PHYS 139/239:
Machine Learni

Lecture 2:
Perceptron Lear

Javier Duarte — January 12, 2023

Recap: Bias-variance tradeoff

o |f L is the squared loss, we can decompose the expected test error:

- [Lp(f (x |WS)] =

= (x,y)~P(x,y) [

—S'(x,y)~P(x,y) [L(y 9f ()C | WS))]

=[xl wg) = FOY] + (FOo — 2|

Variance (Squared) bias

 where F(x) = kg [f(x | WS)] is the average prediction of our model over
different possible training datasets

o \ariance: difference in predictions when training on different datasets

» Bias: difference from ground truth

Overfitting vs. underfitting

* Overfitting implies high variance (unstable
model class)

» Variance increases with model complexity

* \ariance decreases with more training
data

* Underfitting implies high bias

e Even with no variance, model class has
high error

* Underfitting happens whenever model
complexity is too low

log10(R/RO)

log10(R/RO)

1.4
1.05
0.7
0.35
0
-0.35
-0.7
-1.05
-1.4

15

1.4
1.05
0.7
0.35

-1 05 0 05 1 15 2
log10(M/M ©)

0
-0.35
-0.7
-1.05

¢ Degree O

-1.4
1.5

1 05 0 05 1 15 2
l0og10(M/M Q)

Model selection

We only have a finite training dataset
We cannot measure the true test error
Simple model classes underfit

| Bias-variance tradeoff
Complex model classes overfit

(but not so straightforward for deep neural networks!)

Goal: Select the model class with the lowest test error

Validation set

Original dataset
* Split the original dataset into a training and validation set

* Train model on the training set
* Evaluate on the validation set to estimate the test error
» Select the model class that gives the lowest estimated error

* Optionally, re-train the selected model class on the whole dataset (training +
validation)

* Issue: we would like both training and validation sets to be as large as
possible (so that the estimate is better), but they must not overlap!

5

k-fold cross-validation

 Split the original dataset into k equal parts (e.g, k = 5)

» Train on the k — 1 parts and validate on the remaining one

Original dataset

» Repeat for every choice of the k — 1 parts and average the validation errors

 Advantage: use all data as validation to improve the estimate of the test error,
at the cost of more computation (k trainings)

6

Recap: Supervised learning pipeline

. Training dataset: S = {(x{, ;) ..., Xy yy)} Wwherex € R” and y € |

« Model / hypothesis class: f(x |w) = wTx (linear models)

\ or ¢p(x) instead of x

. Loss function: L(y, y") = (y — y)? (squared loss)

* Optimization algorithm to minimize the learning objective:

N
argmin) L(y,f(x;| w))
izl

e Cross validation and model selection:

* [esting and deployment

Important: if a testing set is available, never use it to make decisions on the model!

14

Today: Learning algorithms

* Perceptron learning algorithm
e (Stochastic) gradient descent
* Solving the actual optimization problem in general

 How to view the perceptron learning algorithm as an example of stochastic
gradient descent

Linear models for binary classification

e Linear model for regression: f(x |w) = wlx

+ A
» Linear model for binary classification: f(x |w) = sign(w'x) € {+1, — 1}

@ Raw score | QOnly direction of w
matters, not magnitude
A +
n
+ N
W
~\\ _|_
A A \\\‘l' +
+ e (1)
A 4 X
A+
. . A A Decision boundary is a hyperplane
A

Linearly separable datasets

e Linear model for binary classification: f(x|w) = sign(wx)

+@ +@
A + +
N + + +
y N N y
+ e+ F +
“. + I\/IarglnA/«u\ |-
A A /T A /T
(1) (D
A i X A n X
A+ A R -
A A\\\ A A .
A A A A
A A
Not linearly separable: Linearly separable:
no hyperplane separates the classes perfectly there Is a hyperplane that separates the classes

Margin of the classifier = distance between the
o decision boundary and the closest data point

Linearly separable datasets

By adding a bias term, the decision boundary does not have to pass through the origin

@
N +
N
w4
s“ +
W +
A +
A ﬂ
A +
A -
A ~A
A A ‘

Not linearly separable without bias

(D

11

+@
A +
~ -+
l
N
A A + / W
A
A ++
A A \\
A A
A

Adding the bias (through dummy feature
xY) = 1) makes it linearly separable

(D

Perceptron

* One of the earliest learning algorithms

. 1957 by Frank Rosenblatt [10.1037/h0042519]

» Still a great algorithm
e [ast
* Clean analysis

e Precursor to neural networks

12

Psyckological Review
Vol. 65, No. 6, 1958

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION
IN THE BRAIN'!

F. ROSENBLATT

Cornell Aeronautical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system ¢

2. In what form is information
stored, or remembered?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

The first of these questions is in the
province of sensory physiology, and is
the only one for which appreciable
understanding has been achieved.
This article will be concerned pri-
marily with the second and third
questions, which are still subject to a
vast amount of speculation, and where
the few relevant facts currently sup-
plied by neurophysiology have not yet
been integrated into an acceptable
theory.

With regard to the second question,
two alternative positions have been
maintained. The first suggests that
storage of sensory information is in
the form of coded representations or
images, with some sort of one-to-one
mapping between the sensory stimulus

! The development of this theory has been
carried out at the Cornell Aeronautical Lab-
oratory, Inc., under the sponsorship of the
Office of Naval Research, Contract Nonr-
2381(00). This article is primarily an adap-
tation of material reported in Ref. 15, which
constitutes the first full report on the program.

and the stored pattern. According to
this hypothesis, if one understood the
code or “wiring diagram’’ of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the ““memory traces’’ which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
“memory’’ of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain
models has been developed around the
idea of a coded, representational mem-
ory (2, 3,9, 14). The alternative ap-
proach, which stems from the tradi-
tion of British empiricism, hazards the
guess that the images of stimuli may
never really be recorded at all, and
that the central nervous system
simply acts as an intricate switching
network, where retention takes the
form of new connections, or pathways,
between centers of activity. Inmany
of the more recent developments of
this position (Hebb’s ‘“cell assembly,”
and Hull’s ““cortical anticipatory goal
response,”’ for example) the ‘‘re-
sponses’’ which are associated to
stimuli may be entirely contained
within the CNS itself. In this case
the response represents an ‘‘idea’”
rather than an action. The impor-
tant feature of this approach is that
there is never any simple mapping of
the stimulus into memory, according
to some code which would permit its
later reconstruction. Whatever in-

386

https://doi.org/10.1037%2Fh0042519

Perceptron learning algorithm

Model:
e Setw(r=0)=0

Jx|w) = sign(w'x)
e At teration f,

Go through training Iraining set:
_ / set in an arbitrary S = {(xl,yl) ----- (XN, yN)}
» Receive example (x, y) order (e.g., randomly) ye {+1,-1)

e If f(x|w(f)) = y (example is correctly classified)

e w(t+ 1) = w(?) (no update)

e Else

e w(t+ 1) = w(t)+ yx (update!)

13

Perceptron learning algorithm

@
=0
|
A Misclassified!
SR
|
N
A
A A
Note: assume sign(x) = +1 ifx>0
—1 else

+

Perceptron learning algorithm

t=0

NE)

15

(D

Perceptron learning algorithm

=1

NE)

|

Correct!

16

(D

Perceptron learning algorithm

=72

Misclassified!

A B

NE)

17

(D

Perceptron learning algorithm

=72

NE)

18

(D

Perceptron learning algorithm

=3

Correct!

A

NE)

19

(D

Perceptron learning algorithm

=4

Misclassified! *

NE)

20

(D

Perceptron learning algorithm

=4

NE)

21

(D

Perceptron learning algorithm

=35

X

2)

All examples correctly classified!
PLA has converged

(D

22

Perceptron learning algorithm

 Converges in a finite number of steps if the training dataset is linearly
separable (but may take a long time)

* Does not converge if the dataset is not linearly separable, so early stopping Is
needed

* The final model depends on the initialization and the order you traverse the
data points

* And it may not be the “best” (maximum margin) model

@

« How can we recast PLA as an example of our N + N
supervised learning pipeline? A n
A-|- i +
. . A ~~:::,ﬂ‘_ +
Two valid solutions: better N . NG
one has a bigger margin, A A-l-
but PLA stops as soon as it A A A RN
finds any valid solution A

23

Optimizing the learning objective

* |n supervised learning, we want to optimize the objective

N
(W) =) Ly, fox | w))
=1

* For linear regression, we had a closed-form solution, but in general?

 We need an optimization algorithm to find the optimal (or just “good”) w

24

Gradient descent

« Set w(f = 0) to some values (e.g., w(0) = O or some random value)

e At teration f,

» Compute the gradient V [(w(?)): direction of steepest increase of [(w) at
w(t)

 Take a small step in the opposite direction:

w(it+ 1) =w() —nV, I(w())

Step size / learning rate

[(w) i

L (©)

25

Linear regression with gradient descent

* | earning objective:

N
(W) =) (3= wi)?
=1

e Partial derivatives:

0
W) = aw<)

N
Z (Vi — Txi)z = —2 Z (Vi — WTxi)x,-(j)
=1 T

 Gradient descent update.

N
Wt + 1) = w(t) + 27) (v, — wix)x,
=1

Limitation of gradient descent

 Requires a full pass over the training dataset at each iteration:

N
w(t+1) =w(®) = nV,, Y L, fix, | w))
=1

[(w)

* Prohibitively expensive if the training dataset is large!

27

Stochastic gradient descent

The learning objective decomposes additively:

1 N
I(w) = =) LG [w)) = By e [LOnfox [w)
T =1

add normalization

The total gradient is the expected gradient of the single-example losses:

le(w) — Vw _(x,y)ES [L(yvf(x ‘ W)] — _(x,y)ES [VWL(y,f(X ‘ W)]

Gradient descent update: w(t + 1) = w(t) —n V I[(w(¢))

Unbiased estimate

SGD update: w(t+ 1) =w() =V, Lo, fx|w®) o v i)

for arandom (x,y) € §

28

Stochastic gradient descent

 SGD is an online optimization algorithm (only needs one example at a time)

* |n practice, we use mini-batch SGD: compute gradient on a mini-batch of
training example (e.qg., 8, 16, or 32 examples)

* | everages fast vector operations (especially on GPU)
» Decreases volatility of gradient updates (but there is still some useful noise)

» Can be parallelized (e.g. different cores compute gradients on different mini-
batches)

» Useful also for least-squares regression on large datasets

* Note: no need to check validation error at every iteration

29

Gradient descent vs. SGD

» Gradient descent update: w(t+ 1) = w(t) —n 'V, I(w(?))

e SGD update: wit+1)=w@) —nV Ly, f(x|w()))
for a random (x,y) € §
w2 4
—— Gradient descent
0.40 - SGD
LN
Stochastic Gradient)‘ Ay
) s 0.351
3 5
' 2 0.30-
o
(@)
\ = 0.25-
Gradient Descent " E
0.20 -
0.15 -
R (I) 5I0 160 1éO 2(I)O ZéO
wD # gradient computations

SGD requires less
30 gradient computations

Updated: Supervised learning pipeline

. Training dataset: S = {(x{, ;) ..., Xy yy)} Wwherex € R” and y € |

|

« Model / hypothesis class: f(x |w) = wTx (linear models) For regression

\ or ¢p(x) instead of x

. Loss function: L(y, y") = (y — y)? (squared loss)
e Optimization algorithm: SGD
* Cross validation and model selection:

* [esting and deployment

Important: if a testing set is available, never use it to make decisions on the model!

31

Optimizing the linear classification model

* The most straightforward loss for classification is the 0/1 loss

L(y,y) = 01, Where 0, = {

1 y#y
0O otherwise

Loss is equal to the
number of mistakes

 (Good to evaluate the validation/test error, difficult to optimize (gradient is 0)

» We can optimize the raw score wlx

using another loss (e.g., squared loss)

N
arg min Z (y; — wTx))?
W
=1

 But the squared loss does not always
work well even for a linearly separable

dataset

32

9

8 I

squared loss

target y

0/1 loss

L; M

-2

| | |
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Perceptron algorithm revisited

* An alternative is the perceptron loss 2 . . .
1.8} Reminder: -
Liy.v) 0 sign(y’) =y 161 fix|w) = sign(wTx) -
NV = —vyy" otherwise 12f ye i+l -1
L perceptron loss
Qif correct, —y'ify =+ 1, +y'ify = —=1) o4 target »
* Running SGD with this loss yields T
the perceptron algorithm ol

0 0.5 1 1.5 2

e Initialize w(t =0) =0 2 a5 4 08
» For iteration ¢, pick a random example (x, y) and perform an update

{ w(t) correct

wit+1)=w()—nV, LYy, f(x|w(t)) = w(t) + nyx otherwise

(we can set 7 = 1 because the
magnitude of w does not matter) 33

Next time

 More on (stochastic) gradient descent
» Different loss functions
* Hinge loss (support vector machine)

* Log loss / cross entropy loss (logistic regression)

DataHub

 We will use DataHub for in-
class hands-on portions

x +

& > C (Y & datahub.ucsd.edu/hub/login?next=%2Fhub%2F

« Recommend to use it for
homework, final project, etc.

DATA SCIENCE / MACHINE LEARNING PLATFORM UCSan Diego

Information Technology Services - Academic Technology Services

» Address: datahub.ucsd.edu T

e Similar to public, free services R
Google Colab. but with access UC San Diego Jupyterhub (Data Science) Platform

If you are unable to log in: Please try opening a private/incognito window in your browser | FAQ

to better CPUs and GPUs and Student Resources Instructor Resources
e Datahub/DSMLP Cluster Status » Request Datahub/DSMLP - Instructional Technology
ru n by U < :S D * Independent Study Access Request Request (CINFO)

e Data Science Resources ¢ |nstructor Guidance for Datahub/DSMLP

e Datahub/DSMLP Knowledge Base e Educational Technology Services Instructional Github
o Launching Containers from the Command Line ¢ Blink Documentation

o Configuring Your Container Launch ¢ Datahub Grading Tools

 Provides a “Jupyter notebook” et s o o
interface (Python-based but
interactive coding like
MATLAB/Mathematica)

A uina Annicnraants and aradans arith vaiir Oanvian

35

http://datahub.ucsd.edu

Logging In

» After logging in, choose a course environment...
PHYS 139 PHYS 239 - Special Topics - Machine Learning - Duarte [WI23],
ucsdets/scipy-ml-notebook:2022.3-stable, (2 CPU, 4G RAM)

JupyterHub-UCSD

X

C O @ datahub.ucsd.edu/hub/spawn

DATA SCIENCE / MACHINE LEARNING PLATFORM

Information Technology Services - Academic Technology Services

vw O @ Incognito (3)

UCSan Diego

FAQ

: Jupyterhub Home

Token

DSMLP Status

News Services ~

Select Your (Course) Environment

O

Scientific Python + Machine Learning Tools (4 CPU, 8GB RAM)
ucsdets/scipy-ml-notebook:2021.3-stable (4 CPU, 8GB RAM)

Scientific Python + Machine Learning Tools (1 GPU, 4 CPU, 16GB RAM)
ucsdets/scipy-ml-notebook:2021.3-stable (1 GPU, 4 CPU, 16GB RAM)

RStudio:: Data analysis with Julia, Python, and R; plus RStudio (4 CPU, 8GB RAM)
ucsdets/datascience-rstudio:2021.3-stable: Python 3, R, RStudio (4 CPU, 8G RAM)

DATAHUB: ucsdets/datascience-notebook:2021.3-stable (2 CPU, 4GB RAM)
Python 3, nbgrader (2 CPU, 4G RAM)

DATAHUB: ucsdets/scipy-ml-notebook:2021.3-stable (2 CPU, 4GB RAM)
Python 3, nbgrader (2 CPU, 4G RAM)

DATAHUB: RStudio: Data analysis with Julia, Python, and R; plus RStudio (4 CPU, 8GB RAM)
ucsdets/datascience-rstudio:2021.3-stable: Python 3, R, RStudio (4 CPU, 8G RAM)

(= Logout

__scipy-ml: Scientific Python + Machine Learning Tools (4 CPU,86BRAM)

Jupyter interface

e Spawns a “JdupyterHub” (let’'s go step by step through all the buttons)

~_ Home Page - Select or create - X +

C 0O @& datahub.ucsd.edu/user/jduarte/tree? v O @ Incognito (3)
- JU pyter ; Logout Control Panel
Files Running Clusters Courses Announcements Assignments
Select items to perform actions on them. Upload New~ &
(Jo ~ W&/ Name ¥ Last Modified = File size
(J (3 capstone-particle-physics-domain 6 months ago

(J (O phys141 3 months ago

Start coding!

* Coding in Jupyter notebooks

~_ Home Page - Select or create - X &' phys241_test - Jupyter Noteb: X = 1.6 Appendix A. Complex num! X S python - Does Numpy automat X @ cupy version - Google Search X +
CcC O @ datahub.ucsd.edu/user/jduarte/notebooks/phys241_test.ipynb w O @ Incognito (3)
s— \ \) p
Ju pyter U phy3241 _test Last Checkpoint: a few seconds ago (unsaved changes) Logout = Control Panel
File Edit View Insert Cell Kernel Widgets Help Trusted | Python 3 (clean) O
+ < & B 4 v PRuin B C » Code v Show Usage @ Validate | Ll

In [1]: print("hello world")

hello world
In [2]: import numpy as np

In [3]: # matrix multiplication
a = np.array([[1, 2, 3],

[21 3’ 2]’

[, 1, 271,
(2, 2, 2]])

-

a.shape

out[3]: (4, 3)

In [4]: b = np.array([[1],
[2],
[111)

b.shape

out[4]: (3, 1)

In [5]: a@b

Out[5]: array([[81,
[101],
[51,
[811)

In [6]: from scipy.special import hermite
from math import factorial

Plotting

* Plotting can be done easily with Matplotlib

~_ Home Page - Select or create - X &' phys241_test - Jupyter Noteb: X = 1.6 Appendix A. Complex num! X S python - Does Numpy automat X @ cupy version - Google Search X +
CcC O @ datahub.ucsd.edu/user/jduarte/notebooks/phys241_test.ipynb w O @ Incognito (3)
. :,. JUPyteH ub phys241_test Last Checkpoint: 2 minutes ago (autosaved) ﬁ Logout | Control Panel
File Edit View Insert Cell Kernel Widgets Help Trusted #* | Python 3 (clean) O
+ < @ B 4 v PRin B C » Code v Show Usage = Validate @ [l

Range of x determine by classical tunring points:
xXmin, xmax = -np.sqrt(2 * E(VMAX)), np.sqrt(2 * E(VMAX))
X = np.linspace(xmin, xmax, 10000)
fig, ax = plt.subplots(figsize=(5,5))
for v in range(VMAX):
plot potential V(x)
ax.plot(x, V(x), color='black')
plot psi squared which we shift up by values of energy
ax.plot(x, psi(v,x) ** 2 + E(v), lw=2)
add lines and labels
ax.axhline(E(v), color='gray', linestyle='--")
ax.text(xmax, 1.2 * E(v), f"v={v}")
ax.set xlabel('x')
ax.set_ylabel('$\psi”2 n(x)$")
plt.show()

35 1

3.0 - v={2

25 1

2.0 -

15 1= -

10 A

v=0
0.5 -

0.0 1

Installing a missing library

* Not all libraries are preloaded, but it’s easy to install a new one

* Note: restart your “kernel” after doing this

In [1]: !pip install cupy-cudall2 --user

Collecting cupy-cudall2
Using cached cupy cudall2-10.3.1-cp39-cp39-manylinuxl x86 64.whl (78.9 MB)
Collecting fastrlock>=0.5

Using cached fastrlock-0.8-cp39-cp39-manylinux 2 5 x86 64.manylinuxl x86 64.manylinux 2 12 x86 64.manylinux2010 x86
_64.whl (49 kB)

Requirement already satisfied: numpy<1.25,>=1.18 in /opt/conda/lib/python3.9/site-packages (from cupy-cudall2) (1.19.
5)

Installing collected packages: fastrlock, cupy-cudall2
Successfully installed cupy-cudall2-10.3.1 fastrlock-0.8

Speed up numerical calculations with the GPU

 Many libraries to do this: TensorFlow, CuPy, PyTorch, ...

1.6 Appendix A X S python - Does ' X CuPy: NumPy ¢ X S python - Meast X : Home Page - S X & phys241_test- X > https://datahub X @ cupy vs numpy X +
CcC O @ datahub.ucsd.edu/user/jduarte/notebooks/phys241_test.ipynb w O @ Incognito (3)
. Ju pyter phys241_test Last Checkpoint: 16 minutes ago (autosaved) f, Logout | Control Panel
File Edit View Insert Cell Kernel Widgets Help Not Trusted | Python 3 (clean) O
+ X @ B 4 v PRuin B C » Code v Validate = Show Usage = il

In [2]: import cupy as cp

In [18]: a = cp.ones((10000, 10000))
b cp.ones((10000, 10000))

In [19]: %%time
a@b

CPU times: user 2.34 ms, sys: 1.21 ms, total: 3.55 ms
Wall time: 2.1 ms

Out[19]: array([[l0000., 10000., 10000., ..., 10000., 10000., 10000.],
(roooo., 10000., 10000., ..., 10000., 10000., 10000.],
[1o0000., 10000., 10000., ..., 10000., 10000., 10000.],
cesy
(ro000., 10000., 10000., ..., 10000., 10000., 10000.1,
(roo000., 10000., 10000., ..., 10000., 10000., 10000.1],
(rooo00., 10000., 10000., ..., 10000., 10000., 10000.11)

In [16]: import numpy as np
a = np.ones((10000, 10000))
b = np.ones((10000, 10000))

In [17]: %%time
a@b

CPU times: user 2min 21s, sys: 1lmin 21ls, total: 3min 43s
Wall time: 33.1 s

Out[1l7]: array([[l0000., 10000., 10000., ..., 10000., 10000., 10000.1,
(roo000., 10000., 10000., ..., 10000., 10000., 10000.1,
(roo0o00., 10000., 10000., ..., 10000., 10000., 10000.1],

ceey
[io000., 10000., 10000., ..., 10000., 10000., 10000.],

Exiting / shutting down server

 \WWhen you’re done; hit control panel and “stop your server”
When you start it again, all your data will still be there

@] £ 1.6 Appendi: X = 2 python-Do X

<& C (¢ @& datahub.ucsd.edu/hub/home

DATA SCIENCE / MACHINE LEARNING PLATFORM UCSanDiego

FAQ

: Ju pyter hub Home Token DSMLP Status News Services ~

Stop My Server

Data Science & Machine Learning Platform (DSMLP)

 UCSD Data Science & Machine Learning Platform (DSMLP)

 Based on docker and Kubernetes (K8s): open-source system for automating
deployment, scaling, and management of containerized applications

Jupyter r ‘ ’

Tensor PyTorch

NVIDIA

& docker

e Qverview: kubernetes

* You log in to a remote "login” node
 From that login node, you can launch a “pod” running a container

* The pod automatically starts a “dupyterHub” web server (only accessible
from campus so you must VPN if off campus)

* You are also automatically logged into that pod so you can run interactive
terminal commands, etc.

More Resources

« UCSD DSMLP Cluster
e Using the DSMLP server

e Customizing the DSMLP Containers

e Terminal and Command-Line Interface

e Bash Scripting Reference

e Git(Hub) Resources

https://support.ucsd.edu/services?id=kb_category&kb_category=368cc80fdb5c68d0d4781c79139619e2
https://support.ucsd.edu/services?id=kb_article_view&sysparm_article=KB0032273
https://www.educative.io/blog/bash-shell-command-cheat-sheet
https://try.github.io/

