
Javier Duarte — January 17, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 3:  
Support Vector Machine, Regularization, & Logistic Regression
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Logistics
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• Homework 1 draft version due Friday 1/20 5pm


• Graded on effort (so attempt all problems!)


• If you get stuck, explain why you’re stuck


• If you have trouble getting started, come to office hours or ask question in 
Slack


• Solutions will be released on Friday soon after deadline


• Homework 1 final version (where you correct things) due Wednesday 1/25 5pm


• Both versions are needed to get 100% (50% for draft, 50% for corrected 
version)



Gradient descent vs. SGD

SGD update: wt+1 = wt − η∇wL(y, f(x |wt)) for a random (x, y) ∈ S

Source: https://golden.com/wiki/Stochastic_gradient_descent_(SGD)

Gradient descent update: wt+1 = wt − η∇wl(wt)

w(1)

w(2)

Recap: (Stochastic) gradient descent
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• Gradient descent update: 


• SGD update:                      
                                                                                       for a random 

w(t + 1) = w(t) − η∇wl(w(t))

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)))
(x, y) ∈ S

l(w) =
1
N

N

∑
i=1

L(yi, f(xi, |w))



SGD practical tips
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• Divide the loss function by the number of examples (normalize): 
 

 
 
(Don’t want the size of our updates to depend on the )


• Start with a large step size 


• Whenever the validation error stops going down, lower the step size: 
 

   
 
(step size must decrease over time to guarantee convergence)


• Stop when the validation error no longer decreases (early stopping)

w(t + 1) = w(t) −
η
N

∇wl(w)

N

η(t = 0)

η(t + 1) = η(t)/2



Recap: Supervised learning pipeline
• Training dataset:  where  and 


• Model / hypothesis class:  (linear models)


• Loss function:  (squared loss) 


• Optimization algorithm: SGD


• Cross validation and model selection: 


• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2
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or  instead of ϕ(x) x
For regression



Recap: Linear models for binary classification
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• Linear model for regression: 


• Linear model for binary classification: 

f(x |w) = w⊺x

f(x |w) = sign(w⊺x) ∈ {+1, − 1}
Raw score +

x(1)

x(2)

w• Usually evaluate with 0/1 loss


• Optimize raw score using 
another loss (e.g. squared loss, 
perceptron loss)



Optimizing a linear classification model
• The most obvious loss for classification is    so that #mistakesL(y, y′ ) = 1{y≠y′ } l(w) =

indicator function:

 if ;   if 1 y ≠ y′ 0 y = y′ • Good to evaluate the validation / test error, 

but difficult to optimize (gradient is 0)

(0/1 loss)
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• We optimize the raw score    using 
another loss (e.g., squared loss)

wtx

target y

0/1 loss

squared loss

arg min
w

N

∑
i=1

(yi − wtxi)2

• But the squared loss does not always work 
well, even on a linearly separable dataset

Perceptron algorithm
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perceptron loss

An alternative loss is the perceptron loss:

• 0 for an example that is correctly classified

•   otherwise−y (wtx)

raw score
target (+1 or -1)

Running SGD with this loss yields the 
perceptron algorithm:

• Initialize 

• For   pick a random misclassified example  and perform the update

w0 = 0
t = 0, 1, 2, … x

wt+1 = wt + ηyx (we can set  because the magnitude of  does not matter)η = 1 w

Recap: Squared & perceptron losses
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• Squared loss: Usually not good: can fail 
even on linearly separable data


• Perceptron loss: Reproduces perceptron 
update 
 

w(t + 1) = {w(t) correct
w(t) + yx otherwise



Which classifier is better?
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x(1)

x(2)

x(1)

x(2)

w
w

The classifier with a larger margin! 
(more likely to generalize better) 



Distance from a hyperplane
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x(1)

x(2)

w

|b |
∥w∥

•  defines a hyperplane in  (affine subspace of dimension )w⊺x + b = 0 ℝD D − 1

Distance: 
|w⊺x + b |

∥w∥
Signed distance: 

w⊺x + b
∥w∥ norm: L2 ∥w∥ = w⊺w

Raw score of 
linear model



x(1)

x(2)

w

How to maximize margin?
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• Assuming linearly 
separable


• Choose  that 
maximize 
 

 

• Equivalently, minimize 
 with the constraint 

 

w, b

min
(x,y)∈S

y(w⊺x + b)
∥w∥

∥w∥2

min
(x,y)∈S

y(w⊺x + b) = 1

See Bishop Ch. 7 for more details

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf


Support vector machine (SVM)
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• Assuming linearly 
separable: Max margin 
classifier


• SVM optimization 
problem 
 
 

 

 
subject to 
 

arg min
w,b

∥w∥2

yi(w⊺xi + b) ≥ 1 ∀i

x(1)

x(2)

w

w ⊺x + b =
0

w ⊺x + b =
− 1

w ⊺x + b =
1

margin = 
1

∥w∥

margin

some constraints are tight 

at the optimum (support vectors)



Soft-margin SVM
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x(1)

x(2)

w

w ⊺x + b =
0

w ⊺x + b =
− 1

w ⊺x + b =
1

 controls the trade-off between size of 
margins and margin violations 

C

ξ <
1ξ >

1

Slack

• Don’t assume linearly  
separable 

• Soft-margin SVM  
optimization problem 
 

  

 
subject to 
 

arg min
w,b (∥w∥2 +

C
N

N

∑
i=1

ξi)
yi(w⊺xi + b) ≥ 1 − ξi ∀i

ξi > 0 ∀i



Hinge loss
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• Soft-margin SVM  
optimization problem 
 

 

 
subject to 
 

 

•

arg min
w,b

∥w∥2 +
C
N

N

∑
i=1

ξi

yi(w⊺xi + b) ≥ 1 − ξi ∀i
ξi > 0 ∀i

ξi ≥ max(0,1 − yi(w⊺xi + b))

Hinge loss

yi (wtxi + b) ≥ 1 − ξi ∀i

arg min
w,b

∥w∥2 + C
N

N

∑
i=1

ξi

subject to

ξi ≥ 0 ∀i

SVM is equivalent to minimizing hinge loss + regularization term 
1
C

∥w∥2
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target y0/1 loss

hinge loss (SVM)

ξi ≥ max(0, 1 − yi (wtxi + b))
hinge loss

raw score
lo

ss

⇔

 SVM equivalent to minimizing:  
1
N

N

∑
i=1

max(0,1 − yi(w⊺xi + b)) +
1
C

∥w∥2

Hinge loss Regularization



Kernel trick preface
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• Theorem:  

Optimal  has the form   (  only if  is a support vector)


• Alternative (dual) formulation of SVM: 
 

  subject to  


• Predictions only depend on support vectors


• Optimization and predictions only depend on dot products  of input 
vector 

w w =
N

∑
i=1

αixi αi ≠ 0 xi

arg min
αi,b ∑

i,j

αiαjx
⊺
i xj +

C
N

N

∑
i=1

ξi

N

∑
j=1

yi(αjx
⊺
j xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

x⊺x′￼

x, x′￼



Kernel trick
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• Can replace dot products  with arbitrary kernels !


• Polynomial kernel: 


• Gaussian kernel: 

x⊺x′￼ k(x, x′￼)

k(x, x′￼) = (x⊺x′￼+ c)d

k(x, x′￼) = exp( −∥x − x′￼∥2/2σ2)

A kernel formally 
behaves as  




(without explicitly 
computing )

k(x, x′￼) = ⟨ϕ(x), ϕ(x′￼)⟩

ϕ(x), ϕ(x′￼)Kernel



Norms
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•  norm: number of nonzero entries of  (not a norm!) 

•  norm:  (sum of abs. values of entries)


•
 norm: 


•  norm:  (max abs. value of entries)

L0 ∥w∥0 = w

L1 ∥w∥1 = ∑
j

|w( j) |

L2 ∥w∥ = ∥w∥2 = w⊺w = ∑
j

(w( j))2

L∞ ∥w∥∞ = max
j

|w( j) |

Norms

•  norm:    number of non-zero entries of   (not a norm!)L0 ∥w∥0 = w

∥w∥1 = ∑
j

|w( j) | (sum of absolute values of the entries)

∥w∥ = ∥w∥2 = wtw = ∑
j

(w( j))2

•  norm:L1

•  norm:L2

∥w∥∞ = max
j

|w( j) |•  norm:L∞ (max absolute value of the entries)

Source: Wikimedia Commons / Esmil / CC BY-SA 3.0

∥w∥1 = 1

∥w∥2 = 1

∥w∥∞ = 1

Norms

•  norm:    number of non-zero entries of   (not a norm!)L0 ∥w∥0 = w

∥w∥1 = ∑
j

|w( j) | (sum of absolute values of the entries)

∥w∥ = ∥w∥2 = wtw = ∑
j

(w( j))2

•  norm:L1

•  norm:L2

∥w∥∞ = max
j

|w( j) |•  norm:L∞ (max absolute value of the entries)

Source: Wikimedia Commons / Esmil / CC BY-SA 3.0

∥w∥1 = 1

∥w∥2 = 1

∥w∥∞ = 1

Norms

•  norm:    number of non-zero entries of   (not a norm!)L0 ∥w∥0 = w

∥w∥1 = ∑
j

|w( j) | (sum of absolute values of the entries)

∥w∥ = ∥w∥2 = wtw = ∑
j

(w( j))2

•  norm:L1

•  norm:L2

∥w∥∞ = max
j

|w( j) |•  norm:L∞ (max absolute value of the entries)

Source: Wikimedia Commons / Esmil / CC BY-SA 3.0

∥w∥1 = 1

∥w∥2 = 1

∥w∥∞ = 1



Regularization
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• -regularization for regression (ridge regression) 
 

 

• Trades off model complexity vs. training loss


• Each choice of  gives a model class (larger  constrains  to be smaller)


• Regularization can be combined with any loss

L2

arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥2

λ λ w

Training loss Regularization

Lasso
( -regularized regression)L1

∥w∥1 = c ∥w∥2 = c ∥w∥4 = c

L1 L2 L4

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

arg min
w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥1

training loss regularization
(can exclude 
the bias term)



Source: Christofer M. Bishop, Pattern Recognition and Machine LearningExample: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

w =

0.35
232.37

−5321.83
48568.31

−231639.30
640042.26

−1061800.52
1042400.18
−557682.99
125201.43

w =

0.35
4.74

−0.77
−31.97
−3.89
55.28
41.32

−45.95
−91.53
72.68

w =

0.13
−0.05
−0.06
−0.05
−0.03
−0.02
−0.01
0.00
0.00
0.01

Regularization example
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Source: Christofer M. Bishop, Pattern Recognition and Machine LearningExample: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

w =

0.35
232.37

−5321.83
48568.31

−231639.30
640042.26

−1061800.52
1042400.18
−557682.99
125201.43

w =

0.35
4.74

−0.77
−31.97
−3.89
55.28
41.32

−45.95
−91.53
72.68

w =

0.13
−0.05
−0.06
−0.05
−0.03
−0.02
−0.01
0.00
0.00
0.01

• Example: polynomial curve fitting (10 points, degree 9)



Example: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

loss

The optimal choice of  
depends on the training size 

λ
N

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

optimal λ

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

Regularization example

19

Source: Christofer M. Bishop, Pattern Recognition and Machine LearningExample: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

w =

0.35
232.37

−5321.83
48568.31

−231639.30
640042.26

−1061800.52
1042400.18
−557682.99
125201.43

w =

0.35
4.74

−0.77
−31.97
−3.89
55.28
41.32

−45.95
−91.53
72.68

w =

0.13
−0.05
−0.06
−0.05
−0.03
−0.02
−0.01
0.00
0.00
0.01

• Example: polynomial curve fitting (10 points, degree 9)



Model class interpretation
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Model class interpretation

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

w(1)

w(2)

∥w∥2 ≤ c

N

∑
i=1

(yi − wtxi)2 + λ∥w∥2Minimize

N

∑
i=1

(yi − wtxi)2Minimize with constraint ∥w∥2 ≤ c

equivalent

(using Lagrange multipliers)

• Minimize 
 

 

 
 

• Minimize 
 

  with constraint   

 
 
(using Lagrange multipliers)

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥2

N

∑
i=1

(yi − w⊺xi)2 ∥w∥2 < c

⇔ Equivalent



Lasso & sparsity
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• -regularization for (lasso) regression  
 

 

• We say that  is sparse if several of its entries are zero (  is small) 


• Finding a sparse  is useful, e.g. time/memory efficiency (only some entries 
are needed to compute )


• We cannot use  regularization directly (not continuous)


• However,  regularization (lasso) induces sparsity! 

L1

arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥1

w ∥w∥0

w
w⊺x

L0

L1

Training loss Regularization

Lasso
( -regularized regression)L1

∥w∥1 = c ∥w∥2 = c ∥w∥4 = c

L1 L2 L4

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

arg min
w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥1

training loss regularization
(can exclude 
the bias term)



Recap: regularization
arg min

w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥2

training loss  regularizationL2

arg min
w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥1

training loss  regularizationL1

∥w∥2 ≤ c ∥w∥1 ≤ c

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

Model class interpretation:  vs. L1 L2
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arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥1arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥2

Training loss  regularizationL2 Training loss  regularizationL1



Updated supervised learning pipeline
• Training dataset:  where  and 


• Model / hypothesis class:  (linear models)


• Loss function:  (squared loss) 


• Optimization algorithm: SGD with regularization (  or  )


• Cross validation and model selection: 


• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2

L1 L2

23

or  instead of ϕ(x) x
For regression

Select λ



Probabilistic approach
• Idea: Model a probability distribution  of labels  given inputs 


• Choose a form for  (different for regression and classification)


• Write the likelihood of , i.e. the probability of observing the labels  of the 
training dataset  given the inputs : 
 




• Maximum likelihood estimation (MLE): find  that maximizes the (log) likelihood: 
 

p(y |x; w) y x

p(y |x; w)

w yi
S xi

p(S |w) =
N

∏
i=1

p(yi |xi)

w

log p(S |w) =
N

∑
i=1

log p(yi |xi; w) = − l(w)
24

Assuming training 
examples are independent

Equivalently, minimize 
the loss function!

Parametrized by w



Linear regression revisited
• Assume labels  

 are distributed  
as  

• Likelihood of  (assuming training 
samples are i.i.d.): 
 




• Maximizing the likelihood is equivalent 
to minimizing 

y
𝒩(w̄⊺x, σ2)

w

p(S |w) =
N

∏
i=1

1

2πσ
exp (−

(yi − w⊺xi)2)
2σ2 )

−log P(S |w) ≃
N

∑
i=1

(yi − w⊺xi)2
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Linear regression revisited
Assume that the true labels  are distributed as y !(w̄tx, σ2)

fixed (unknown)

variance

true value of w
Gaussian distribution 

 

Probability density function:


!(μ, σ2)

f(y) = 1
2πσ

exp( − (y − μ)2

2σ2 )

Gaussian distribution 
𝒩(μ, σ2)

y = w̄⊺ x

𝒩(w̄⊺x, σ2)

x

Fixed (unknown) varianceTrue value of w



Binary classification revisited
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• Linear model for binary classification:  

• Idea: raw score to model the probability of each class 
 

probability that 

f(x |w) = sign(w⊺x) ∈ {+1, − 1}

σ(w⊺x) ≈ y = + 1

Raw score

+

Logistic/sigmoid function σ : ℝ → (0,1)

Classification with a probabilistic approach
(logistic regression)

Idea: we want the raw score to model the probability of each class:
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0.5

0.6

0.7

0.8

0.9

1

Linear model for binary classification:  f(x |w) = sign(wtx) ∈ {+1, −1}
raw score

a = wtx

σ(a) = 1
1 + e−a

logistic / sigmoid function σ : ℝ → (0, 1)

probability that σ(wtx) ≈ y = +1

σ(a) =
1

1 + e−a

a = w⊺x



What is the right loss function?
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• Assume that the true probability that  given  is  and that 
 

 is a Bernoulli distribution 

• Likelihood of :  
 




• Negative log likelihood of  a.k.a. logistic / log / binary cross-entropy loss: 
 

 

y = + 1 x σ(w̄⊺x)

p(y |σ(w̄⊺x))

w

p(S |w) =
N

∏
i=1

σ(w⊺xi)
δ{yi=+1}(1 − σ(w⊺xi))

δ{yi=−1}

w

−log p(S |w) = −
N

∑
i=1

δ{yi=+1} log σ(w⊺xi) + δ{yi=−1} log(1 − σ(w⊺xi))

True value of w

Only one of these two terms 
appears depending on yi



Logistic loss
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• Logistic / log / binary cross-entropy loss: 
 

 L(y, y′￼) = − δ{y=+1} log y′￼− δ{y=−1} log(1 − y′￼)
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Logistic loss
log p(S |w) =

N

∑
i=1

1{yi = +1} log σ(wtxi) + 1{yi = −1} log(1 − σ(wtxi))Log likelihood of :w

We find  by maximizing the (log) likelihood, or equivalently, minimizing the logistic loss:w

−(1{yi = +1} log σ(wtxi) + 1{yi = −1} log(1 − σ(wtxi)))

target y
0/1 loss

hinge loss (SVM)

logistic loss

raw score

loss a.k.a. log loss /

binary cross-entropy loss



Logistic regression update
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• Logistic loss: 


• Gradient:  
 
 

• SGD update:              for   
(logistic regression) 

• SGD update:               for   
(linear regression)

−(δ{yi=+1} log σ(w⊺xi) + δ{yi=−1} log(1 − σ(w⊺xi)))
−(δ{yi=+1} − σ(w⊺xi)) xi

w(t + 1) = w(t) + η (δ{y=+1} − σ(w⊺x)) x (x, y) ∈ S

w(t + 1) = w(t) + 2η(y − w⊺x)x (x, y) ∈ S

1 if 

0 otherwise

yi = + 1 Model’s 
prediction

Using: σ′￼(a) = σ(a)(1 − σ(a))



Multiclass logistic regression
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• Predict a raw score for each of  classes


• Example: 

K

K = 3,Y = {νμ CC, νe CC, NC}

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072053  doi :10.1088/1742-6596/898/7/072053

Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

arXiv:1604.01444

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).
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• Sigmoid is replaced by softmax: 
 

softmax

a1
a2
⋮
aK

=
1

∑K
k=1 exp(ak)

exp(a1)
exp(a2)

⋮
exp(aK)

K numbers between 0 
and 1 that sum to 1

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).
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Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).
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• Negative log likelihood of  a.k.a. categorical cross-entropy loss: 
 

 

• Generalizes the binary cross-entropy loss (and equivalent when )

w

−log p(S |w) = −
N

∑
i=1

K

∑
k=1

δ{yi=k} log fk(x |w)

k = 2



Recap: Activations and loss functions
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• Linear regression: 


• Activation: linear; loss: mean-squared error 

• Binary classification: 


• Activation: linear; loss: perceptron (PLA)


• Activation: linear; loss: hinge (SVM)


• Activation: sigmoid; loss: binary cross-entropy 

• Multiclass classification:


• Activation: softmax; loss: categorical cross-entropy



Next time

• (Boosted) decision trees


• Tabular data


• Kaggle Higgs boson classification challenge


