
Machine Learning in Physics UCSD PHYS 139/239
Homework 2 Draft version due: Friday, February 3, 2023, 5:00pm

Final version due: Wednesday, February 8, 2023, 5:00pm

Policies
• Draft version due 5:00pm, Friday, February 3 on Gradescope (report and code).

• Final version due 5:00pm, Wednesday, February 8 on Gradescope (report and code).

• You are free to collaborate on all of the problems, subject to the collaboration policy stated in the
syllabus.

• You should submit all code used in the homework. Please use Python 3 and sklearn version ≥0.18
for your code, and that you comment your code such that the TA can follow along and run it without
any issues.

Submission Instructions
PLEASE NOTE that there are two steps to submitting your Homework. Both must be submitted by the
deadline.

• Please submit your report as a single .pdf file to Gradescope under “Homework 2 Report Draft” or
“Homework 2 Report Final”. In the report, include any images generated by your code along with
your answers to the questions. For instructions specifically pertaining to the Gradescope submission
process, see https://www.gradescope.com/get_started#student-submission.

• Please submit your code as a .zip archive to Gradescope under “Homework 2 Code Draft” or “Home-
work 2 Code Final”. The .zip file should contain your code files. Submit your code either as Jupyter
notebook .ipynb files or .py files.
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1 Stochastic Gradient Descent [36 Points]
Relevant materials: lecture 2

Stochastic gradient descent (SGD) is an important optimization method in machine learning, used every-
where from logistic regression to training neural networks. In this problem, you will be asked to first
implement SGD for linear regression using the squared loss function. Then, you will analyze how several
parameters affect the learning process.

Linear regression learns a model of the form:

f(x1, x2, · · · , xd) =

(
d∑

i=1

wixi

)
+ b

Problem A [2 points]: We can make our algebra and coding simpler by writing f(x1, x2, · · · , xd) = wᵀx for
vectors w and x. But at first glance, this formulation seems to be missing the bias term b from the equation
above. How should we define x and w such that the model includes the bias term?

Hint: Include an additional element in w and x.

Linear regression learns a model by minimizing the squared loss function L, which is the sum across all
training data {(x1, y1), · · · , (xN , yN )} of the squared difference between actual and predicted output values:

L(f) =

N∑
i=1

(yi −wᵀxi)
2 (1)

Problem B [2 points]: SGD uses the gradient of the loss function to make incremental adjustments to the
weight vector w. Derive the gradient of the squared loss function with respect to w for linear regression.

The following few problems ask you to work with the first of two provided Jupyter notebooks for this prob-
lem, 1_notebook_part1.ipynb, which includes tools for gradient descent visualization. This notebook
utilizes the files sgd_helper.py and sgd_multiopt_helper.py, but you should not need to modify
either of these files.
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For your implementation of problems C–E, do not consider the bias term.

Problem C [8 points]: Implement the loss, gradient, and SGD functions, defined in the notebook, to
perform SGD, using the guidelines below:

• Use a squared loss function.

• Terminate the SGD process after a specified number of epochs. Each epoch corresponds to one full
pass over the entire dataset. One SGD iteration (weight update) is performed for each point in the
dataset. So one epoch is equivalent to N gradient updates, where N is the size of the dataset.

• It is recommended, but not required, that you shuffle the order of the points before each epoch such
that you go through the points in a random order. You can use numpy.random.permutation.

• Measure the loss after each epoch. Your SGD function should output a vector with the loss after each
epoch, and a matrix of the weights after each epoch (one row per epoch). Note that the weights from
all epochs are stored in order to run subsequent visualization code to illustrate SGD.

Problem D [2 points]: Run the visualization code in the notebook corresponding to problem D. How
does the convergence behavior of SGD change as the starting point varies? How does this differ between
datasets 1 and 2? Please answer in 2–3 sentences.

Problem E [6 points]: Run the visualization code in the notebook corresponding to problem E. One of the
cells—titled “Plotting SGD Convergence”—must be filled in as follows. Perform SGD on dataset 1 for each
of the learning rates η ∈ {10−6, 5× 10−6, 10−5, 3× 10−5, 10−4}. On a single plot, show the training error vs.
number of epochs trained for each of these values of η. What happens as η changes?

The following problems consider SGD with the larger, higher-dimensional dataset, sgd_data.csv. The
file has a header denoting which columns correspond to which values. For these problems, use the Jupyter
notebook 1_notebook_part2.ipynb.

For your implementation of problems F–H, do consider the bias term using your answer to problem A.

Problem F [6 points]: Use your SGD code with the given dataset, and report your final weights. Follow
the guidelines below for your implementation:

• Use η = e−15 as the step size.

• Use w = [0.001, 0.001, 0.001, 0.001] as the initial weight vector and b = 0.001 as the initial bias.

• Use at least 800 epochs.

• You should incorporate the bias term in your implementation of SGD and do so in the vector style of
problem A.

• Note that for these problems, it is no longer necessary for the SGD function to store the weights after
all epochs; you may change your code to only return the final weights.
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Problem G [2 points]: Perform SGD as in the previous problem for each learning rate η in

{e−10, e−11, e−12, e−13, e−14, e−15},

and calculate the training error at the beginning of each epoch during training. On a single plot, show
training error vs. number of epochs trained for each of these values of η. Explain what is happening.

Problem H [2 points]: The closed form solution for linear regression with least squares is

w =

(
N∑
i=1

xixi
ᵀ

)−1( N∑
i=1

xiyi

)
.

Compute this analytical solution. Does the result match up with what you got from SGD?

Answer the remaining questions in 1–2 short sentences.

Problem I [2 points]: Is there any reason to use SGD when a closed form solution exists?

Problem J [2 points]: Based on the SGD convergence plots that you generated earlier, describe a stopping
condition that is more sophisticated than a pre-defined number of epochs.

Problem K [2 points]: How does the convergence behavior of the weight vector differ between the per-
ceptron and SGD algorithms?

2 Neural networks vs. boosted decision trees [45 Points]
Relevant materials: lectures 4–6

In this problem, you will compare the performance of neural networks and boosted decision trees for binary
classfication on a tabular dataset, namely the MiniBooNE dataset: https://archive.ics.uci.edu/
ml/datasets/MiniBooNE+particle+identification.

This dataset is taken from the MiniBooNE experiment and is used to distinguish electron neutrinos (signal)
from muon neutrinos (background) The dataset contains 130,065 samples with 50 features and a single
binary label. We will randomly split the dataset into training (80%) and testing (20%) subsets.

We will use 2_notebook_part1.ipynb for parts A and B and 2_notebook_part1.ipynb for parts C,
D, and E.

Problem A [15 points]: Using the MiniBooNE dataset and XGBoost, train a boosted decision tree on the
training dataet. Use the Scikit-learn API xgboost.XGBClassifier. For an initial choice of hyperparam-
eters use 100 trees (n_estimators), maximum tree depth (max_depth) of 10, learning rate (learning_-
rate) of 0.1, colsample_bytree of 0.8, and subsample of 0.8.

Plot the receiver operating characteristic (ROC) curve using the testing dataset. What area under the curve
(AUC) and accuracy do you achieve “out of the box”?

Problem B [5 points]: Plot the F -score for all the 10 “most important” features using xgboost.plot_-

4

https://archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification
https://archive.ics.uci.edu/ml/datasets/MiniBooNE+particle+identification


Machine Learning in Physics UCSD PHYS 139/239
Homework 2 Draft version due: Friday, February 3, 2023, 5:00pm

Final version due: Wednesday, February 8, 2023, 5:00pm

importance. Which feature is the most important?

Plot this feature using the testing dataset in a 1D histogram separately for signal and background. For the
histogram binning, use 100 bins from the minimum value of this feature to the maximum value of this
feature in the testing dataset. What do you notice about this feature?

Problem C [15 points]: Using the MiniBooNE dataset and the Keras Model API, train a neural network
with 3 hidden layers each with 128 units and tanh activations. The final layer should have sigmoid activa-
tion. Use the binary crossentropy loss function, the SGD optimizer with a learning rate of 0.01 (which is the
default), and a batch size of 128. Train the model for 50 epochs.

Plot the receiver operating characteristic (ROC) curve using the testing dataset. What AUC and accuracy
do you achieve “out of the box”?

Problem D [5 points]: Swap out the tanh activations for ReLU activations, while keeping everything else
the same. Does the network train effectively? Why or why not?

Problem E [5 points]: Now, we will make two minor changes to the network with ReLU activations:
preprocessing and the optimizer.

For the feature preprocessing use sklearn.preprocessing.StandardScaler to standardize the input
features. Note you should use fit the standard scaler to the training data only and apply it to both the
training and testing data. For the optimizer, use Adam with a learning rate of 0.001 (which is the default)
instead of SGD. Train the model for 50 epochs.

Plot the receiver operating characteristic (ROC) curve using the testing dataset. What AUC and accuracy
do you achieve now? Is it comparable to the BDT?
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