
Javier Duarte — January 12, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 2:  
Perceptron Learning Algorithm & (Stochastic) Gradient Descent
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Recap: Bias-variance tradeoff
• If  is the squared loss, we can decompose the expected test error: 
 

 

 

• where  is the average prediction of our model over 
different possible training datasets


• Variance: difference in predictions when training on different datasets


• Bias: difference from ground truth 

L

𝔼 [LP( f(x |wS)] = 𝔼S𝔼(x,y)∼P(x,y) [L(y, f(x |wS))]
= 𝔼(x,y)∼P(x,y) [𝔼S [( f(x |wS) − F(x))2] + (F(x) − y)2]

F(x) = 𝔼S [f(x |wS)]
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Variance (Squared) bias



Overfitting vs. underfitting
• Overfitting implies high variance (unstable 

model class) 


• Variance increases with model complexity


• Variance decreases with more training 
data 

• Underfitting implies high bias


• Even with no variance, model class has 
high error


• Underfitting happens whenever model 
complexity is too low
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Model selection
• We only have a finite training dataset


• We cannot measure the true test error


• Simple model classes underfit


• Complex model classes overfit 
 
(but not so straightforward for deep neural networks!) 
 
 

• Goal: Select the model class with the lowest test error
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Bias-variance tradeoff



Validation set

• Split the original dataset into a training and validation set


• Train model on the training set


• Evaluate on the validation set to estimate the test error


• Select the model class that gives the lowest estimated error


• Optionally, re-train the selected model class on the whole dataset (training + 
validation) 

• Issue: we would like both training and validation sets to be as large as 
possible (so that the estimate is better), but they must not overlap!
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Original dataset



-fold cross-validationk
• Split the original dataset into  equal parts (e.g, )


• Train on the  parts and validate on the remaining one 
 
 

• Repeat for every choice of the  parts and average the validation errors 
 
 
 
 

• Advantage: use all data as validation to improve the estimate of the test error, 
at the cost of more computation (  trainings) 

k k = 5

k − 1

k − 1

k
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Original dataset



Recap: Supervised learning pipeline
• Training dataset:  where  and 


• Model / hypothesis class:  (linear models)


• Loss function:  (squared loss) 


• Optimization algorithm to minimize the learning objective:  
 




• Cross validation and model selection: 


• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′ ) = (y − y′ )2

arg min
w

N

∑
i=1

L(yi, f(xi |w))
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or  instead of ϕ(x) x

Important: if a testing set is available, never use it to make decisions on the model!



Today: Learning algorithms
• Perceptron learning algorithm


• (Stochastic) gradient descent


• Solving the actual optimization problem in general


• How to view the perceptron learning algorithm as an example of stochastic 
gradient descent
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Linear models for binary classification
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• Linear model for regression: 


• Linear model for binary classification: 

f(x |w) = w⊺x

f(x |w) = sign(w⊺x) ∈ {+1, − 1}

x(1)

x(2) Raw score Only direction of  
matters, not magnitude

w

+

w

Decision boundary is a hyperplane



Linearly separable datasets
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w

x(1)

x(2)

Not linearly separable: 
no hyperplane separates the classes perfectly

• Linear model for binary classification: f(x |w) = sign(w⊺x)

w

x(1)

x(2)

Linearly separable: 
there is a hyperplane that separates the classes 

  
Margin of the classifier = distance between the 
decision boundary and the closest data point

Margin



• By adding a bias term, the decision boundary does not have to pass through the origin

Linearly separable datasets
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w

x(1)

x(2)

w

x(1)

x(2)

Not linearly separable without bias
Adding the bias (through dummy feature 

) makes it linearly separablex(0) = 1



Perceptron
• One of the earliest learning algorithms


• 1957 by Frank Rosenblatt [10.1037/h0042519]


• Still a great algorithm


• Fast


• Clean analysis


• Precursor to neural networks
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Psychological Review
Vol. 65, No. 6, 19S8

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION

IN THE BRAIN1

F. ROSENBLATT
Cornell Aeronautical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system?

2. In what form is information
stored, or remembered?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

The first of these questions is in the
province of sensory physiology, and is
the only one for which appreciable
understanding has been achieved.
This article will be concerned pri-
marily with the second and third
questions, which are still subject to a
vast amount of speculation, and where
the few relevant facts currently sup-
plied by neurophysiology have not yet
been integrated into an acceptable
theory.

With regard to the second question,
two alternative positions have been
maintained. The first suggests that
storage of sensory information is in
the form of coded representations or
images, with some sort of one-to-one
mapping between the sensory stimulus

1 The development of this theory has been
carried out at the Cornell Aeronautical Lab-
oratory, Inc., under the sponsorship of the
Office of Naval Research, Contract Nonr-
2381(00). This article is primarily'an adap-
tation of material reported in Ref. IS, which
constitutes the first full report on the program.

and the stored pattern. According to
this hypothesis, if one understood the
code or "wiring diagram" of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the "memory traces" which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
"memory" of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain
models has been developed around the
idea of a coded, representational mem-
ory (2, 3, 9, 14). The alternative ap-
proach, which stems from the tradi-
tion of British empiricism, hazards the
guess that the images of stimuli may
never really be recorded at all, and
that the central nervous system
simply acts as an intricate switching
network, where retention takes the
form of new connections, or pathways,
between centers of activity. In many
of the more recent developments of
this position (Hebb's "cell assembly,"
and Hull's "cortical anticipatory goal
response," for example) the "re-
sponses" which are associated to
stimuli may be entirely contained
within the CNS itself. In this case
the response represents an "idea"
rather than an action. The impor-
tant feature of this approach is that
there is never any simple mapping of
the stimulus into memory, according
to some code which would permit its
later reconstruction. Whatever in-
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https://doi.org/10.1037%2Fh0042519


• Set 


• At iteration ,


• Receive example 


• If  (example is correctly classified)


•  (no update)


• Else


•  (update!)

w(t = 0) = 0

t

(x, y)

f(x |w(t)) = y

w(t + 1) = w(t)

w(t + 1) = w(t) + yx

Perceptron learning algorithm
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Model: 



Training set:

 

f(x |w) = sign(w⊺x)

S = {(x1, y1), . . . , (xN, yN)}
y ∈ {+1, − 1}

Go through training 
set in an arbitrary 

order (e.g., randomly)



Perceptron learning algorithm
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x(1)

x(2)

Misclassified!

t = 0

Note: assume sign(x) = {+1 if x > 0
−1 else



Perceptron learning algorithm
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yx

x(1)

x(2)

Update!

t = 0



Perceptron learning algorithm
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w(1)

x(1)

x(2)

Correct!

t = 1



Perceptron learning algorithm
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x(1)

x(2)

Misclassified!

t = 2

w(2)



Perceptron learning algorithm
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x(1)

x(2)

Update!

w(2)

yx

yx

t = 2



Perceptron learning algorithm
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x(1)

x(2)

w(3)

t = 3

Correct!



Perceptron learning algorithm
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x(1)

x(2)

w(4)

t = 4

Misclassified!



Perceptron learning algorithm
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x(1)

x(2)

w(4)

t = 4

Update!



Perceptron learning algorithm
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x(1)

x(2)

w(5)

t = 5

All examples correctly classified!

PLA has converged



• Converges in a finite number of steps if the training dataset is linearly 
separable (but may take a long time)


• Does not converge if the dataset is not linearly separable, so early stopping is 
needed


• The final model depends on the initialization and the order you traverse the 
data points


• And it may not be the “best” (maximum margin) model


• How can we recast PLA as an example of our 
supervised learning pipeline?

Perceptron learning algorithm
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x(1)

x(2)

Two valid solutions: better 
one has a bigger margin, 

but PLA stops as soon as it 
finds any valid solution



• In supervised learning, we want to optimize the objective 
 




• For linear regression, we had a closed-form solution, but in general?


• We need an optimization algorithm to find the optimal (or just “good”) w

l(w) =
N

∑
i=1

L(yi, f(xi |w))

Optimizing the learning objective
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Gradient descent
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Step size / learning rate
l(w)

w(0) w(1)

• Set  to some values (e.g.,  or some random value)


• At iteration ,


• Compute the gradient : direction of steepest increase of  at 



• Take a small step in the opposite direction:  
 

w(t = 0) w(0) = 0

t

∇wl(w(t)) l(w)
w(t)

w(t + 1) = w(t) − η∇wl(w(t))



• Learning objective:  
 




• Partial derivatives:  
 




• Gradient descent update: 
 

l(w) =
N

∑
i=1

(yi − w⊺xi)2

∂
∂w( j)

l(w) =
∂

∂w( j)

N

∑
i=1

(yi − w⊺xi)2 = − 2
N

∑
i=1

(yi − w⊺xi)x( j)
i

w(t + 1) = w(t) + 2η
N

∑
i=1

(yi − w⊺xi)xi

Linear regression with gradient descent
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Example: linear regression

Learning objective: l(w) =
N

∑
i=1

(yi − wtxi)2

∂
∂w( j) l(w) = ∂

∂w( j)

N

∑
i=1

(yi − wtxi)2 = − 2
N

∑
i=1

(yi − wtxi) x( j)
i

Gradient descent update: wt+1 = wt + 2η
N

∑
i=1

(yi − wtxi) xi

Partial derivatives:

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

l(w)

w



Limitation of gradient descent
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• Requires a full pass over the training dataset at each iteration: 
 

 

  

• Prohibitively expensive if the training dataset is large!

w(t + 1) = w(t) − η∇w

N

∑
i=1

L(yi, f(xi, |w))

l(w)



Stochastic gradient descent
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• The learning objective decomposes additively: 
 

 

  

• The total gradient is the expected gradient of the single-example losses: 
 




• Gradient descent update: 


• SGD update:                       
 
                                                                     for a random 

l(w) =
1
N

N

∑
i=1

L(yi, f(xi, |w)) = 𝔼(x,y)∈S [L(y, f(x |w)]

∇wl(w) = ∇w𝔼(x,y)∈S [L(y, f(x |w)] = 𝔼(x,y)∈S [∇wL(y, f(x |w)]
w(t + 1) = w(t) − η∇wl(w(t))

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)))

(x, y) ∈ S

add normalization

Unbiased estimate 
of ∇wl(w(t))



Stochastic gradient descent
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• SGD is an online optimization algorithm (only needs one example at a time)


• In practice, we use mini-batch SGD: compute gradient on a mini-batch of 
training example (e.g., 8, 16, or 32 examples)


• Leverages fast vector operations (especially on GPU)


• Decreases volatility of gradient updates (but there is still some useful noise)


• Can be parallelized (e.g. different cores compute gradients on different mini-
batches)


• Useful also for least-squares regression on large datasets


• Note: no need to check validation error at every iteration



Gradient descent vs. SGD

SGD update: wt+1 = wt − η∇wL(y, f(x |wt)) for a random (x, y) ∈ S

Source: https://golden.com/wiki/Stochastic_gradient_descent_(SGD)

Gradient descent update: wt+1 = wt − η∇wl(wt)

w(1)

w(2)

Gradient descent vs. SGD
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• Gradient descent update: 


• SGD update:                      
                                                                     for a random 

w(t + 1) = w(t) − η∇wl(w(t))

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)))
(x, y) ∈ SGradient descent vs. SGD
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Updated: Supervised learning pipeline
• Training dataset:  where  and 


• Model / hypothesis class:  (linear models)


• Loss function:  (squared loss) 


• Optimization algorithm: SGD


• Cross validation and model selection: 


• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′ ) = (y − y′ )2
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or  instead of ϕ(x) x

Important: if a testing set is available, never use it to make decisions on the model!

For regression



• The most straightforward loss for classification is the 0/1 loss 
 

 where 


• Good to evaluate the validation/test error, difficult to optimize (gradient is 0)


• We can optimize the raw score   
using another loss (e.g., squared loss) 
 




• But the squared loss does not always  
work well even for a linearly separable  
dataset

L(y, y′ ) = δy≠y′ 
δy≠y′ 

= {1 y ≠ y′ 

0 otherwise

w⊺x

arg min
w

N

∑
i=1

(yi − w⊺xi)2

Optimizing the linear classification model
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Loss is equal to the 
number of mistakes

Optimizing a linear classification model
• The most obvious loss for classification is    so that #mistakesL(y, y′ ) = 1{y≠y′ } l(w) =

indicator function:

 if ;   if 1 y ≠ y′ 0 y = y′ • Good to evaluate the validation / test error, 

but difficult to optimize (gradient is 0)

(0/1 loss)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

• We optimize the raw score    using 
another loss (e.g., squared loss)

wtx

target y

0/1 loss

squared loss

arg min
w

N

∑
i=1

(yi − wtxi)2

• But the squared loss does not always work 
well, even on a linearly separable dataset



• An alternative is the perceptron loss  
 

 

• Running SGD with this loss yields 
the perceptron algorithm


• Initialize 


• For iteration , pick a random example  and perform an update 
 

L(y, y′ ) = {0 sign(y′ ) = y
−yy′ otherwise

w(t = 0) = 0

t (x, y)

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)) = {w(t) correct
w(t) + ηyx otherwise

Perceptron algorithm revisited
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Loss is equal to the 
number of mistakes

Perceptron algorithm

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

target y

perceptron loss

An alternative loss is the perceptron loss:

• 0 for an example that is correctly classified

•   otherwise−y (wtx)

raw score
target (+1 or -1)

Running SGD with this loss yields the 
perceptron algorithm:

• Initialize 

• For   pick a random misclassified example  and perform the update

w0 = 0
t = 0, 1, 2, … x

wt+1 = wt + ηyx (we can set  because the magnitude of  does not matter)η = 1 w

(0 if correct,  if ,  if )−y′ y = + 1 +y′ y = − 1

(we can set  because the 
magnitude of  does not matter)

η = 1
w

Reminder: 
 f(x |w) = sign(w⊺x)

y ∈ {+1, − 1}



Next time

• More on (stochastic) gradient descent


• Different loss functions


• Hinge loss (support vector machine)


• Log loss / cross entropy loss (logistic regression)



• We will use DataHub for in-
class hands-on portions


• Recommend to use it for 
homework, final project, etc.


• Address: datahub.ucsd.edu


• Similar to public, free services 
Google Colab, but with access 
to better CPUs and GPUs and 
run by UCSD


• Provides a “Jupyter notebook” 
interface (Python-based but 
interactive coding like 
MATLAB/Mathematica)

DataHub
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http://datahub.ucsd.edu


Logging in
• After logging in, choose a course environment…  

PHYS 139 PHYS 239 - Special Topics - Machine Learning - Duarte [WI23],  
ucsdets/scipy-ml-notebook:2022.3-stable, (2 CPU, 4G RAM)



• Spawns a “JupyterHub” (let’s go step by step through all the buttons)

Jupyter interface



Start coding!
• Coding in Jupyter notebooks



Plotting
• Plotting can be done easily with Matplotlib



Installing a missing library
• Not all libraries are preloaded, but it’s easy to install a new one


• Note: restart your “kernel” after doing this



Speed up numerical calculations with the GPU
• Many libraries to do this: TensorFlow, CuPy, PyTorch, …



Exiting / shutting down server
• When you’re done; hit control panel and “stop your server” 

When you start it again, all your data will still be there



Data Science & Machine Learning Platform (DSMLP)
• UCSD Data Science & Machine Learning Platform (DSMLP)


• Based on docker and Kubernetes (K8s): open-source system for automating 
deployment, scaling, and management of containerized applications 
 
 

• Overview: 


• You log in to a remote "login” node


• From that login node, you can launch a “pod” running a container


• The pod automatically starts a “JupyterHub” web server (only accessible 
from campus so you must VPN if off campus)


• You are also automatically logged into that pod so you can run interactive 
terminal commands, etc.



More Resources
• UCSD DSMLP Cluster


• Using the DSMLP server


• Customizing the DSMLP Containers


• Terminal and Command-Line Interface


• Bash Scripting Reference


• Git(Hub) Resources

https://support.ucsd.edu/services?id=kb_category&kb_category=368cc80fdb5c68d0d4781c79139619e2
https://support.ucsd.edu/services?id=kb_article_view&sysparm_article=KB0032273
https://www.educative.io/blog/bash-shell-command-cheat-sheet
https://try.github.io/

