
Javier Duarte — January 10, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 1: Introduction

1

Welcome to PHYS 139/239
• Fill out the pre-course survey: https://forms.gle/GPLwE5QKeYApiui4A

• Let’s review the syllabus:

• jduarte.physcis.ucsd.edu/phys139_239/syllabus.pdf

• Instructor: Javier Duarte (jduarte@ucsd.edu), office hours: TuTh 2:00-3:00pm
(right after class) in MHA 5513 and on Zoom

• TA: Xiaoche Wang (xiw067@ucsd.edu), Office hours TBD

• Learning outcomes:

• Find, explore, select, and preprocess scientific data

• Choose and design machine learning models

• Evaluate model performance and compare to standard benchmarks

• Debug machine learning workflows

• Relate model inputs and outputs to underlying physics concepts

• Collaborate with peers to tackle complex, realistic problems

• Present findings

2

https://forms.gle/GPLwE5QKeYApiui4A
http://jduarte.physcis.ucsd.edu/phys139_239/syllabus.pdf
mailto:jduarte@ucsd.edu
mailto:xiw067@ucsd.edu

Assignment breakdown
• 50% Homework

• 10% Participation in class/via Slack and completion of exit tickets

• 20% Midterm: Written proposal for group project

• 20% Final: Written group project summary, presentation, self-evaluation, and
code

3

Homework
• Half of grade will be from turning in draft Fridays at 5:00pm

• Graded on effort (on all problems)

• Solution released shortly afterward

• Half of grade will be from turning in complete/revised solution Wednesdays at
5:00pm

• Graded on correctness and effort (on all problems)

• Report (pdf file) uploaded to Gradescope

• Code (zip file) uploaded to Canvas

• First homework will be released tomorrow, Wednesday 1/11

4

Midterm + final project
• Final project (due Finals Week): Reproduce or extend an existing, published

ML in physics paper in groups of ~4

• Some suggested articles and datasets found in the syllabus

• But feel free to get creative!

• Deliverables:  
(1) 4-page paper describing methods and results,  
(2) code (in public GitHub repository), 
(3) 20-minute presentation delivered by group during finals week, and 
(4) self and peer evaluations for group contributions

• Midterm (due Week 7): 2-page project proposal for instructors to check and
make sure it’s feasible, etc.,

5

Recommended reading
• No required textbook, but if you’re having trouble following lectures, or

haven’t seen some of the introductory material before, there are some
recommended (many free!) textbooks are in the syllabus

• For early lectures, recommend: amlbook.com

• For hands-on Keras-based portions, recommend: 
deeplearningphysics.org

6

http://amlbook.com
http://deeplearningphysics.org/

Exit tickets
• Exit tickets: https://forms.gle/4DmG5SjBUEM5pe6U8

• Designed to see how you felt about the lecture,  
what you took away, whether you have any  
further questions or feedback

• Filling it out will go toward the 10% participation score

7

https://forms.gle/4DmG5SjBUEM5pe6U8

• We will use DataHub for in-
class hands-on portions

• Recommend to use it for
homework, final project, etc.

• Address: datahub.ucsd.edu

• Similar to public, free services
Google Colab, but with access
to better CPUs and GPUs and
run by UCSD

• Provides a “Jupyter notebook”
interface (Python-based but
interactive coding like
MATLAB/Mathematica)

DataHub

8

http://datahub.ucsd.edu

• Join the Slack workspace for the course:  
https://join.slack.com/t/ucsdphys139/shared_invite/zt-110gwd4lx-
pZBsItfcxhbOD5BV6afVDA

• Tutorial: https://slack.com/help/categories/360000049063

• Feel free to create channels to collaborate with others, etc.

Slack

9

https://join.slack.com/t/ucsdphys139/shared_invite/zt-110gwd4lx-pZBsItfcxhbOD5BV6afVDA
https://join.slack.com/t/ucsdphys139/shared_invite/zt-110gwd4lx-pZBsItfcxhbOD5BV6afVDA
https://slack.com/help/categories/360000049063

Course overview
• Supervised learning

• (Boosted) decision trees — tabular data

• (Deep) neural networks — tabular data

• Convolutional neural networks — image-like data

• Graph neural networks — graph-like data and point clouds

• Unsupervised learning

• (Variational) autoencoders for anomaly detection

• Model compression

• Special topics via guest lectures (TBC)

• Equivariant models

• Generative models

• Reinforcement learning

• Explainability

• Uncertainty

10

What is machine learning?
• Science and art of learning automatically from data and experience 
 
 
 
 
 
 
 
 
 
 

• Large overlap with data mining:

• ML focuses on algorithms,  

DM on discovering patterns

11

Also, a lot of calculus, linear
algebra, statistics, group theory, …

Machine learning in physics
• Two interrelated themes

• ML for physics research

• ML applied to physics data, which may be
unique or different from typical data used
for ML

• e.g. physics data can be “noisy” but in
well characterized ways related to
sensors

• Physics for ML research

• Physics-based algorithms, embedded
symmetries, physical inductive bias

• Lots of overlapping ideas! 12

NeurIPS 2021 Tutorial:  
neurips.cc/virtual/2021/tutorial/21896

Physics meets ML:  
physicsmeetsml.org 
NeurIPS ML4PS Workshop: 
ml4physicalsciences.github.io 
ICLR Physics4ML Workshop:  
physics4ml.github.io

https://neurips.cc/virtual/2021/tutorial/21896
http://www.physicsmeetsml.org/
https://ml4physicalsciences.github.io/
https://physics4ml.github.io/

Supervised learning
• Learn a function from an input space (observations) to an output

space Y (targets), using a set of labeled examples .

• Example 1: Predict stellar radius given stellar mass

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)

13

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Supervised learning
• Learn a function from an input space (observations) to an output

space Y (targets), using a set of labeled examples .

• Example 2: Classify images of  
neutrino interactions

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)

14

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072053 doi :10.1088/1742-6596/898/7/072053

Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

arXiv:1604.01444

https://arxiv.org/abs/1604.01444

Supervised learning
• Learn a function from an input space (observations) to an output

space Y (targets), using a set of labeled examples .

• Example 3: Reduce noise in a time-series trace to identify a gravitational wave
signal

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)

15

3

FIG. 1. Sample signal injected into real LIGO noise.
The red time-series is an example of the input to our Deep
Filtering algorithm. It contains a hidden BBH GW signal
(blue) from our test set which was superimposed in real LIGO
noise from the test set and whitened. For this injection, the opti-
mal matched-filter SNR = 7.5 (peak power of this signal is 0.65
times the power of background noise). The component masses
of the merging BHs are 57MØ and 33MØ. The presence of
this signal was detected directly from the (red) time-series in-
put with over 99% sensitivity and the source’s parameters were
estimated with a mean relative error less than 10%.

glitches, since it is well known that the PSD of LIGO is
highly non-stationary, varying widely with time. There-
fore, if Deep Filtering performs well on these test
sets, it would also perform well on data from future time
periods, without being re-trained.

Next, we superimposed different realizations of noise
randomly sampled from the training set of real LIGO
noise from the two events GW151226 and LVT151012
and injected signals over multiple iterations, thus am-
plifying the size of the training datasets. The power of
the noise was adjusted according to the desired optimal
matched-filter Signal-to-Noise Ratio (SNR [43]) for each
training round. The inputs were then whitened with the
average PSD of the real noise measured at that time-
period. We also scaled and mixed different samples of
LIGO noise together to artificially produce more training
data and various levels of Gaussian noise was also added
to augment the training process. However, the testing
results were measured using only pure LIGO noise not
used in training with true GW signals or with signals in-
jected from the unaltered test sets (see Fig. 1).

We used similar hyperparameters to our original
CNNs [39] with a slightly deeper architecture. There
were 4 convolution layers with the filter sizes to 64,
128, 256, and 512 respectively and 2 fully connected
layers with sizes 128 and 64. The standard ReLU ac-
tivation function, max(0, x), was used throughout as the
non-linearity between layers. We used kernel sizes of 16,
16, 16, and 32 for the convolutional layers and 4 for all

FIG. 2. Spectrograms of real LIGO noise test samples. We
used signals injected into real data from the LIGO detectors in
this article, ensuring that the training and testing sets did not
contain noise from the same events. These are some random
examples of real glitches that were present in our test set of
LIGO noise. The Deep Filtering method takes the 1D
strain directly as input and is able to correctly classify glitches
as noise and detect true GW signals as well as simulated GW
signals injected into these highly non-stationary non-Gaussian
data streams, with similar sensitivity compared to matched-
filtering.

the (max) pooling layers. Stride was chosen to be 1 for
all the convolution layers and 4 for all the pooling lay-
ers. We observed that using dilations [44] of 1, 2, 2, and
2 in the corresponding convolution layers improved the
performance. The final layout of our predictor CNN is
shown in Fig. 3.

We had originally optimized this CNN architecture to
deal with only Gaussian noise having a flat PSD. How-
ever, we later found that this model also obtained the
best performance with noise having the colored PSD of
LIGO, among all the models we tested. This indicates
that our architecture is robust to a wide range of noise
distributions. Furthermore, pre-training the CNNs on
Gaussian noise (transfer learning) before fine-tuning on
the limited amount of real noise prevented over-fitting,
i.e., memorizing only the training data without generaliz-
ing to new inputs. We used the Wolfram Language neural
network functionality, based on the open-source MXNet
framework [45], that uses the cuDNN library [46] for ac-
celerating the training with NVIDIA GPUs. The learning
algorithm was again set to ADAM [47] and other details
were the same as before [39].

For training, we used the curriculum learning strategy
in our first article [39] to improve the performance and
reduce training times of the CNNs while retaining perfor-
mance at very high SNR. By starting off training inputs
having high SNR (∏ 100) and then gradually increasing
the noise in each subsequent training session until a final

arXiv:1711.03121

https://arxiv.org/abs/1711.03121

Supervised learning
• Learn a function from an input space (observations) to an output

space Y (targets), using a set of labeled examples .

• Example 4: Estimate particle momentum, charge, type, etc. from detector hits

f : X → Y X
(x1, y1), (x2, y2), …, (xN, yN)

16

→

E
px
py
pz

, q, type, ppileup, …

arXiv:2101.08578

https://arxiv.org/abs/2101.08578

Why are these problems hard?
• Expert-engineered solutions are

• Complicated to write and maintain

• Require decades of domain knowledge (physics, engineering, …)

• But, they are interpretable/understandable (to experts)

• Until recently, they are the standard (“baseline”) in physics experiments 
 
 
 
 
 
 
 

• Problem might inherently require data (variations in detectors or over time, etc.)
17

Highly simplified flow chart of 
particle reconstruction in CMS

[arXiv:1808.02094]

https://arxiv.org/abs/1808.02094

Machine learning as an alternative approach
• Collect a labeled training set (supervision)

• Often requires simulation where the “ground truth” is known

• Train a model using a learning algorithm (find patterns in the data)
18

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Types of supervised learning algorithms

• Regression: predict real values

• + more (e.g., object detection)

y ∈ Y = ℝ or ℝn

19

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072053 doi :10.1088/1742-6596/898/7/072053

Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

• Classification: predict a class
 from a

fixed finite set
y ∈ Y = {0,1,…, n − 1}

Linear regression
• Let’s try to fit a straight line: 
 

 (linear model)

• More generally, if : 
 

• Example: where 
 

 = mass and  
 = luminosity of star 

 

f(x |w, b) = wx + b

x ∈ ℝD

f(x |w, b) = w⊺x + b (w ∈ ℝD)

x = (x(1), x(2))

x(1)

x(2)

⇒ f(x |w, b) = w(1)x(1) + w(2)x(2) + b

20

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

log10(R/R⊙) = w log10(M/M⊙) + b

Linear regression

21

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

b

f(x |w) = w(0)x(0) + w(1)x(1) + ⋯ + w(D)x(D)

b

• Linear model (WLOG): 
 

• We can add a “dummy feature”
to all input data so that acts as
bias:

f(x |w) = w⊺x (w ∈ ℝD+1)

x(0) = 1
x w(0)

• Linear model: 
 

• How do we select the parameters w?

• We want  
 

• Squared loss:  
 
(Least squares)

f(x |w) = w⊺x (w ∈ ℝD+1)

yi ≈ f(xi |w)

L(y, y′￼) = (y − y′￼)2

Linear regression

22

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Learning objective: arg min
w

N

∑
i=1

L(yi, f(xi |w)) = arg min
w

N

∑
i=1

(yi − w⊺xi)2

Error

xi

yi

f(xi |w)

Optimizing the learning objective

• Quadratic function of can be minimized by setting the gradient equal to : 
  

• Closed-form solution in terms of the “design matrix” and the column vector
consisting of the targets : 
 

 
 
(but if the dataset is very large, then it may be not feasible to use this closed-form
solution)

w 0

∂
∂w(j)

N

∑
i=1

(yi − w⊺xi)2 = − 2
N

∑
i=1

(yi − w⊺wi)x(j)
i = 0

Xij = x(j)
i Y

yi

w = (X⊺X)−1X⊺Y

23

Learning objective: arg min
w

N

∑
i=1

L(yi, f(xi |w)) = arg min
w

N

∑
i=1

(yi − w⊺xi)2

Getting more out of linear models

• Replace our input vector with some to make our model more expressive

• For example, if then our model becomes: 
 

x ϕ(x)

ϕ(x) = (1,x, x2)

f(x |w) = w⊺ϕ(x) = w0 + w1x + w2x2

24

• The model is still linear in the
parameters !

• More expressive than a line
, so the fit is better  

(i.e., training error is lower)

w

w0 + w1x

features / embedding of x
lo

g1
0(

R/
R☉

)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Different models extrapolate differently

25

• Both models fit the training data well

• What do they predict for a star 1,000 times more  
massive than the sun ()?

• First model: ; Second model:

log10(M/M⊙) = 3

R = 114R⊙ R = 25R⊙
lo

g1
0(

R/
R☉

)

-1.4

-0.45

0.5

1.45

2.4

log10(M/M☉)

-1.5 -0.375 0.75 1.875 3

y = -0.106x2 + 0.7867x - 0.0083

lo
g1

0(
R/

R☉
)

-1.4

-0.45

0.5

1.45

2.4

log10(M/M☉)

-1.5 -0.375 0.75 1.875 3

y = 0.7091x - 0.0706

Extrapolation is very different!

Linear models: workhorse of machine learning
• Linear models on top of good features

can yield excellent results

• More complex model classes (e.g.,
neural networks) have linear models
as their basic building block

• NNs are “automatic featurizers”

26

Linear model: f(x |w) = w⊺x

x

w

f(x |w)

Neural network: linear model after
inputs are mapped to features

through a nonlinear transformation 
f(x |w1, w2) = w⊺

2σ(w⊺
1x)

w1 w2

x f(x |w1, w2)

Supervised learning pipeline (so far)
• Training dataset: where and

• Model / hypothesis class: (linear models)

• Loss function: (squared loss)

• The three ingredients above define the learning objective:  
 

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2

arg min
w

N

∑
i=1

L(yi, f(xi |w))

27

or instead of ϕ(x) x

But does your model generalize?
• Fitting the training dataset perfectly (error = 0) does not necessarily mean the

model will work well on new test data!

28

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Linear fit: ok on both training and testing
lo

g1
0(

R/
R☉

)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Polynomial fit (degree 4): excellent on
training, bad on testing

But does your model generalize?
• Fitting the training dataset perfectly (error = 0) does not necessarily mean the

model will work well on new test data!

29

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Polynomial fit (degree 2): good on  
both training and testing

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Polynomial fit (degree 5): perfect on
training, catastrophic on testing

Test error
• Assuming that:

• There is a “true” probability distribution over all possible data (unknown to
us!)

• Each training data point is sampled independently and identically distributed
(i.i.d.) from

• Then a trained model has a test error: 
 

 

• The training error is generally smaller than the test error

• Overfitting: test error training error

• Underfitting: training and test error are similar and both are high

P(x, y)

(xi, yi)
P(x, y)

f(x |w)

LP(f) = 𝔼(x,y)∼P(x,y) [L(y, f(x |w))]

≫

30

(Prediction loss on all possible stars)

Expectation :
average value of when

 is sampled from the
probability distribution

𝔼z∼P(z) [g(z)]
g(z)

z
P(z)

Expected test error
• We can consider the optimal set of model parameters as a function of the

training dataset  
 

• consists of i.i.d. samples from so the parameters are random
variables

• Expected test error: 
 

 
 
(fix model class , loss function , size of)

wS
S

wS = arg min
w ∑

(x,y)∈S

L(y, f(x |w))

S N P(x, y) wS

𝔼 [LP(f(x |wS)] = 𝔼S𝔼(x,y)∼P(x,y) [L(y, f(x |wS))]
f L S

31

Bias-variance tradeoff
• If is the mean-squared-error loss, we can decompose the expected test

error: 
 

 

 

• where is the average prediction of our model over
different possible training datasets

• Variance: difference in predictions when training on different datasets

• Bias: difference from ground truth

L

𝔼 [LP(f(x |wS)] = 𝔼S𝔼(x,y)∼P(x,y) [L(y, f(x |wS))]
= 𝔼(x,y)∼P(x,y) [𝔼S [(f(x |wS) − F(x))2] + (F(x) − y)2]

F(x) = 𝔼S [f(x |wS)]

32

Variance (Squared) bias

Overfitting vs. underfitting
• Overfitting implies high variance (unstable

model class)

• Variance increases with model complexity

• Variance decreases with more training
data 

• Underfitting implies high bias

• Even with no variance, model class has
high error

• Underfitting happens whenever model
complexity is too low

33

lo
g1

0(
R/

R☉
)

-1.4
-1.05

-0.7
-0.35

0
0.35

0.7
1.05

1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g1

0(
R/

R☉
)

-1.4
-1.05

-0.7
-0.35

0
0.35

0.7
1.05

1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Degree 5

Degree 0

Model selection
• We only have a finite training dataset

• We cannot measure the true test error

• Simple model classes underfit

• Complex model classes overfit 
 
(but not so straightforward for deep neural networks!) 
 
 

• Goal: Select the model class with the lowest test error

34

Bias-variance tradeof

Validation set

• Split the original dataset into a training and validation set

• Train model on the training set

• Evaluate on the validation set to estimate the test error

• Select the model class that gives the lowest estimated error

• Optionally, re-train the selected model class on the whole dataset (training +
validation) 

• Issue: we would like both training and validation sets to be as large as
possible (so that the estimate is better), but they must not overlap!

35

Original dataset

-fold cross-validationk
• Split the original dataset into equal parts (e.g,)

• Train on the parts and validate on the remaining one 
 
 

• Repeat for every choice of the parts and average the validation errors 
 
 
 
 

• Advantage: use all data as validation to improve the estimate of the test error,
at the cost of more computation (trainings)

k k = 5

k − 1

k − 1

k
36

Original dataset

Supervised learning pipeline
• Training dataset: where and

• Model / hypothesis class: (linear models)

• Loss function: (squared loss)

• Optimization algorithm to minimize the learning objective:  
 

• Cross validation and model selection:

• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2

arg min
w

N

∑
i=1

L(yi, f(xi |w))

37

or instead of ϕ(x) x

Important: if a testing set is available, never use it to make decisions on the model!

Next time
• Perceptron learning algorithm

• Hands-on introduction to Jupyter and DataHub

38

