Logistics

• Homework 1 draft version due Friday 1/20 5pm
 • Graded on effort (so attempt all problems!)
 • If you get stuck, explain why you’re stuck
 • If you have trouble getting started, come to office hours or ask question in Slack
• Solutions will be released on Friday soon after deadline
• Homework 1 final version (where you correct things) due Wednesday 1/25 5pm
• Both versions are needed to get 100% (50% for draft, 50% for corrected version)
Recap: (Stochastic) gradient descent

- Gradient descent update: $w(t + 1) = w(t) - \eta \nabla_w l(w(t))$

- SGD update: $w(t + 1) = w(t) - \eta \nabla_w L(y, f(x \mid w(t)))$

for a random $(x, y) \in S$
SGD practical tips

- Divide the loss function by the number of examples (normalize):
 \[
 w(t + 1) = w(t) - \frac{\eta}{N} \nabla_w l(w)
 \]
 (Don’t want the size of our updates to depend on the \(N\))
- Start with a large step size \(\eta(t = 0)\)
- Whenever the validation error stops going down, lower the step size:
 \[
 \eta(t + 1) = \eta(t)/2
 \]
 (step size must decrease over time to guarantee convergence)
- Stop when the validation error no longer decreases (early stopping)
Recap: Supervised learning pipeline

- **Training dataset:** \(S = \{(x_1, y_1), \ldots, (x_N, y_N)\} \) where \(x \in \mathbb{R}^D \) and \(y \in \mathbb{R} \)

- **Model / hypothesis class:** \(f(x \mid w) = w^T x \) (linear models)

- **Loss function:** \(L(y, y') = (y - y')^2 \) (squared loss)

- **Optimization algorithm:** SGD

- **Cross validation and model selection:**

- **Testing and deployment**
Recap: Linear models for binary classification

- Linear model for regression: $f(x \mid w) = w^\top x$

- Linear model for binary classification: $f(x \mid w) = \text{sign}(w^\top x) \in \{+1, -1\}$

 Raw score

- Usually evaluate with 0/1 loss

- Optimize raw score using another loss (e.g. squared loss, perceptron loss)
Recap: Squared & perceptron losses

- **Squared loss**: Usually not good: can fail even on linearly separable data

- **Perceptron loss**: Reproduces perceptron update

\[
w(t + 1) = \begin{cases}
 w(t) & \text{correct} \\
 w(t) + yx & \text{otherwise}
\end{cases}
\]
Which classifier is better?

The classifier with a larger margin!
(more likely to generalize better)
Distance from a hyperplane

- \(w^T x + b = 0 \) defines a hyperplane in \(\mathbb{R}^D \) (affine subspace of dimension \(D - 1 \))

Distance:
\[
\frac{|w^T x + b|}{\|w\|}
\]

Signed distance:
\[
\frac{w^T x + b}{\|w\|}
\]

\(L^2 \) norm:
\[
\|w\| = \sqrt{w^T w}
\]
How to maximize margin?

- Assuming linearly separable

- Choose w, b that maximize

 \[
 \min_{(x,y) \in S} \frac{y(w^\top x + b)}{\|w\|}
 \]

- Equivalently, minimize $\|w\|^2$ with the constraint

 \[
 \min_{(x,y) \in S} y(w^\top x + b) = 1
 \]

See Bishop Ch. 7 for more details
Support vector machine (SVM)

• Assuming linearly separable: Max margin classifier

• SVM optimization problem

\[\arg \min_{w,b} \|w\|^2 \]

subject to

\[y_i(w^\top x_i + b) \geq 1 \ \forall i \]

some constraints are tight at the optimum (support vectors)

margin = \frac{1}{\|w\|}
Soft-margin SVM

- Don’t assume linearly separable

- Soft-margin SVM optimization problem

\[
\arg \min_{w,b} \left(\|w\|^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i \right)
\]

subject to

\[
y_i(w^T x_i + b) \geq 1 - \xi_i \quad \forall i \\
\xi_i > 0 \quad \forall i
\]

\(C\) controls the trade-off between size of margins and margin violations
Hinge loss

- Soft-margin SVM optimization problem

\[
\arg\min_{w, b} \|w\|^2 + \frac{C}{N} \sum_{i=1}^{N} \xi_i
\]

subject to

\[
y_i(w^\top x_i + b) \geq 1 - \xi_i \quad \forall i
\]

\[
\xi_i > 0 \quad \forall i
\]

- \(\xi_i \geq \max(0, 1 - y_i(w^\top x_i + b))\)

SVM equivalent to minimizing:

\[
\frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y_i(w^\top x_i + b)) + \frac{1}{C} \|w\|^2
\]
Kernel trick preface

• Theorem:

Optimal w has the form
\[
 w = \sum_{i=1}^{N} \alpha_i x_i \quad (\alpha_i \neq 0 \text{ only if } x_i \text{ is a support vector})
\]

• Alternative (dual) formulation of SVM:

\[
 \begin{align*}
 \text{arg min}_{\alpha_i, b} & \quad \sum_{i,j} \alpha_i \alpha_j x_i^\top x_j + \frac{C}{N} \sum_{i=1}^{N} \xi_i \\
 \text{subject to} & \quad \sum_{j=1}^{N} y_i (\alpha_j x_j^\top x_i + b) \geq 1 - \xi_i \quad \forall i \\
 & \quad \xi_i \geq 0 \quad \forall i
 \end{align*}
\]

• Predictions only depend on support vectors

• Optimization and predictions only depend on dot products $x^\top x'$ of input vector x, x'
Kernel trick

- Can replace dot products $x^T x'$ with arbitrary kernels $k(x, x')$!
 - Polynomial kernel: $k(x, x') = (x^T x' + c)^d$
 - Gaussian kernel: $k(x, x') = \exp\left(-\|x - x'\|^2 / 2\sigma^2\right)$

A kernel formally behaves as $k(x, x') = \langle \phi(x), \phi(x') \rangle$
(without explicitly computing $\phi(x), \phi(x')$)
Norms

- L^0 norm: $\|w\|_0 = \text{number of nonzero entries of } w$ (not a norm!)
- L^1 norm: $\|w\|_1 = \sum_j |w(j)|$ (sum of abs. values of entries)
- L^2 norm: $\|w\| = \|w\|_2 = \sqrt{w^Tw} = \sqrt{\sum_j (w(j))^2}$
- L^∞ norm: $\|w\|_\infty = \max_j |w(j)|$ (max abs. value of entries)
Regularization

- L^2-regularization for regression (ridge regression)

\[\arg \min_w \sum_{i=1}^{N} (y_i - w^T x_i)^2 + \lambda \| w \|^2 \]

- Trades off model complexity vs. training loss
- Each choice of λ gives a model class (larger λ constrains w to be smaller)
- Regularization can be combined with any loss
Regularization example

- **Example**: polynomial curve fitting (10 points, degree 9)

![Three graphs showing polynomial curve fitting with different λ values](image)

- Low λ: overfitting
 - (high variance)
 - $w = \begin{bmatrix} 0.35 \\ 232.37 \\ -5321.83 \\ 48568.31 \\ -231639.30 \\ 640042.26 \\ -1061800.52 \\ 1042400.18 \\ -557682.99 \\ 125201.43 \end{bmatrix}$

- High λ: underfitting
 - (high bias)
 - $w = \begin{bmatrix} 0.13 \\ -0.05 \\ -0.06 \\ -0.05 \\ -0.03 \\ -0.02 \\ -0.01 \\ 0.00 \\ 0.00 \\ 0.01 \end{bmatrix}$
Regularization example

- Example: polynomial curve fitting (10 points, degree 9)

![Graphs showing polynomial curve fitting with varying regularization parameters λ.](image)

- low λ: overfitting (high variance)
- high λ: underfitting (high bias)

The optimal choice of λ depends on the training size N.

Source: Christofer M. Bishop, Pattern Recognition and Machine Learning
Model class interpretation

- Minimize

\[\sum_{i=1}^{N} (y_i - w^\top x_i)^2 + \lambda \|w\|^2 \]

\[\Leftrightarrow \text{Equivalent} \]

- Minimize

\[\sum_{i=1}^{N} (y_i - w^\top x_i)^2 \text{ with constraint } \|w\|^2 < c \]

(using Lagrange multipliers)
Lasso & sparsity

- L^1-regularization for (lasso) regression

$$\arg\min_w \sum_{i=1}^{N} (y_i - w^\top x_i)^2 + \lambda \|w\|_1$$

- We say that w is sparse if several of its entries are zero ($\|w\|_0$ is small)

- Finding a sparse w is useful, e.g. time/memory efficiency (only some entries are needed to compute $w^\top x$)

- We cannot use L^0 regularization directly (not continuous)

- However, L^1 regularization (lasso) induces sparsity!
Model class interpretation: L^1 vs. L^2

$$\arg\min_w \sum_{i=1}^{N} (y_i - w^\top x_i)^2 + \lambda \|w\|^2$$ \hspace{1cm} $$\arg\min_w \sum_{i=1}^{N} (y_i - w^\top x_i)^2 + \lambda \|w\|_1$$

Training loss \hspace{1cm} L^2 regularization \hspace{1cm} Training loss \hspace{1cm} L^1 regularization

$\|w\|_2 \leq c$ \hspace{1cm} $\|w\|_1 \leq c$
Updated supervised learning pipeline

- **Training dataset:** \(S = \{ (x_1, y_1), \ldots, (x_N, y_N) \} \) where \(x \in \mathbb{R}^D \) and \(y \in \mathbb{R} \)

- **Model / hypothesis class:** \(f(x \mid w) = w^\top x \) (linear models)

- **Loss function:** \(L(y, y') = (y - y')^2 \) (squared loss)

- **Optimization algorithm:** SGD with regularization (\(L^1 \) or \(L^2 \))

- **Cross validation and model selection:**
 - Select \(\lambda \)

- **Testing and deployment**
Probabilistic approach

- Idea: Model a probability distribution \(p(y | x; w) \) of labels \(y \) given inputs \(x \)

- Choose a form for \(p(y | x; w) \) (different for regression and classification)

- Write the likelihood of \(w \), i.e. the probability of observing the labels \(y_i \) of the training dataset \(S \) given the inputs \(x_i \):

\[
p(S | w) = \prod_{i=1}^{N} p(y_i | x_i)
\]

- Maximum likelihood estimation (MLE): find \(w \) that maximizes the (log) likelihood:

\[
\log p(S | w) = \sum_{i=1}^{N} \log p(y_i | x_i; w) = - l(w)
\]

Assuming training examples are independent

Equivalent to minimizing the loss function!
Linear regression revisited

- Assume labels y are distributed as $\mathcal{N}(\bar{w}^\top x, \sigma^2)$

- Likelihood of w (assuming training samples are i.i.d.):

$$p(S \mid w) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(y_i - w^\top x_i)^2}{2\sigma^2}\right)$$

- Maximizing the likelihood is equivalent to minimizing

$$-\log P(S \mid w) \simeq \sum_{i=1}^{N} (y_i - w^\top x_i)^2$$
Binary classification revisited

- Linear model for binary classification: $f(x \mid w) = \text{sign}(w^T x) \in \{+1, -1\}$

- Idea: raw score to model the probability of each class

$$\sigma(w^T x) \approx \text{probability that } y = +1$$

Logistic/sigmoid function $\sigma : \mathbb{R} \rightarrow (0, 1)$

$$\sigma(a) = \frac{1}{1 + e^{-a}}$$

$\sigma(a) = \frac{1}{1 + e^{-a}}$
What is the right loss function?

- Assume that the true probability that \(y = +1 \) given \(x \) is \(\sigma(\tilde{\mathbf{w}}^\top \mathbf{x}) \) and that
 \[
 p(y \mid \sigma(\tilde{\mathbf{w}}^\top \mathbf{x})) \text{ is a Bernoulli distribution}
 \]

 True value of \(\mathbf{w} \)

- Likelihood of \(\mathbf{w} \): appears depending on \(y_i \)

 \[
 p(S \mid \mathbf{w}) = \prod_{i=1}^{N} \sigma(\mathbf{w}^\top \mathbf{x}_i)^{\delta_{\{y_i=1\}}} (1 - \sigma(\mathbf{w}^\top \mathbf{x}_i))^{\delta_{\{y_i=-1\}}}
 \]

- Negative log likelihood of \(\mathbf{w} \) a.k.a. \text{logistic / log / binary cross-entropy loss}:

 \[
 -\log p(S \mid \mathbf{w}) = - \sum_{i=1}^{N} \delta_{\{y_i=+1\}} \log \sigma(\mathbf{w}^\top \mathbf{x}_i) + \delta_{\{y_i=-1\}} \log(1 - \sigma(\mathbf{w}^\top \mathbf{x}_i))
 \]
Logistic loss

- Logistic / log / binary cross-entropy loss:

\[L(y, y') = -\delta_{\{y=+1\}} \log y' - \delta_{\{y=-1\}} \log(1 - y') \]
Logistic regression update

- **Logistic loss:**

 \[-\left(\delta_{y_i=+1} \log \sigma(w^T x_i) + \delta_{y_i=-1} \log (1 - \sigma(w^T x_i)) \right)\]

- **Gradient:**

 \[-\left(\delta_{y_i=+1} - \sigma(w^T x_i) \right) x_i\]

 Using: \(\sigma'(a) = \sigma(a)(1 - \sigma(a))\)

- **SGD update:**

 \(w(t + 1) = w(t) + \eta \left(\delta_{y=+1} - \sigma(w^T x) \right) x\) for \((x, y) \in S\) (logistic regression)

- **SGD update:**

 \(w(t + 1) = w(t) + 2\eta(y - w^T x)x\) for \((x, y) \in S\) (linear regression)
Multiclass logistic regression

- Predict a raw score for each of K classes
- Example: $K = 3, Y = \{\nu_\mu \text{ CC}, \nu_e \text{ CC}, \text{NC}\}$

Figure 1.

Figure 8

Darker regions indicate greater activation, and since this is the output from an early convolutional layer the regions correspond to the regions of the original image. The top-most feature map shows strong responses only in regions where hadronic activity can be found in the original image and the bottom-most feature map shows strong activation only along the path of the muon track. Shown are an example $\nu_\mu \text{ CC DIS}$ interaction (top), $\nu_\mu \text{ CC QE}$ interaction (middle), and $\nu_e \text{ NC}$ interaction (bottom).

$w^Tx = \begin{bmatrix} w_1^Tx \\ w_2^Tx \\ w_3^Tx \end{bmatrix}$

Model parameters: $w \in \mathbb{R}^{K \times D}$
Multiclass logistic regression

- Sigmoid is replaced by softmax:

\[
\text{softmax} \left(\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_K \end{bmatrix} \right) = \frac{1}{\sum_{k=1}^{K} \exp(a_k)} \begin{bmatrix} \exp(a_1) \\ \exp(a_2) \\ \vdots \\ \exp(a_K) \end{bmatrix}
\]

K numbers between 0 and 1 that sum to 1

\[
x \in \mathbb{R}^D
\]

\[
w^\top x = \begin{bmatrix} w_1^\top x \\ w_2^\top x \\ w_3^\top x \end{bmatrix} \rightarrow \text{softmax}(w^\top x) = \begin{bmatrix} f_1(x \mid w) \\ f_2(x \mid w) \\ f_3(x \mid w) \end{bmatrix}
\]
Multiclass logistic regression example

\[w^T x = \begin{bmatrix} 3.1 \\ 0.5 \\ -1.2 \end{bmatrix} \]

\[\text{softmax} \begin{bmatrix} 0.919 \\ 0.068 \\ 0.013 \end{bmatrix} \]

- \(\nu_\mu \) CC: 93%
- \(\nu_e \) CC: 7%
- NC: 1%

softmax outputs sum to 1

\(x \in \mathbb{R}^D \)
Categorical cross-entropy loss

- Negative log likelihood of w a.k.a. **categorical cross-entropy loss**:

$$-\log p(S \mid w) = -\sum_{i=1}^{N} \sum_{k=1}^{K} \delta_{\{y_i=k\}} \log f_k(x \mid w)$$

- Generalizes the **binary cross-entropy loss** (and equivalent when $k = 2$)
Recap: Activations and loss functions

- Linear regression:
 - **Activation**: linear; **loss**: mean-squared error

- Binary classification:
 - **Activation**: linear; **loss**: perceptron (PLA)
 - **Activation**: linear; **loss**: hinge (SVM)
 - **Activation**: sigmoid; **loss**: binary cross-entropy

- Multiclass classification:
 - **Activation**: softmax; **loss**: categorical cross-entropy
Next time

- (Boosted) decision trees
- Tabular data
 - Kaggle Higgs boson classification challenge