
Javier Duarte — January 12, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 2:  
Perceptron Learning Algorithm & (Stochastic) Gradient Descent

1

Recap: Bias-variance tradeoff
• If is the squared loss, we can decompose the expected test error: 
 

 

 

• where is the average prediction of our model over
different possible training datasets

• Variance: difference in predictions when training on different datasets

• Bias: difference from ground truth

L

𝔼 [LP(f(x |wS)] = 𝔼S𝔼(x,y)∼P(x,y) [L(y, f(x |wS))]
= 𝔼(x,y)∼P(x,y) [𝔼S [(f(x |wS) − F(x))2] + (F(x) − y)2]

F(x) = 𝔼S [f(x |wS)]

2

Variance (Squared) bias

Overfitting vs. underfitting
• Overfitting implies high variance (unstable

model class)

• Variance increases with model complexity

• Variance decreases with more training
data 

• Underfitting implies high bias

• Even with no variance, model class has
high error

• Underfitting happens whenever model
complexity is too low

3

lo
g1

0(
R/

R☉
)

-1.4
-1.05

-0.7
-0.35

0
0.35

0.7
1.05

1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

lo
g1

0(
R/

R☉
)

-1.4
-1.05

-0.7
-0.35

0
0.35

0.7
1.05

1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

Degree 5

Degree 0

Model selection
• We only have a finite training dataset

• We cannot measure the true test error

• Simple model classes underfit

• Complex model classes overfit 
 
(but not so straightforward for deep neural networks!) 
 
 

• Goal: Select the model class with the lowest test error

4

Bias-variance tradeof

Validation set

• Split the original dataset into a training and validation set

• Train model on the training set

• Evaluate on the validation set to estimate the test error

• Select the model class that gives the lowest estimated error

• Optionally, re-train the selected model class on the whole dataset (training +
validation) 

• Issue: we would like both training and validation sets to be as large as
possible (so that the estimate is better), but they must not overlap!

5

Original dataset

-fold cross-validationk
• Split the original dataset into equal parts (e.g,)

• Train on the parts and validate on the remaining one 
 
 

• Repeat for every choice of the parts and average the validation errors 
 
 
 
 

• Advantage: use all data as validation to improve the estimate of the test error,
at the cost of more computation (trainings)

k k = 5

k − 1

k − 1

k
6

Original dataset

Recap: Supervised learning pipeline
• Training dataset: where and

• Model / hypothesis class: (linear models)

• Loss function: (squared loss)

• Optimization algorithm to minimize the learning objective:  
 

• Cross validation and model selection:

• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2

arg min
w

N

∑
i=1

L(yi, f(xi |w))

7

or instead of ϕ(x) x

Important: if a testing set is available, never use it to make decisions on the model!

Today: Learning algorithms
• Perceptron learning algorithm

• (Stochastic) gradient descent

• Solving the actual optimization problem in general

• How to view the perceptron learning algorithm as an example of stochastic
gradient descent

8

Linear models for binary classification

9

• Linear model for regression:

• Linear model for binary classification:

f(x |w) = w⊺x

f(x |w) = sign(w⊺x) ∈ {+1, − 1}

x(1)

x(2) Raw score Only direction of
matters, not magnitude

w

+

w

Decision boundary is a hyperplane

Linearly separable datasets

10

w

x(1)

x(2)

Not linearly separable: 
no hyperplane separates the classes perfectly

• Linear model for binary classification: f(x |w) = sign(w⊺x)

w

x(1)

x(2)

Linearly separable: 
there is a hyperplane that separates the classes 

  
Margin of the classifier = distance between the
decision boundary and the closest data point

Margin

• By adding a bias term, the decision boundary does not have to pass through the origin

Linearly separable datasets

11

w

x(1)

x(2)

w

x(1)

x(2)

Not linearly separable without bias
Adding the bias (through dummy feature

) makes it linearly separablex(0) = 1

Perceptron
• One of the earliest learning algorithms

• 1957 by Frank Rosenblatt [10.1037/h0042519]

• Still a great algorithm

• Fast

• Clean analysis

• Precursor to neural networks

12

Psychological Review
Vol. 65, No. 6, 19S8

THE PERCEPTRON: A PROBABILISTIC MODEL FOR
INFORMATION STORAGE AND ORGANIZATION

IN THE BRAIN1

F. ROSENBLATT
Cornell Aeronautical Laboratory

If we are eventually to understand
the capability of higher organisms for
perceptual recognition, generalization,
recall, and thinking, we must first
have answers to three fundamental
questions:

1. How is information about the
physical world sensed, or detected, by
the biological system?

2. In what form is information
stored, or remembered?

3. How does information contained
in storage, or in memory, influence
recognition and behavior?

The first of these questions is in the
province of sensory physiology, and is
the only one for which appreciable
understanding has been achieved.
This article will be concerned pri-
marily with the second and third
questions, which are still subject to a
vast amount of speculation, and where
the few relevant facts currently sup-
plied by neurophysiology have not yet
been integrated into an acceptable
theory.

With regard to the second question,
two alternative positions have been
maintained. The first suggests that
storage of sensory information is in
the form of coded representations or
images, with some sort of one-to-one
mapping between the sensory stimulus

1 The development of this theory has been
carried out at the Cornell Aeronautical Lab-
oratory, Inc., under the sponsorship of the
Office of Naval Research, Contract Nonr-
2381(00). This article is primarily'an adap-
tation of material reported in Ref. IS, which
constitutes the first full report on the program.

and the stored pattern. According to
this hypothesis, if one understood the
code or "wiring diagram" of the nerv-
ous system, one should, in principle,
be able to discover exactly what an
organism remembers by reconstruct-
ing the original sensory patterns from
the "memory traces" which they have
left, much as we might develop a
photographic negative, or translate
the pattern of electrical charges in the
"memory" of a digital computer.
This hypothesis is appealing in its
simplicity and ready intelligibility,
and a large family of theoretical brain
models has been developed around the
idea of a coded, representational mem-
ory (2, 3, 9, 14). The alternative ap-
proach, which stems from the tradi-
tion of British empiricism, hazards the
guess that the images of stimuli may
never really be recorded at all, and
that the central nervous system
simply acts as an intricate switching
network, where retention takes the
form of new connections, or pathways,
between centers of activity. In many
of the more recent developments of
this position (Hebb's "cell assembly,"
and Hull's "cortical anticipatory goal
response," for example) the "re-
sponses" which are associated to
stimuli may be entirely contained
within the CNS itself. In this case
the response represents an "idea"
rather than an action. The impor-
tant feature of this approach is that
there is never any simple mapping of
the stimulus into memory, according
to some code which would permit its
later reconstruction. Whatever in-

386

https://doi.org/10.1037%2Fh0042519

• Set

• At iteration ,

• Receive example

• If (example is correctly classified)

• (no update)

• Else

• (update!)

w(t = 0) = 0

t

(x, y)

f(x |w(t)) = y

w(t + 1) = w(t)

w(t + 1) = w(t) + yx

Perceptron learning algorithm

13

Model: 

Training set:

 

f(x |w) = sign(w⊺x)

S = {(x1, y1), . . . , (xN, yN)}
y ∈ {+1, − 1}

Go through training
set in an arbitrary

order (e.g., randomly)

Perceptron learning algorithm

14

x(1)

x(2)

Misclassified!

t = 0

Note: assume sign(x) = {+1 if x > 0
−1 else

Perceptron learning algorithm

15

yx

x(1)

x(2)

Update!

t = 0

Perceptron learning algorithm

16

w(1)

x(1)

x(2)

Correct!

t = 1

Perceptron learning algorithm

17

x(1)

x(2)

Misclassified!

t = 2

w(2)

Perceptron learning algorithm

18

x(1)

x(2)

Update!

w(2)

yx

yx

t = 2

Perceptron learning algorithm

19

x(1)

x(2)

w(3)

t = 3

Correct!

Perceptron learning algorithm

20

x(1)

x(2)

w(4)

t = 4

Misclassified!

Perceptron learning algorithm

21

x(1)

x(2)

w(4)

t = 4

Update!

Perceptron learning algorithm

22

x(1)

x(2)

w(5)

t = 5

All examples correctly classified!

PLA has converged

• Converges in a finite number of steps if the training dataset is linearly
separable (but may take a long time)

• Does not converge if the dataset is not linearly separable, so early stopping is
needed

• The final model depends on the initialization and the order you traverse the
data points

• And it may not be the “best” (maximum margin) model

• How can we recast PLA as an example of our 
supervised learning pipeline?

Perceptron learning algorithm

23

x(1)

x(2)

Two valid solutions: better
one has a bigger margin,

but PLA stops as soon as it
finds any valid solution

• In supervised learning, we want to optimize the objective 
 

• For linear regression, we had a closed-form solution, but in general?

• We need an optimization algorithm to find the optimal (or just “good”) w

l(w) =
N

∑
i=1

L(yi, f(xi |w))

Optimizing the learning objective

24

Gradient descent

25

Step size / learning rate
l(w)

w(0) w(1)

• Set to some values (e.g., or some random value)

• At iteration ,

• Compute the gradient : direction of steepest increase of at

• Take a small step in the opposite direction:  
 

w(t = 0) w(0) = 0

t

∇wl(w(t)) l(w)
w(t)

w(t + 1) = w(t) − η∇wl(w(t))

• Learning objective:  
 

• Partial derivatives:  
 

• Gradient descent update: 
 

l(w) =
N

∑
i=1

(yi − w⊺xi)2

∂
∂w(j)

l(w) =
∂

∂w(j)

N

∑
i=1

(yi − w⊺xi)2 = − 2
N

∑
i=1

(yi − w⊺xi)x(j)
i

w(t + 1) = w(t) + 2η
N

∑
i=1

(yi − w⊺xi)xi

Linear regression with gradient descent

26

Example: linear regression

Learning objective: l(w) =
N

∑
i=1

(yi − wtxi)2

∂
∂w(j) l(w) = ∂

∂w(j)

N

∑
i=1

(yi − wtxi)2 = − 2
N

∑
i=1

(yi − wtxi) x(j)
i

Gradient descent update: wt+1 = wt + 2η
N

∑
i=1

(yi − wtxi) xi

Partial derivatives:

−0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

l(w)

w

Limitation of gradient descent

27

• Requires a full pass over the training dataset at each iteration: 
 

 

  

• Prohibitively expensive if the training dataset is large!

w(t + 1) = w(t) − η∇w

N

∑
i=1

L(yi, f(xi, |w))

l(w)

Stochastic gradient descent

28

• The learning objective decomposes additively: 
 

 

  

• The total gradient is the expected gradient of the single-example losses: 
 

• Gradient descent update:

• SGD update:  
 
 for a random

l(w) =
1
N

N

∑
i=1

L(yi, f(xi, |w)) = 𝔼(x,y)∈S [L(y, f(x |w)]

∇wl(w) = ∇w𝔼(x,y)∈S [L(y, f(x |w)] = 𝔼(x,y)∈S [∇wL(y, f(x |w)]
w(t + 1) = w(t) − η∇wl(w(t))

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)))

(x, y) ∈ S

add normalization

Unbiased estimate
of ∇wl(w(t))

Stochastic gradient descent

29

• SGD is an online optimization algorithm (only needs one example at a time)

• In practice, we use mini-batch SGD: compute gradient on a mini-batch of
training example (e.g., 8, 16, or 32 examples)

• Leverages fast vector operations (especially on GPU)

• Decreases volatility of gradient updates (but there is still some useful noise)

• Can be parallelized (e.g. different cores compute gradients on different mini-
batches)

• Useful also for least-squares regression on large datasets

• Note: no need to check validation error at every iteration

Gradient descent vs. SGD

SGD update: wt+1 = wt − η∇wL(y, f(x |wt)) for a random (x, y) ∈ S

Source: https://golden.com/wiki/Stochastic_gradient_descent_(SGD)

Gradient descent update: wt+1 = wt − η∇wl(wt)

w(1)

w(2)

Gradient descent vs. SGD

30

• Gradient descent update:

• SGD update:  
 for a random

w(t + 1) = w(t) − η∇wl(w(t))

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)))
(x, y) ∈ SGradient descent vs. SGD

Pr
ic

e
($

)

1500

2250

3000

3750

4500

Size (sq ft)
300 600 900 1200 1500

price = size + w ⋅ b

-1

0

1

-1 0 1

gradient computations

 /= 10η

Tr
ai

ni
ng

 R
M

S
er

ro
r

1st iteration

of gradient descent

(gradients)N = 27

SGD requires less gradient computations!

Da
ta

 n
or

m
al

iza
tio

n

SGD requires less
gradient computations

Updated: Supervised learning pipeline
• Training dataset: where and

• Model / hypothesis class: (linear models)

• Loss function: (squared loss)

• Optimization algorithm: SGD

• Cross validation and model selection:

• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2

31

or instead of ϕ(x) x

Important: if a testing set is available, never use it to make decisions on the model!

For regression

• The most straightforward loss for classification is the 0/1 loss 
 

 where

• Good to evaluate the validation/test error, difficult to optimize (gradient is 0)

• We can optimize the raw score  
using another loss (e.g., squared loss) 
 

• But the squared loss does not always  
work well even for a linearly separable  
dataset

L(y, y′￼) = δy≠y′￼
δy≠y′￼

= {1 y ≠ y′￼

0 otherwise

w⊺x

arg min
w

N

∑
i=1

(yi − w⊺xi)2

Optimizing the linear classification model

32

Loss is equal to the
number of mistakes

Optimizing a linear classification model
• The most obvious loss for classification is so that #mistakesL(y, y′) = 1{y≠y′ } l(w) =

indicator function:

 if ; if 1 y ≠ y′ 0 y = y′ • Good to evaluate the validation / test error,

but difficult to optimize (gradient is 0)

(0/1 loss)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

• We optimize the raw score using
another loss (e.g., squared loss)

wtx

target y

0/1 loss

squared loss

arg min
w

N

∑
i=1

(yi − wtxi)2

• But the squared loss does not always work
well, even on a linearly separable dataset

• An alternative is the perceptron loss  
 

 

• Running SGD with this loss yields 
the perceptron algorithm

• Initialize

• For iteration , pick a random example and perform an update 
 

L(y, y′￼) = {0 sign(y′￼) = y
−yy′￼ otherwise

w(t = 0) = 0

t (x, y)

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)) = {w(t) correct
w(t) + ηyx otherwise

Perceptron algorithm revisited

33

Loss is equal to the
number of mistakes

Perceptron algorithm

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

target y

perceptron loss

An alternative loss is the perceptron loss:

• 0 for an example that is correctly classified

• otherwise−y (wtx)

raw score
target (+1 or -1)

Running SGD with this loss yields the
perceptron algorithm:

• Initialize

• For pick a random misclassified example and perform the update

w0 = 0
t = 0, 1, 2, … x

wt+1 = wt + ηyx (we can set because the magnitude of does not matter)η = 1 w

(0 if correct, if , if)−y′￼ y = + 1 +y′￼ y = − 1

(we can set because the
magnitude of does not matter)

η = 1
w

Reminder: 
 f(x |w) = sign(w⊺x)

y ∈ {+1, − 1}

Next time

• More on (stochastic) gradient descent

• Different loss functions

• Hinge loss (support vector machine)

• Log loss / cross entropy loss (logistic regression)

• We will use DataHub for in-
class hands-on portions

• Recommend to use it for
homework, final project, etc.

• Address: datahub.ucsd.edu

• Similar to public, free services
Google Colab, but with access
to better CPUs and GPUs and
run by UCSD

• Provides a “Jupyter notebook”
interface (Python-based but
interactive coding like
MATLAB/Mathematica)

DataHub

35

http://datahub.ucsd.edu

Logging in
• After logging in, choose a course environment…  

PHYS 139 PHYS 239 - Special Topics - Machine Learning - Duarte [WI23],  
ucsdets/scipy-ml-notebook:2022.3-stable, (2 CPU, 4G RAM)

• Spawns a “JupyterHub” (let’s go step by step through all the buttons)

Jupyter interface

Start coding!
• Coding in Jupyter notebooks

Plotting
• Plotting can be done easily with Matplotlib

Installing a missing library
• Not all libraries are preloaded, but it’s easy to install a new one

• Note: restart your “kernel” after doing this

Speed up numerical calculations with the GPU
• Many libraries to do this: TensorFlow, CuPy, PyTorch, …

Exiting / shutting down server
• When you’re done; hit control panel and “stop your server” 

When you start it again, all your data will still be there

Data Science & Machine Learning Platform (DSMLP)
• UCSD Data Science & Machine Learning Platform (DSMLP)

• Based on docker and Kubernetes (K8s): open-source system for automating
deployment, scaling, and management of containerized applications 
 
 

• Overview:

• You log in to a remote "login” node

• From that login node, you can launch a “pod” running a container

• The pod automatically starts a “JupyterHub” web server (only accessible
from campus so you must VPN if off campus)

• You are also automatically logged into that pod so you can run interactive
terminal commands, etc.

More Resources
• UCSD DSMLP Cluster

• Using the DSMLP server

• Customizing the DSMLP Containers

• Terminal and Command-Line Interface

• Bash Scripting Reference

• Git(Hub) Resources

https://support.ucsd.edu/services?id=kb_category&kb_category=368cc80fdb5c68d0d4781c79139619e2
https://support.ucsd.edu/services?id=kb_article_view&sysparm_article=KB0032273
https://www.educative.io/blog/bash-shell-command-cheat-sheet
https://try.github.io/

