PHYS 139/239:
Machine Learni
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Javier Duarte — January



Welcome to PHYS 139/239

* Fill out the pre-course survey: https://forms.gle/GPLWESQKeYApiui4A
» |et’s review the syllabus:
» jduarte.physcis.ucsd.edu/phys139 239/syllabus.pdf

* |nstructor: Javier Duarte (Jduarte@ucsd.edu), office hours: TuTh 2:00-3:00pm
(right after class) in MHA 5513 and on Zoom

* TA: Xiaoche Wang (xiw067@ucsd.edu), Office hours TBD
* | earning outcomes:
* Find, explore, select, and preprocess scientific data
 Choose and design machine learning models
 Evaluate model performance and compare to standard benchmarks
 Debug machine learning workflows
* Relate model inputs and outputs to underlying physics concepts
* Collaborate with peers to tackle complex, realistic problems
* Present findings
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Assignment breakdown

e 50% Homework
 10% Participation in class/via Slack and completion of exit tickets
e 20% Midterm: Written proposal for group project

e 20% Final: Written group project summary, presentation, self-evaluation, and
code



Homework

o Half of grade will be from turning in draft Fridays at 5:00pm
e Graded on effort (on all problems)
» Solution released shortly afterward

» Half of grade will be from turning in complete/revised solution Wednesdays at
5:00pm

 Graded on correctness and effort (on all problems)
* Report (pdf file) uploaded to Gradescope
 Code (zip file) uploaded to Canvas

* First homework will be released tomorrow, Wednesday 1/11



Midterm + final project

* Final project (due Finals Week): Reproduce or extend an existing, published
ML in physics paper in groups of ~4

 Some suggested articles and datasets found in the syllabus
 But feel free to get creative!

e Deliverables:
(1) 4-page paper describing methods and results,
(2) code (in public GitHub repository),
(3) 20-minute presentation delivered by group during finals week, and
(4) self and peer evaluations for group contributions

 Midterm (due Week 7): 2-page project proposal for instructors to check and
make sure it’s feasible, etc.,



Recommended reading

* No required textbook, but if you're having trouble following lectures, or
haven’t seen some of the introductory material before, there are some
recommended (many free!) textbooks are in the syllabus

* For early lectures, recommend: amlbook.com TG
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Exit tickets

O = PHYS 139/239 Exit Ticket X +

< C (¢ @& docs.google.c.. % [ % Incognito ~ *

e EXit tickets: https//formsgle/4DmGSSjBUEI\/I5pe6U8 PHYS 139/239 Exit Ticket
* Designed to see how you felt about the lecture,
what you took away, whether you have any
further questions or feedback

* Filling it out will go toward the 10% participation score

Which lecture is this exit ticket for? *
Date

mm/dd/yyyy B


https://forms.gle/4DmG5SjBUEM5pe6U8

DataHub

 We will use DataHub for in-
class hands-on portions

x +

& > C (Y & datahub.ucsd.edu/hub/login?next=%2Fhub%2F

« Recommend to use it for
homework, final project, etc.

DATA SCIENCE / MACHINE LEARNING PLATFORM UCSan Diego

Information Technology Services - Academic Technology Services

» Address: datahub.ucsd.edu T

e Similar to public, free services R
Google Colab. but with access UC San Diego Jupyterhub (Data Science) Platform

If you are unable to log in: Please try opening a private/incognito window in your browser | FAQ

to better CPUs and GPUs and Student Resources Instructor Resources
e Datahub/DSMLP Cluster Status » Request Datahub/DSMLP - Instructional Technology
ru n by U < :S D * Independent Study Access Request Request (CINFO)

e Data Science Resources ¢ |nstructor Guidance for Datahub/DSMLP

e Datahub/DSMLP Knowledge Base e Educational Technology Services Instructional Github
o Launching Containers from the Command Line ¢ Blink Documentation

o Configuring Your Container Launch ¢ Datahub Grading Tools

 Provides a “Jupyter notebook” et s o o
interface (Python-based but
interactive coding like
MATLAB/Mathematica)

A uina Annicnraants and aradans arith vaiir Oanvian


http://datahub.ucsd.edu

Slack

e Join the Slack workspace for the course:

https.//join.slack.com/t/ucsdphys139/shared invite/zt-110gwd4Ix-
pZBsltfcxhbOD5BV6afVDA

» Tutorial: https://slack.com/help/categories/360000049063

 Feel free to create channels to collaborate with others, etc.


https://join.slack.com/t/ucsdphys139/shared_invite/zt-110gwd4lx-pZBsItfcxhbOD5BV6afVDA
https://join.slack.com/t/ucsdphys139/shared_invite/zt-110gwd4lx-pZBsItfcxhbOD5BV6afVDA
https://slack.com/help/categories/360000049063

Course overview

* Supervised learning

* (Boosted) decision trees — tabular data

e (Deep) neural networks — tabular data

* Convolutional neural networks — image-like data

* (Graph neural networks — graph-like data and point clouds
* Unsupervised learning

* (Variational) autoencoders for anomaly detection
 Model compression
e Special topics via guest lectures (TBC)

e Equivariant models

* (Generative models

* Reinforcement learning

* Explainabllity

* Uncertainty
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What is machine learning?

 Science and art of learning automatically from data and experience

Also, a lot of calculus, linear

algebra, statistics, group theory, ...

THIS 1S YOUR MACHINE LEARNING SYSTETM?

| YUP! YoU POUR THE DATA INTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTER SIDE.

l
WHAT IF THE ANSLERS ARE LJRONG? )

JUST STiR THE PILE UNTIL
THEY START LOOKING RIGHT.

» Large overlap with data mining:

ML focuses on algorithms,
DM on discovering patterns
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NeurlPS 2021 Tutorial:

Machine Iearning In physics neurips.cc/virtual/2021/tutorial/21896

Physics meets ML.:

 Two interrelated themes physicsmeetsml.org
NeurlPS ML4PS Workshop:
» ML for physics research ml4physicalsciences.github.io

ICLR Physics4ML Workshop:

» ML applied to physics data, which may be =~ Rhysicsaml.github.io
uniqgue or different from typical data used

fOr ML Observational bias Inductive bias Learning bias
* e.g. physics data can be “noisy” but In O A
well characterized ways related to \ /o \ —
SENSsors l l
Physics-informed machine learning
» Physics for ML research l

* Physics-based algorithms, embedded
symmetries, physical inductive bias
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* |ots of overlapping ideas! .


https://neurips.cc/virtual/2021/tutorial/21896
http://www.physicsmeetsml.org/
https://ml4physicalsciences.github.io/
https://physics4ml.github.io/

Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥;), (X5, ¥5), - - ., (Xn» Yn)-

 Example 1: Predict stellar radius given stellar mass

1.4
1.05 o
0.7
0.35 ¢
0 ~
-0.35 ¢
-0.7 o
-1.05 o
-1.4

log10(R/R©®)

-1.5 -1 -0.5 0 0.5 1 1.5 2
log10(M/M©)
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Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥;), (X5, ¥5), - - ., (Xn» Yn)-

 Example 2: Classify images of
neutrino interactions
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https://arxiv.org/abs/1604.01444

Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥{), (X5, ¥5), - - ., (Xn» V)

 Example 3: Reduce noise in a time-series trace to identify a gravitational wave
signal A | | _arXiv:1711.03121

Whitened Strain

0.0 0.2 0.4 0.6 0.8 1.0
Time (S)


https://arxiv.org/abs/1711.03121

Supervised learning

» Learn a function f : X — Y from an input space X (observations) to an output
space Y (targets), using a set of labeled examples(x;, ¥;), (X5, ¥5), - - ., (Xn» Yn)-

 Example 4: Estimate particle momentum, charge, type, etc. from detector hits

Silicon %# #u

Hadron

Calorimeter Superconducting
Solenoid Iron return yoke interspersed

with Muon chambers
Tm 2m 3m 4 m 5m 6m

Tracker '
Electromag netic® ' ' |
Calorimeter

arXiv:2101.08578 16



https://arxiv.org/abs/2101.08578

Why are these problems hard?

* EXxpert-engineered solutions are

 Complicated to write and maintain
* Require decades of domain knowledge (physics, engineering, ...)
* But, they are interpretable/understandable (to experts)

* Until recently, they are the standard (“baseline”) in physics experiments

| standalone muons

charged hadrons ‘

“\ linked MUONS ‘
muon/track
linking neutral hadrons I
(closest in pr) p 3 @@
| tracks “ 0 955 : : . g
] [eof Highly simplified flow chart of
electromagnetic/ &St particle reconstruction in CMS
i track linkin St -
elecc;cl'frrinrr?egtr]eel'tlc et ) — l l calorimeter/track] [arX|V.1 808.02 094]

linking

. (based on pr and AR)
C|U§terl[19, electromagnetic+hadronic »r
calibration subtract

electrons/photons
.

| hadronic calorimeter

* Problem might inherently require dataw(variations In detectors or over time, etc.)


https://arxiv.org/abs/1808.02094

Machine learning as an alternative approach

* Collect a labeled training set (supervision)

» Often requires simulation where the “ground truth” is known
1.4
1.05
0.7
0.35
0
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1.4
15 -1 -05 0 05 1 15 2

log10(M/M©)
* Train a model using a learning algorithm (find patterns in the data)

log10(R/R©®)
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log10(R/R©®)

-0.35

Types of supervised learning algorithms
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 Regression: predict real values

yeY=I

or |

n

* + more (e.g., object detection)
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e Classification: predict a class
yeY=1{0,1,...,n—1} froma
fixed finite set



log10(R/R©®)

Linear regression

1.4 o |Let’s try to fit a straight line:

1.05
0.7
0.35
0
-0.35
-0.7
-1.05

1.4 D) L
15 -1 05 0 05 1 15 2 * Example: x = (x( ),X( )) where

f(x|w,b) = wx + b (linear model)

D.

 More generally, if x € |

fix|w,b) =wix+b (we RP)

log10(M/M©)
xD = mass and
x?) = luminosity of star

= for | w, b) = wOxD 4 w@x® 4 b
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log10(R/R©®)

Linear regression

14 5 e Linear model (WLOG):

1.05

flxlw) = wix (w € RP*)
0.35

0  We can add a “dummy feature” x0) =1

035 to all input data x so that w“) acts as
0.7 bias:
1.05

1.4

45 1 05 0 05 1 15 o2
0g10(M/M®) fix|lw) = wOx @ 4y My 4 P)y(D)

T
b

21



log10(R/R©®)

Linear regression

1.4
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1.4

f(xi‘W)

-1.5 -1 -05 O 0.5 1 1.5

log10(M/M©)

X

l

e | Inear model:

Error

fix|w)=wlx (we R” h

« How do we select the parameters w??
« We want y: = f(x;|w)
. Squared loss: L(y, V) = (y — y')?

(Least squares)

N N
Learning objective: arg min Z L(y,, f(x;|w)) = arg min Z (v; — wT)cl-)2
W W

=1

22
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Optimizing the learning objective

N N
Learning objective: arg min 2 L(y;, f(x;|w)) = arg min Z (v; = WT)ci)2
w w

« Quadratic function of w can be minimized by setting the gradient equal to 0O:

0 < N |
ow() Z ;= whe)” = =2 Z (= wiwx” = 0
=1 =1

- Closed-form solution in terms of the “design matrix” X;; = xl.(j) and the column vector Y
consisting of the targets y::

w=XTX)"IXTy

(but if the dataset is very large, then it may be not feasible to use this closed-form
solution)
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log10(R/RO)

Getting more out of linear models

features / embedding of x

l

» Replace our input vector x with some ¢ (x) to make our model more expressive

. For example, if ¢p(x) = (1,x, x*) then our model becomes:

fx|w) = wigh(x) = wy + wix + wox?
1.4
1.05 .
0.7  The model is still linear in the
0'32 parameters w!
-0.35 ’ e More expressive than a line
_1'00'; Wy + wiX, so the fit is better
14 (i.e., training error is lower)

15 -1 -05 0 05 1 15 2
log10(M/M Q) 24



log10(R/R©®)

Different models extrapolate differently

24\ = 0.7091x - 0.0706 24 |\ = 0.106x2 + 0.7867x - 0.0083
1.45 . 1.45
. O
T
0.5 . g, 0.5
o
O O
-0.45 =~ -0.45
@,
"
1.4 1.4
1.5 -0.375 0.75 1.875 3 1.5 -0.375 0.75 1.875 3
log10(M/M©®) log10(M/M©®)
* Both models fit the training data well Extrapolation is very ditterent!
My HOBBY: EXTRAFOLATING
 What do they predict for a star 1,000 times more ' TN YoOL VR
massive than the sun (log,(M/M_) = 3)? o ) e
b N
+ First model: R = 114R_; Second model: R = 25R 2, o |




Linear models: workhorse of machine learning

Neural network: linear model after

* Linear models on top of good features inputs are mapped to features

can yield excellent results through a nonlinear transformation
Jxlwy,wy) = sza(wlTx)

 More complex model classes (e.g.,
neural networks) have linear models ® \
as their basic building block

=

14%)

e NNs are “automatic featurizers”
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Linear model: f(x|w) = wlx




Supervised learning pipeline (so far)

Training dataset: § = {(x{, ¥1), - - -, (Xn, Yn) } Where x € | Dandy el

Model / hypothesis class: f(x | w) = wlx (linear models)

\

Loss function: L(y, y") = (y — y)? (squared loss)

or ¢p(x) instead of x

The three ingredients above define the learning objective:

N
argmin ) L(y,f(x;| w))
izl
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But does your model generalize?

e Fitting the training dataset perfectly (error = 0) does not necessarily mean the
model will work well on new test data!

1.4 1.4
1.05 1.05
—~ 0.7 —~ 0.7
8 0.35 8 0.35
SN B
T 0 (L 0
=) S
o -0.35 o -0.35
o o
— -0.7 — -0.7
-1.05 -1.05
-1.4 -1.4
-1.5 -1 -0.5 0 0.5 1 1.5 2 -1.5 -1 -0.5 0 0.5 1 1.5 2
log10(M/M©) log10(M/M©)

Polynomial fit (degree 4): excellent on

Linear fit: ok on both training and testing training, bad on testing

28



But does your model generalize?

e Fitting the training dataset perfectly (error = 0) does not necessarily mean the
model will work well on new test data!

1.4 1.4
1.05 1.05 ¢
—~ 0.7 —~ 0.7
8 0.35 8 0.35
SN B
@ 0 (L 0
) )
o -0.35 o -0.35
O O
- -0.7 - -0.7
-1.05 -1.05
1.4 -1.4 -
-1.5 -1 -0.5 0 0.5 1 1.5 2 -1.5 -1 -0.5 0 0.5 1 1.5 2
log10(M/M©) log10(M/M©)
Polynomial fit (degree 2): good on Polynomial fit (degree 5): perfect on

both training and testing training, catastrophic on testing
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Test error

 Assuming that:

» There is a “true” probability distribution P(x, y) over all possible data (unknown to
us!)

» Each training data point (x;, y;) is sampled independently and identically distributed
(i.i.d.) from P(x, y)

» Then a trained model f(x | w) has a test error:

Lp(f) = = (x.y)~P(x.y) [L(y, f(x| W))] WS on all possible stars)
Expectation = P(2) [g(z)]:

* The training error is generally smaller than the test error average value of 2(z) when

Z I1s sampled from the
probability distribution P(z)

o Qverfitting: test error > training error

e Underfitting: training and test error are similar and both are high
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Expected test error

« We can consider the optimal set of model parameters w¢ as a function of the
training dataset S

Wg = arg min Z L(y,f(x|w))
" (ny)es

» S consists of NV i.i.d. samples from P(x, y) so the parameters wg are random
variables

* EXxpected test error:

= Lp(f(x | we)| = EgE xyyopiey) [LO x| W)

(fix model class f, loss function L, size of )

31



Bias-variance tradeoff

o |f L is the mean-squared-error loss, we can decompose the expected test
error:

- [LP(f (x| WS)]

=51 ()~ Px.y) [L(y J(x| WS))]

ey | Es [ wg) = FOOY] + (Fo) = 7|

Variance (Squared) bias

 where F(x) = kg [f(x | WS)] IS the average prediction of our model over
different possible training datasets

o \ariance: difference in predictions when training on different datasets

» Bias: difference from ground truth

32



Overfitting vs. underfitting

* Overfitting implies high variance (unstable
model class)

» Variance increases with model complexity

* \ariance decreases with more training
data

* Underfitting implies high bias

e Even with no variance, model class has
high error

* Underfitting happens whenever model
complexity is too low

33
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Model selection

We only have a finite training dataset
We cannot measure the true test error
Simple model classes underfit

| Bias-variance tradeoff
Complex model classes overfit

(but not so straightforward for deep neural networks!)

Goal: Select the model class with the lowest test error
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Validation set

Original dataset
* Split the original dataset into a training and validation set

* Train model on the training set
* Evaluate on the validation set to estimate the test error
» Select the model class that gives the lowest estimated error

* Optionally, re-train the selected model class on the whole dataset (training +
validation)

* Issue: we would like both training and validation sets to be as large as
possible (so that the estimate is better), but they must not overlap!
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k-fold cross-validation

 Split the original dataset into k equal parts (e.g, k = 5)

» Train on the k — 1 parts and validate on the remaining one

Original dataset

» Repeat for every choice of the k — 1 parts and average the validation errors

 Advantage: use all data as validation to improve the estimate of the test error,
at the cost of more computation (k trainings)
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Supervised learning pipeline

Training dataset: § = {(X{, ¥1), - - -, (Xn, Yn) } Where x € | Dandy el

Model / hypothesis class: f(x | w) = wlx (linear models)

\ or ¢p(x) instead of x

Loss function: L(y, y") = (y — y)? (squared loss)

Optimization algorithm to minimize the learning objective:

N
argmin ) L(y;,f0x;| w))

=1

Cross validation and model selection:

Testing and deployment

Important: if a testing set is available, never use it to make decisions on the model!
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Next time

* Perceptron learning algorithm

 Hands-on introduction to Jupyter and DataHub
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