PHYS 139/239:
Machine Learni

Lecture 3:
Support Vector




Logistics

» Homework 1 draft version due Friday 1/20 5pm
» (Graded on effort (so attempt all problems!)

* |f you get stuck, explain why you’re stuck

* |f you have trouble getting started, come to office hours or ask question in
Slack

» Solutions will be released on Friday soon after deadline

 Homework 1 final version (where you correct things) due Wednesday 1/25 5pm

* Both versions are needed to get 100% (50% for draft, 50% for corrected
version)



Recap: (Stochastic) gradient descent )
[(w) = %Z L(y;, f(x;, |w))
o Gradient descent update: w(t+ 1) = w(t) —n 'V, I(w(?)) i=1

o SGD update: w(t+ 1) =w() —nV, Ly, f(x|w(?)))
for arandom (x,y) € §
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SGD practical tips

* Divide the loss function by the number of examples (normalize):

w(t + 1) = w(f) — %vwzw)

(Don’t want the size of our updates to depend on the N)

o Start with a large step size n(t = 0)

 Whenever the validation error stops going down, lower the step size:

n(t+ 1) =n(0)/2
(step size must decrease over time to guarantee convergence)

o Stop when the validation error no longer decreases (early stopping)
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Recap: Supervised learning pipeline

. Training dataset: S = {(x{, ;) ..., Xy yy)} Wwherex € R” and y € |

|

« Model / hypothesis class: f(x |w) = wTx (linear models) For regression

\ or ¢p(x) instead of x

. Loss function: L(y, y") = (y — y)? (squared loss)
e Optimization algorithm: SGD
 Cross validation and model selection: I B

* [esting and deployment



Recap: Linear models for binary classification

e Linear model for regression: f(x |w) = wlx

* Usually evaluate with 0/1 loss

* Optimize raw score using
another loss (e.g. squared loss,
perceptron loss)

Raw score N
e Linear model for binary classification: f(x |w) = sign(wlx) € {+1,

@
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Recap: Squared & perceptron losses

 Squared loss: Usually not good: can fall ’
even on linearly separable data ’
* Perceptron loss: Reproduces perceptron ; squared loss
update i
w(1) correct 3 target y
wit+1) = , :
w(t) + yx otherwise L Otloss
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Which classifier is better?
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The classifier with a larger margin!
(more likely to generalize better)



Distance from a hyperplane

 wlx + b = 0 defines a hyperplane in(zt) D (affine subspace of dimension D — 1)
X
_I_
+ +
. +
A / T
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N bl ™. n A

w
A W
JAN
A A Raw score of
linear model

Distance: Signed distance:

[l - L? norm: [lw]| = v/wTw -~ Jiwll
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How to maximize margin?

 Assuming linearly
separable

» Choose w, b that
maximize

. y(wlx + b)
min ———

(x,y)ES |w|

* Equivalently, minimize
|w||* with the constraint

min yw'x + b) = 1
(x,y)ES

See Bishop Ch. 7 for more details

ME)
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https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Support vector machine (SVM)

 Assuming linearly

separable: Max margin
classifier

 SVM optimization
problem

arg minHsz
w,b

subject to

ywlx, +b) > 1 Vi

|

some constraints are tight
at the optimum (support vectors)

ME)
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Soft-margin SVM

 Don’t assume linearly
separable

o Soft-margin SVM
optimization problem

: O N
are min wll® + — E .

ME)

w.,b
subject to N
ywlx. +b) > 1 =& Vi
¢ >0 Vi \
Slack

(' controls the trade-off between size of

margins and margin violations 12
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Hinge loss

o Soft-margin SVM
optimization problem

argm1nHwH2+ 25-

hinge loss (SVM)
subject to 3 15

0/1 loss

ywlx,+b) > 1 =& Vi 1
s >0 Vi os}
e & > max(0,1 —y,(wlx; + b)) N raw score 1
SVM equivalent to minimizing: — Z max (0,1 — y:(wlx; + b)) + —||w||?

11= C

13 Hinge loss Regularlzatlon



Kernel trick preface

e [heorem:
N

Optimal w has the form w = Z a.x; (a; # 0 only if x; is a support vector)
i=1
e Alternative (dual) formulation of SVM:

N
Z yi(ajijxi +b)>1-¢& Vi

arg IIllIl Z aaxTx T — Z ¢; subject to =1

£ >0 Vi

* Predictions only depend on support vectors

» Optimization and predictions only depend on dot products x!x’ of input
vector x, x’
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Y Label
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Kernel trick

 Can replace dot products x'x’" with arbitrary kernels k(x, x")!

« Polynomial kernel: k(x, x") = (xTx’ + ¢)¢

. Gaussian kernel: k(x, x) = exp( —||x — x'||*/26?)

Data projected to R™2 (nonseparable)

Data in R™3 (separable w/ hyperplane)
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A kernel formally
behaves as

k(x,x) = (¢(x), p(x))

(without explicitly
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Norms

L' norm: ||w||

L norm: [|w||,

J

2 : — —
L* norm: ||w]| = [[w|l, =

L™ norm: [[w]| ,, = max l'w| (max abs. value of entries)

J

wliw =

16

number of nonzero entries of w (hot a norm!)

Z |w(j)| (sum of abs. values of entries)

Z (wD)2
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Regularization 12

. L2—regularization for regression (ridge regression)

N
arg min Z (y; — wTx)* + A||w]|*
W l=1 : | | !
Training loss Regularization HWH2 = C

* [rades off model complexity vs. training loss

« Each choice of A gives a model class (larger A constrains w to be smaller)

* Regularization can be combined with any loss
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Regularization example

 Example: polynomial curve fitting (10 points, degree 9)
1t 1 1 o c—0
polynomial fit
o o o) .
Or 0t ol 0
o)
true curve ‘F -
1t 1t -1 N
0 1 0 1 0
/1 — O /1 — 8_18 /1 — 1
low A: overfitting high A: underfitting
(high variance) (high bias)
035 ] 035 C 0.13 ]
232.37 4.74 —0.05
~5321.83 —0.77 —0.06
48568.31 ~31.97 —0.05
| —231639.30 | 389 L — |—0.03
| 640042.26 | 55.28 -~ 1-0.02
—1061800.52 41.32 ~0.01
1042400.18 —45.95 0.00
—557682.99 —91.53 0.00
12520143 | 72.68 _ | 0.01 |




Regularization example

 Example: polynomial curve fitting (10 points, degree 9)

|

polynomial fit

true curve

9]

A=0

A=1

low A: overfitting !

(high variance) Y

057

Training
Test

optimal A

N\

high A: underfitting

/ (high bias)

The optimal choice of A
depends on the training size N




Model class interpretation

e Minimize

@ Equivalent
* Minimize

N
z (v; — wTx;)* with constraint ||w||* < ¢
i=1

(using Lagrange multipliers)



Lasso & sparsity

. Ll—regularization for (lasso) regression

N
: 2
argmin ) (y; — wix)? + Alwll,
W l=1 : ! : !
Training loss Regularization HWH1 = C

» We say that w is sparse if several of its entries are zero (||w]||, is small)

 Finding a sparse w is useful, e.g. time/memory efficiency (only some entries
are needed to compute wlx)

. We cannot use L’ regularization directly (not continuous)

e However, L! regularization (lasso) induces sparsity!
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Model class interpretation: L' vs. L’

N N
arg min E (yi—wai)2+/1HwH2 arg min E (yi—wai)2+/1HwH1
i=1" | | | i=1 | | |

Training loss L? regularization Training loss L' regularization




Updated supervised learning pipeline

. Training dataset: S = {(x{, ;) ..., Xy yy)} Wwherex € R” and y € |

|

« Model / hypothesis class: f(x |w) = wTx (linear models) For regression

\ or ¢p(x) instead of x

. Loss function: L(y, y") = (y — y)? (squared loss)

. Optimization algorithm: SGD with regularization ( L' or L?)

e Cross validation and model selection:

. Testi | t
esting and deploymen Select A
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PrObabi“StiC apprOaCh / Parametrized by w

» |dea: Model a probability distribution p(y | x; w) of labels y given inputs x
» Choose a form for p(y | x; w) (different for regression and classification)

« Write the likelihood of w, i.e. the probability of observing the labels y: of the
training dataset S given the inputs x::

Assuming training

N
pSIw) = | |01 x) examples are independen
=1

o Maximum likelihood estimation (MLE): find w that maximizes the (log) likelihood:

N
logp(S|w) = Z log p(y: | x5 w) = — [(w) Equivalently, minimize

the loss function!
=1
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log10(R/R®)

. . = "l Gaussian distributon
Linear regression revisited TN e
1.4 * Assume labels |
1.05 y are distributed *|
0.7 as N (Wix, 0%) "=
0.32 True value of W Fixed (unknown) variance
-0.35 o Likelihood of w (assuming training
0.7 samples are i.i.d.):
-1.05 s
-1.4 i N 2
15 1 05 0 05 1 15 2 1 v, = wlx)?)
0g10(M/M ®) pSIw) = H AP\ ~ ) 52
og 1\ 270 o

 Maximizing the likelihood is equivalent
to minimizing

N
—log P(S|w) ~ Z (y; — wix;)”
i=1
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Binary classification revisited

. A
» Linear model for binary classification: f(x|w) = sign(w'x) & {—Ifl, — 1}
Raw score

* |dea: raw score to model the probability of each class

o(wlx) ~ probability that y = + 1

Logistic/sigmoid function o : R — (0,1)

I +e=a o4l
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What is the right loss function?
 Assume that the true probability that y = + 1 given x is 6(w'x) and that

|

p(y|o(wlx)) is a Bernoulli distribution True value of w

Only one of these two terms
 Likelihood of w: appears depending on y,

N RN
pS|w) = HG(WTXZ-)(S{YF“}(I — a(wai))é{yF—l}
i=1

 Negative log likelihood of w a.k.a. logistic / log / binary cross-entropy loss:

N
—log p(S|w) = — Z Ofy=+1110go(W'x) + 0y, 1y log(l — a(w'x)))
i=1
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Logistic loss

e Logistic / log / binary cross-entropy loss:

L(y,y) = = Opy=11y 108 y" — O¢ =y log(1 — y")

hinge loss (SVM)

logistic loss

0/1 loss




Logistic regression update

. Logistic loss: — (5{yi=+1} log o(w'x;) + 01y log(l = G(WTxi)))

. Gradient: — (5{)’i=+1} — G(WTXZ-)) X; Using: ¢'(a) = o(a)(1 — o(a))
T T
1ify, =+ 1 Model’s
0 otherwise prediction
. SGD update: wit+1)=w(i)+ny (5{y=+1} — a(wa)) x for (x,y) €S

(logistic regression)

» SGD update: wit+1)=w()+2n(y —wlx)x for (x,y) €S
(linear regression)
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arXiv:1604.01444

Multiclass logistic regression

 Predict a raw score for each of K classes .
- Example: K = 3.1 = {1, CC.1;, CC.NC} o
D 40| P Ly o | ] : : : q(ADCj
) 3o-l:'..-'"- . | T
B | \ WiA| - U, CC score
: T+ — T
| WX = | War] - v, CC score
o WiX | - NC score

x € RP

KXD

Model parameters: w € |
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https://arxiv.org/abs/1604.01444

Multiclass logistic regression

e Sigmoid is replaced by softmax:

a exp(a;)
a, 1 exp(a,) K numbers between 0
softmax | . pa— : and 1 that sum to 1
. zkzl €Xp(dk) )
a
K exp(ag)
_ wix filx|w)
e | - wlx = [wyx - softmax(w'x) = | /(x| w)
| _ Wwix J(x|[w)

PPPPP
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Multiclass logistic regression example

50} . | 3-1 f-t 00919 D//t CC: 93%
5 a0l pe— T | S
S | - wix=|[ 05 | /= 10.068| v, cC: 7%
| | —1.2 0.013 NC: 1%

PPPPP

softmax outputs
sum to 1
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Categorical cross-entropy loss

 Negative log likelihood of w a.k.a. categorical cross-entropy loss:

—logp(S|w) = Z Z Oty,=ky 108 filx | W)

=1 k=1

» Generalizes the binary cross-entropy loss (and equivalent when k = 2)
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Recap: Activations and loss functions

* Linear regression:

o Activation: linear; loss: mean-squared error

* Binary classification:
» Activation: linear; loss: perceptron (PLA)
* Activation: linear; loss: hinge (SVM)

e Activation: sigmoid; loss: binary cross-entropy

e Multiclass classification:

» Activation: softmax; loss: categorical cross-entropy

34



Next time

* (Boosted) decision trees
 Tabular data

» Kaggle Higgs boson classification challenge



