
Javier Duarte — January 17, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 3:  
Support Vector Machine, Regularization, & Logistic Regression

1

Logistics

2

• Homework 1 draft version due Friday 1/20 5pm

• Graded on effort (so attempt all problems!)

• If you get stuck, explain why you’re stuck

• If you have trouble getting started, come to office hours or ask question in
Slack

• Solutions will be released on Friday soon after deadline

• Homework 1 final version (where you correct things) due Wednesday 1/25 5pm

• Both versions are needed to get 100% (50% for draft, 50% for corrected
version)

Gradient descent vs. SGD

SGD update: wt+1 = wt − η∇wL(y, f(x |wt)) for a random (x, y) ∈ S

Source: https://golden.com/wiki/Stochastic_gradient_descent_(SGD)

Gradient descent update: wt+1 = wt − η∇wl(wt)

w(1)

w(2)

Recap: (Stochastic) gradient descent

3

• Gradient descent update:

• SGD update:  
 for a random

w(t + 1) = w(t) − η∇wl(w(t))

w(t + 1) = w(t) − η∇wL(y, f(x |w(t)))
(x, y) ∈ S

l(w) =
1
N

N

∑
i=1

L(yi, f(xi, |w))

SGD practical tips

4

• Divide the loss function by the number of examples (normalize): 
 

 
 
(Don’t want the size of our updates to depend on the)

• Start with a large step size

• Whenever the validation error stops going down, lower the step size: 
 

  
 
(step size must decrease over time to guarantee convergence)

• Stop when the validation error no longer decreases (early stopping)

w(t + 1) = w(t) −
η
N

∇wl(w)

N

η(t = 0)

η(t + 1) = η(t)/2

Recap: Supervised learning pipeline
• Training dataset: where and

• Model / hypothesis class: (linear models)

• Loss function: (squared loss)

• Optimization algorithm: SGD

• Cross validation and model selection:

• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2

5

or instead of ϕ(x) x
For regression

Recap: Linear models for binary classification

6

• Linear model for regression:

• Linear model for binary classification:

f(x |w) = w⊺x

f(x |w) = sign(w⊺x) ∈ {+1, − 1}
Raw score +

x(1)

x(2)

w• Usually evaluate with 0/1 loss

• Optimize raw score using
another loss (e.g. squared loss,
perceptron loss)

Optimizing a linear classification model
• The most obvious loss for classification is so that #mistakesL(y, y′) = 1{y≠y′ } l(w) =

indicator function:

 if ; if 1 y ≠ y′ 0 y = y′ • Good to evaluate the validation / test error,

but difficult to optimize (gradient is 0)

(0/1 loss)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

• We optimize the raw score using
another loss (e.g., squared loss)

wtx

target y

0/1 loss

squared loss

arg min
w

N

∑
i=1

(yi − wtxi)2

• But the squared loss does not always work
well, even on a linearly separable dataset

Perceptron algorithm

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

target y

perceptron loss

An alternative loss is the perceptron loss:

• 0 for an example that is correctly classified

• otherwise−y (wtx)

raw score
target (+1 or -1)

Running SGD with this loss yields the
perceptron algorithm:

• Initialize

• For pick a random misclassified example and perform the update

w0 = 0
t = 0, 1, 2, … x

wt+1 = wt + ηyx (we can set because the magnitude of does not matter)η = 1 w

Recap: Squared & perceptron losses

7

• Squared loss: Usually not good: can fail
even on linearly separable data

• Perceptron loss: Reproduces perceptron
update 
 

w(t + 1) = {w(t) correct
w(t) + yx otherwise

Which classifier is better?

8

x(1)

x(2)

x(1)

x(2)

w
w

The classifier with a larger margin!
(more likely to generalize better)

Distance from a hyperplane

9

x(1)

x(2)

w

|b |
∥w∥

• defines a hyperplane in (affine subspace of dimension)w⊺x + b = 0 ℝD D − 1

Distance:
|w⊺x + b |

∥w∥
Signed distance:

w⊺x + b
∥w∥ norm: L2 ∥w∥ = w⊺w

Raw score of
linear model

x(1)

x(2)

w

How to maximize margin?

10

• Assuming linearly
separable

• Choose that
maximize 
 

 

• Equivalently, minimize
 with the constraint 

 

w, b

min
(x,y)∈S

y(w⊺x + b)
∥w∥

∥w∥2

min
(x,y)∈S

y(w⊺x + b) = 1

See Bishop Ch. 7 for more details

https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf

Support vector machine (SVM)

11

• Assuming linearly
separable: Max margin
classifier

• SVM optimization
problem 
 
 

 

 
subject to 
 

arg min
w,b

∥w∥2

yi(w⊺xi + b) ≥ 1 ∀i

x(1)

x(2)

w

w ⊺x + b =
0

w ⊺x + b =
− 1

w ⊺x + b =
1

margin =
1

∥w∥

margin

some constraints are tight

at the optimum (support vectors)

Soft-margin SVM

12

x(1)

x(2)

w

w ⊺x + b =
0

w ⊺x + b =
− 1

w ⊺x + b =
1

 controls the trade-off between size of
margins and margin violations

C

ξ <
1ξ >

1

Slack

• Don’t assume linearly  
separable 

• Soft-margin SVM  
optimization problem 
 

  

 
subject to 
 

arg min
w,b (∥w∥2 +

C
N

N

∑
i=1

ξi)
yi(w⊺xi + b) ≥ 1 − ξi ∀i

ξi > 0 ∀i

Hinge loss

13

• Soft-margin SVM  
optimization problem 
 

 

 
subject to 
 

 

•

arg min
w,b

∥w∥2 +
C
N

N

∑
i=1

ξi

yi(w⊺xi + b) ≥ 1 − ξi ∀i
ξi > 0 ∀i

ξi ≥ max(0,1 − yi(w⊺xi + b))

Hinge loss

yi (wtxi + b) ≥ 1 − ξi ∀i

arg min
w,b

∥w∥2 + C
N

N

∑
i=1

ξi

subject to

ξi ≥ 0 ∀i

SVM is equivalent to minimizing hinge loss + regularization term
1
C

∥w∥2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

target y0/1 loss

hinge loss (SVM)

ξi ≥ max(0, 1 − yi (wtxi + b))
hinge loss

raw score
lo

ss

⇔

 SVM equivalent to minimizing:
1
N

N

∑
i=1

max(0,1 − yi(w⊺xi + b)) +
1
C

∥w∥2

Hinge loss Regularization

Kernel trick preface

14

• Theorem:  

Optimal has the form (only if is a support vector)

• Alternative (dual) formulation of SVM: 
 

 subject to

• Predictions only depend on support vectors

• Optimization and predictions only depend on dot products of input
vector

w w =
N

∑
i=1

αixi αi ≠ 0 xi

arg min
αi,b ∑

i,j

αiαjx
⊺
i xj +

C
N

N

∑
i=1

ξi

N

∑
j=1

yi(αjx
⊺
j xi + b) ≥ 1 − ξi ∀i

ξi ≥ 0 ∀i

x⊺x′￼

x, x′￼

Kernel trick

15

• Can replace dot products with arbitrary kernels !

• Polynomial kernel:

• Gaussian kernel:

x⊺x′￼ k(x, x′￼)

k(x, x′￼) = (x⊺x′￼+ c)d

k(x, x′￼) = exp(−∥x − x′￼∥2/2σ2)

A kernel formally
behaves as  

(without explicitly
computing)

k(x, x′￼) = ⟨ϕ(x), ϕ(x′￼)⟩

ϕ(x), ϕ(x′￼)Kernel

Norms

16

• norm: number of nonzero entries of (not a norm!) 

• norm: (sum of abs. values of entries)

•
 norm:

• norm: (max abs. value of entries)

L0 ∥w∥0 = w

L1 ∥w∥1 = ∑
j

|w(j) |

L2 ∥w∥ = ∥w∥2 = w⊺w = ∑
j

(w(j))2

L∞ ∥w∥∞ = max
j

|w(j) |

Norms

• norm: number of non-zero entries of (not a norm!)L0 ∥w∥0 = w

∥w∥1 = ∑
j

|w(j) | (sum of absolute values of the entries)

∥w∥ = ∥w∥2 = wtw = ∑
j

(w(j))2

• norm:L1

• norm:L2

∥w∥∞ = max
j

|w(j) |• norm:L∞ (max absolute value of the entries)

Source: Wikimedia Commons / Esmil / CC BY-SA 3.0

∥w∥1 = 1

∥w∥2 = 1

∥w∥∞ = 1

Norms

• norm: number of non-zero entries of (not a norm!)L0 ∥w∥0 = w

∥w∥1 = ∑
j

|w(j) | (sum of absolute values of the entries)

∥w∥ = ∥w∥2 = wtw = ∑
j

(w(j))2

• norm:L1

• norm:L2

∥w∥∞ = max
j

|w(j) |• norm:L∞ (max absolute value of the entries)

Source: Wikimedia Commons / Esmil / CC BY-SA 3.0

∥w∥1 = 1

∥w∥2 = 1

∥w∥∞ = 1

Norms

• norm: number of non-zero entries of (not a norm!)L0 ∥w∥0 = w

∥w∥1 = ∑
j

|w(j) | (sum of absolute values of the entries)

∥w∥ = ∥w∥2 = wtw = ∑
j

(w(j))2

• norm:L1

• norm:L2

∥w∥∞ = max
j

|w(j) |• norm:L∞ (max absolute value of the entries)

Source: Wikimedia Commons / Esmil / CC BY-SA 3.0

∥w∥1 = 1

∥w∥2 = 1

∥w∥∞ = 1

Regularization

17

• -regularization for regression (ridge regression) 
 

 

• Trades off model complexity vs. training loss

• Each choice of gives a model class (larger constrains to be smaller)

• Regularization can be combined with any loss

L2

arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥2

λ λ w

Training loss Regularization

Lasso
(-regularized regression)L1

∥w∥1 = c ∥w∥2 = c ∥w∥4 = c

L1 L2 L4

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

arg min
w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥1

training loss regularization
(can exclude
the bias term)

Source: Christofer M. Bishop, Pattern Recognition and Machine LearningExample: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

w =

0.35
232.37

−5321.83
48568.31

−231639.30
640042.26

−1061800.52
1042400.18
−557682.99
125201.43

w =

0.35
4.74

−0.77
−31.97
−3.89
55.28
41.32

−45.95
−91.53
72.68

w =

0.13
−0.05
−0.06
−0.05
−0.03
−0.02
−0.01
0.00
0.00
0.01

Regularization example

18

Source: Christofer M. Bishop, Pattern Recognition and Machine LearningExample: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

w =

0.35
232.37

−5321.83
48568.31

−231639.30
640042.26

−1061800.52
1042400.18
−557682.99
125201.43

w =

0.35
4.74

−0.77
−31.97
−3.89
55.28
41.32

−45.95
−91.53
72.68

w =

0.13
−0.05
−0.06
−0.05
−0.03
−0.02
−0.01
0.00
0.00
0.01

• Example: polynomial curve fitting (10 points, degree 9)

Example: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

loss

The optimal choice of
depends on the training size

λ
N

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

optimal λ

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

Regularization example

19

Source: Christofer M. Bishop, Pattern Recognition and Machine LearningExample: Polynomial curve fitting (10 points, degree 9)

λ = 0 λ = e−18 λ = 1

true curve

polynomial fit

low : overfitting

(high variance)

λ high : underfitting

(high bias)
λ

w =

0.35
232.37

−5321.83
48568.31

−231639.30
640042.26

−1061800.52
1042400.18
−557682.99
125201.43

w =

0.35
4.74

−0.77
−31.97
−3.89
55.28
41.32

−45.95
−91.53
72.68

w =

0.13
−0.05
−0.06
−0.05
−0.03
−0.02
−0.01
0.00
0.00
0.01

• Example: polynomial curve fitting (10 points, degree 9)

Model class interpretation

20

Model class interpretation

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

w(1)

w(2)

∥w∥2 ≤ c

N

∑
i=1

(yi − wtxi)2 + λ∥w∥2Minimize

N

∑
i=1

(yi − wtxi)2Minimize with constraint ∥w∥2 ≤ c

equivalent

(using Lagrange multipliers)

• Minimize 
 

 

 
 

• Minimize 
 

 with constraint  

 
 
(using Lagrange multipliers)

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥2

N

∑
i=1

(yi − w⊺xi)2 ∥w∥2 < c

⇔ Equivalent

Lasso & sparsity

21

• -regularization for (lasso) regression  
 

 

• We say that is sparse if several of its entries are zero (is small)

• Finding a sparse is useful, e.g. time/memory efficiency (only some entries
are needed to compute)

• We cannot use regularization directly (not continuous)

• However, regularization (lasso) induces sparsity!

L1

arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥1

w ∥w∥0

w
w⊺x

L0

L1

Training loss Regularization

Lasso
(-regularized regression)L1

∥w∥1 = c ∥w∥2 = c ∥w∥4 = c

L1 L2 L4

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

arg min
w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥1

training loss regularization
(can exclude
the bias term)

Recap: regularization
arg min

w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥2

training loss regularizationL2

arg min
w

N

∑
i=1

(yi − wtxi)2 + λ∥w∥1

training loss regularizationL1

∥w∥2 ≤ c ∥w∥1 ≤ c

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning

Model class interpretation: vs. L1 L2

22

arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥1arg min
w

N

∑
i=1

(yi − w⊺xi)2 + λ∥w∥2

Training loss regularizationL2 Training loss regularizationL1

Updated supervised learning pipeline
• Training dataset: where and

• Model / hypothesis class: (linear models)

• Loss function: (squared loss)

• Optimization algorithm: SGD with regularization (or)

• Cross validation and model selection:

• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′￼) = (y − y′￼)2

L1 L2

23

or instead of ϕ(x) x
For regression

Select λ

Probabilistic approach
• Idea: Model a probability distribution of labels given inputs

• Choose a form for (different for regression and classification)

• Write the likelihood of , i.e. the probability of observing the labels of the
training dataset given the inputs : 
 

• Maximum likelihood estimation (MLE): find that maximizes the (log) likelihood: 
 

p(y |x; w) y x

p(y |x; w)

w yi
S xi

p(S |w) =
N

∏
i=1

p(yi |xi)

w

log p(S |w) =
N

∑
i=1

log p(yi |xi; w) = − l(w)
24

Assuming training
examples are independent

Equivalently, minimize
the loss function!

Parametrized by w

Linear regression revisited
• Assume labels  

 are distributed  
as  

• Likelihood of (assuming training
samples are i.i.d.): 
 

• Maximizing the likelihood is equivalent
to minimizing 

y
𝒩(w̄⊺x, σ2)

w

p(S |w) =
N

∏
i=1

1

2πσ
exp (−

(yi − w⊺xi)2)
2σ2)

−log P(S |w) ≃
N

∑
i=1

(yi − w⊺xi)2

25

lo
g1

0(
R/

R☉
)

-1.4
-1.05
-0.7

-0.35
0

0.35
0.7

1.05
1.4

log10(M/M☉)

-1.5 -1 -0.5 0 0.5 1 1.5 2

y = w̄tx

x

!(w̄tx, σ2)

Pr
ic

e
($

)

1500

2125

2750

3375

4000

Size (sq ft)
300 600 900 1200 1500

Linear regression revisited
Assume that the true labels are distributed as y !(w̄tx, σ2)

fixed (unknown)

variance

true value of w
Gaussian distribution

Probability density function:

!(μ, σ2)

f(y) = 1
2πσ

exp(− (y − μ)2

2σ2)

Gaussian distribution 
𝒩(μ, σ2)

y = w̄⊺ x

𝒩(w̄⊺x, σ2)

x

Fixed (unknown) varianceTrue value of w

Binary classification revisited

26

• Linear model for binary classification:  

• Idea: raw score to model the probability of each class 
 

probability that

f(x |w) = sign(w⊺x) ∈ {+1, − 1}

σ(w⊺x) ≈ y = + 1

Raw score

+

Logistic/sigmoid function σ : ℝ → (0,1)

Classification with a probabilistic approach
(logistic regression)

Idea: we want the raw score to model the probability of each class:

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear model for binary classification: f(x |w) = sign(wtx) ∈ {+1, −1}
raw score

a = wtx

σ(a) = 1
1 + e−a

logistic / sigmoid function σ : ℝ → (0, 1)

probability that σ(wtx) ≈ y = +1

σ(a) =
1

1 + e−a

a = w⊺x

What is the right loss function?

27

• Assume that the true probability that given is and that 
 

 is a Bernoulli distribution 

• Likelihood of :  
 

• Negative log likelihood of a.k.a. logistic / log / binary cross-entropy loss: 
 

 

y = + 1 x σ(w̄⊺x)

p(y |σ(w̄⊺x))

w

p(S |w) =
N

∏
i=1

σ(w⊺xi)
δ{yi=+1}(1 − σ(w⊺xi))

δ{yi=−1}

w

−log p(S |w) = −
N

∑
i=1

δ{yi=+1} log σ(w⊺xi) + δ{yi=−1} log(1 − σ(w⊺xi))

True value of w

Only one of these two terms
appears depending on yi

Logistic loss

28

• Logistic / log / binary cross-entropy loss: 
 

 L(y, y′￼) = − δ{y=+1} log y′￼− δ{y=−1} log(1 − y′￼)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Logistic loss
log p(S |w) =

N

∑
i=1

1{yi = +1} log σ(wtxi) + 1{yi = −1} log(1 − σ(wtxi))Log likelihood of :w

We find by maximizing the (log) likelihood, or equivalently, minimizing the logistic loss:w

−(1{yi = +1} log σ(wtxi) + 1{yi = −1} log(1 − σ(wtxi)))

target y
0/1 loss

hinge loss (SVM)

logistic loss

raw score

loss a.k.a. log loss /

binary cross-entropy loss

Logistic regression update

29

• Logistic loss:

• Gradient:  
 
 

• SGD update: for  
(logistic regression) 

• SGD update: for  
(linear regression)

−(δ{yi=+1} log σ(w⊺xi) + δ{yi=−1} log(1 − σ(w⊺xi)))
−(δ{yi=+1} − σ(w⊺xi)) xi

w(t + 1) = w(t) + η (δ{y=+1} − σ(w⊺x)) x (x, y) ∈ S

w(t + 1) = w(t) + 2η(y − w⊺x)x (x, y) ∈ S

1 if

0 otherwise

yi = + 1 Model’s
prediction

Using: σ′￼(a) = σ(a)(1 − σ(a))

Multiclass logistic regression

30

• Predict a raw score for each of classes

• Example:

K

K = 3,Y = {νμ CC, νe CC, NC}

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072053 doi :10.1088/1742-6596/898/7/072053

Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

arXiv:1604.01444

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

x ∈ ℝD

w⊺x =
w⊺

1x
w⊺

2x
w⊺

3x

 CC scoreνμ

 CC scoreνe

NC score

Model parameters: w ∈ ℝK×D

https://arxiv.org/abs/1604.01444

Multiclass logistic regression

31

• Sigmoid is replaced by softmax: 
 

softmax

a1
a2
⋮
aK

=
1

∑K
k=1 exp(ak)

exp(a1)
exp(a2)

⋮
exp(aK)

K numbers between 0
and 1 that sum to 1

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

x ∈ ℝD

w⊺x =
w⊺

1x
w⊺

2x
w⊺

3x
softmax(w⊺x) =

f1(x |w)
f2(x |w)
f3(x |w)

Multiclass logistic regression example

32

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

x ∈ ℝD

w⊺x =
3.1
0.5

−1.2

0.919
0.068
0.013

softmax
 CC: 93%νμ

 CC: 7%νe
NC: 1%

softmax outputs
sum to 1

Categorical cross-entropy loss

33

• Negative log likelihood of a.k.a. categorical cross-entropy loss: 
 

 

• Generalizes the binary cross-entropy loss (and equivalent when)

w

−log p(S |w) = −
N

∑
i=1

K

∑
k=1

δ{yi=k} log fk(x |w)

k = 2

Recap: Activations and loss functions

34

• Linear regression:

• Activation: linear; loss: mean-squared error 

• Binary classification:

• Activation: linear; loss: perceptron (PLA)

• Activation: linear; loss: hinge (SVM)

• Activation: sigmoid; loss: binary cross-entropy 

• Multiclass classification:

• Activation: softmax; loss: categorical cross-entropy

Next time

• (Boosted) decision trees

• Tabular data

• Kaggle Higgs boson classification challenge

