=true
https://playground.tensorflow.org/#networkShape=&dataset=xor&discretize=true
https://playground.tensorflow.org/#dataset=spiral&discretize=true
https://playground.tensorflow.org/#dataset=spiral&discretize=true

