PHYS 139/239: Machine Learning in Physics

Lecture 3:
Support Vector Machine, Regularization, \& Logistic Regression

Javier Duarte - January 17, 2023

Logistics

- Homework 1 draft version due Friday 1/20 5pm
- Graded on effort (so attempt all problems!)
- If you get stuck, explain why you're stuck
- If you have trouble getting started, come to office hours or ask question in Slack
- Solutions will be released on Friday soon after deadline
- Homework 1 final version (where you correct things) due Wednesday 1/25 5pm
- Both versions are needed to get 100\% (50\% for draft, 50% for corrected version)

Recap: (Stochastic) gradient descent

- Gradient descent update: $w(t+1)=w(t)-\eta \nabla_{w} l(w(t))$
- SGD update:

$$
w(t+1)=w(t)-\eta \nabla_{w} L(y, f(x \mid w(t)))
$$

for a random $(x, y) \in S$

SGD practical tips

- Divide the loss function by the number of examples (normalize):

$$
w(t+1)=w(t)-\frac{\eta}{N} \nabla_{w} l(w)
$$

(Don't want the size of our updates to depend on the N)

- Start with a large step size $\eta(t=0)$
- Whenever the validation error stops going down, lower the step size:
$\eta(t+1)=\eta(t) / 2$
(step size must decrease over time to guarantee convergence)
- Stop when the validation error no longer decreases (early stopping)

Recap: Supervised learning pipeline

- Training dataset: $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$ where $x \in \mathbb{R}^{D}$ and $y \in \mathbb{R}$
- Model / hypothesis class: $f(x \mid w)=w^{\top} x$ (linear models)
- Loss function: $L\left(y, y^{\prime}\right)=\left(y-y^{\prime}\right)^{2}$ (squared loss) or $\phi(x)$ instead of x
- Optimization algorithm: SGD
- Cross validation and model selection:
- Testing and deployment

Recap: Linear models for binary classification

- Linear model for regression: $f(x \mid w)=w^{\top} x$

Raw score

- Linear model for binary classification: $f(x \mid w)=\operatorname{sign}\left(w^{\top} x\right) \in\left\{+{ }^{+},-_{-}^{\Delta} 1\right\}$
- Usually evaluate with $0 / 1$ loss
- Optimize raw score using another loss (e.g. squared loss, perceptron loss)

Recap: Squared \& perceptron losses

- Squared loss: Usually not good: can fail even on linearly separable data
- Perceptron loss: Reproduces perceptron update

$$
w(t+1)= \begin{cases}w(t) & \text { correct } \\ w(t)+y x & \text { otherwise }\end{cases}
$$

Which classifier is better?

The classifier with a larger margin! (more likely to generalize better)

Distance from a hyperplane

- $w^{\top} x+b=0$ defines a hyperplane in $\underset{x^{(2)}}{ } \mathbb{R}^{D}$ (affine subspace of dimension $D-1$)

How to maximize margin?

- Assuming linearly separable
- Choose w, b that maximize

$$
\min _{(x, y) \in S} \frac{y\left(w^{\top} x+b\right)}{\|w\|}
$$

- Equivalently, minimize $\|w\|^{2}$ with the constraint $\min y\left(w^{\top} x+b\right)=1$ $(x, y) \in S$

Support vector machine (SVM)

- Assuming linearly separable: Max margin classifier
- SVM optimization problem
$\arg \min \|w\|^{2}$
w, b
subject to
$y_{i}\left(w^{\top} x_{i}+b\right) \geq 1 \forall i$
some constraints are tight at the optimum (support vectors)

$$
\operatorname{margin}=\frac{1}{\|w\|}
$$

Soft-margin SVM

- Don't assume linearly separable
- Soft-margin SVM optimization problem
$\arg \min _{w, b}\left(\|w\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i}\right)$
subject to

$$
\begin{aligned}
y_{i}\left(w^{\top} x_{i}+b\right) & \geq 1-\xi_{i} \forall i \\
\xi_{i} & >0 \forall i \backslash_{\text {Slack }}
\end{aligned}
$$

Hinge loss

- Soft-margin SVM optimization problem
$\arg \min _{w, b}\|w\|^{2}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i}$
subject to

$$
\begin{aligned}
& y_{i}\left(w^{\top} x_{i}+b\right) \geq 1-\xi_{i} \forall i \\
& \xi_{i}>0 \forall i \\
& \hat{y}
\end{aligned}
$$

- $\xi_{i} \geq \max \left(0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right)$
raw score

$$
\text { SVM equivalent to minimizing: } \frac{1}{N} \sum_{i=1}^{N} \underbrace{\max \left(0,1-y_{i}\left(w^{\top} x_{i}+b\right)\right)}_{\text {Hinge loss }}+\underset{\text { Regularization }}{\frac{1}{C}\|w\|^{2}}
$$

Kernel trick preface

- Theorem:

Optimal w has the form $w=\sum_{i=1}^{N} \alpha_{i} x_{i}\left(\alpha_{i} \neq 0\right.$ only if x_{i} is a support vector)

- Alternative (dual) formulation of SVM:
$\arg \min _{\alpha_{i} b} \sum_{i, j} \alpha_{i} \alpha_{j} x_{i}^{\top} x_{j}+\frac{C}{N} \sum_{i=1}^{N} \xi_{i}$ subject to $\sum_{j=1}^{N} y_{i}\left(\alpha_{j} x_{j}^{\top} x_{i}+b\right) \geq 1-\xi_{i} \forall i$

$$
\xi_{i} \geq 0 \forall i
$$

- Predictions only depend on support vectors
- Optimization and predictions only depend on dot products $x^{\top} x^{\prime}$ of input vector x, x^{\prime}

Kernel trick

- Can replace dot products $x^{\top} x^{\prime}$ with arbitrary kernels $k\left(x, x^{\prime}\right)$!
- Polynomial kernel: $k\left(x, x^{\prime}\right)=\left(x^{\top} x^{\prime}+c\right)^{d}$
- Gaussian kernel: $k\left(x, x^{\prime}\right)=\exp \left(-\left\|x-x^{\prime}\right\|^{2} / 2 \sigma^{2}\right)$

Data in $\mathrm{R}^{\wedge} 3$ (separable w/ hyperplane)

A kernel formally behaves as

$$
k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle
$$

(without explicitly computing $\left.\phi(x), \phi\left(x^{\prime}\right)\right)$

Norms

- L^{0} norm: $\|w\|_{0}=$ number of nonzero entries of w (not a norm!)

. L^{1} norm: $\|w\|_{1}=\sum_{j}\left|w^{(j)}\right|$ (sum of abs. values of entries)
. L^{2} norm: $\|w\|=\|w\|_{2}=\sqrt{w^{\top} w}=\sqrt{\sum_{j}\left(w^{(j)}\right)^{2}}$
. L^{∞} norm: $\|w\|_{\infty}=\max \left|w^{(j)}\right|$ (max abs. value of entries)

Regularization

- L^{2}-regularization for regression (ridge regression)

- Trades off model complexity vs. training loss
- Each choice of λ gives a model class (larger λ constrains w to be smaller)
- Regularization can be combined with any loss

Regularization example

- Example: polynomial curve fitting (10 points, degree 9)

low λ : overfitting (high variance)
$w=\left[\begin{array}{c}0.35 \\ 232.37 \\ -5321.83 \\ 48568.31 \\ -231639.30 \\ 640042.26 \\ -1061800.52 \\ 1042400.18 \\ -557682.99 \\ 125201.43\end{array}\right]$

high λ : underfitting (high bias)

$$
w=\left[\begin{array}{c}
0.13 \\
-0.05 \\
-0.06 \\
-0.05 \\
-0.03 \\
-0.02 \\
-0.01 \\
0.00 \\
0.00 \\
0.01
\end{array}\right]
$$

Regularization example

- Example: polynomial curve fitting (10 points, degree 9)

low λ : overfitting
(high variance)

high λ : underfitting (high bias)

The optimal choice of λ depends on the training size N

Model class interpretation

- Minimize

$$
\begin{gathered}
\sum_{i=1}^{N}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\lambda\|w\|^{2} \\
\hat{y} \text { Equivalent }
\end{gathered}
$$

- Minimize

$$
\sum_{i=1}^{N}\left(y_{i}-w^{\top} x_{i}\right)^{2} \text { with constraint }\|w\|^{2}<c
$$

(using Lagrange multipliers)

Lasso \& sparsity

- L^{1}-regularization for (lasso) regression

$$
\arg \min _{w} \sum_{i=1}^{N} \underset{\text { Training loss }}{\left(y_{i}-w^{\top} x_{i}\right)^{2}}+\underset{\text { Regularization }}{\downarrow\|w\|_{1}}
$$

- We say that w is sparse if several of its entries are zero ($\|w\|_{0}$ is small)
- Finding a sparse w is useful, e.g. time/memory efficiency (only some entries are needed to compute $w^{\top} x$)
- We cannot use L^{0} regularization directly (not continuous)
- However, L^{1} regularization (lasso) induces sparsity!

Model class interpretation: L^{1} vs. L^{2}

$\arg \min _{w} \sum_{i=1}^{N}\left(y_{i}-w^{\top} x_{i}\right)^{2}+\underset{\text { Training loss }}{\lambda\|w\|^{2}} L^{2}$ regularization

$\arg \min _{w} \sum_{i=1}^{N} \underset{\text { Training loss }}{\left(y_{i}-w^{\top} x_{i}\right)^{2}}+\underset{L^{1} \text { regularization }}{\lambda\|w\|_{1}}$

Updated supervised learning pipeline

- Training dataset: $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$ where $x \in \mathbb{R}^{D}$ and $y \in \mathbb{R}$
- Model / hypothesis class: $f(x \mid w)=w^{\top} x$ (linear models)
- Loss function: $L\left(y, y^{\prime}\right)=\left(y-y^{\prime}\right)^{2}$ (squared loss) or $\phi(x)$ instead of x
- Optimization algorithm: SGD with regularization (L^{1} or L^{2})
- Cross validation and model selection:

- Testing and deployment

Select λ

Probabilistic approach

- Idea: Model a probability distribution $p(y \mid x ; w)$ of labels y given inputs x
- Choose a form for $p(y \mid x ; w)$ (different for regression and classification)
- Write the likelihood of w, i.e. the probability of observing the labels y_{i} of the training dataset S given the inputs x_{i} :

$$
p(S \mid w)=\prod_{i=1}^{N} p\left(y_{i} \mid x_{i}\right)
$$

Assuming training examples are independent

- Maximum likelihood estimation (MLE): find w that maximizes the (log) likelihood:

$$
\log p(S \mid w)=\sum_{i=1}^{N} \log p\left(y_{i} \mid x_{i} ; w\right)=-l(w)
$$

Linear regression revisited

- Assume labels y are distributed as $\mathcal{N}\left(\bar{w}^{\top} x, \sigma^{2}\right)$
- Likelihood of w (assuming training samples are i.i.d.):

$$
p(S \mid w)=\prod_{i=1}^{N} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left.\left(y_{i}-w^{\top} x_{i}\right)^{2}\right)}{2 \sigma^{2}}\right)
$$

- Maximizing the likelihood is equivalent to minimizing

$$
-\log P(S \mid w) \simeq \sum_{i=1}^{N}\left(y_{i}-w^{\top} x_{i}\right)^{2}
$$

Binary classification revisited

- Linear model for binary classification: $f(x \mid w)=\operatorname{sign}\left(w^{\top} x\right) \in\left\{++^{+},-^{\Delta} 1\right\}$

Raw score

- Idea: raw score to model the probability of each class
$\sigma\left(w^{\top} x\right) \approx$ probability that $y=+1$

Logistic/sigmoid function $\sigma: \mathbb{R} \rightarrow(0,1)$

What is the right loss function?

- Assume that the true probability that $y=+1$ given x is $\sigma\left(\bar{w}^{\top} x\right)$ and that $p\left(y \mid \sigma\left(\bar{w}^{\top} x\right)\right)$ is a Bernoulli distribution

Only one of these two terms

- Likelihood of w : appears depending on y_{i}

$$
p(S \mid w)=\prod_{i=1}^{N} \sigma\left(w^{\top} x_{i}\right)^{\delta_{\left(y_{i}=+1\right]}\left(1-\sigma\left(w^{\top} x_{i}\right)\right)^{\delta_{\left(y_{i}=-1\right)}} .}
$$

- Negative log likelihood of w a.k.a. logistic / log / binary cross-entropy loss:

$$
-\log p(S \mid w)=-\sum_{i=1}^{N} \delta_{\left\{y_{i}=+1\right\}} \log \sigma\left(w^{\top} x_{i}\right)+\delta_{\left\{y_{i}=-1\right\}} \log \left(1-\sigma\left(w^{\top} x_{i}\right)\right)
$$

Logistic loss

- Logistic / log / binary cross-entropy loss:

$$
L\left(y, y^{\prime}\right)=-\delta_{\{y=+1\}} \log y^{\prime}-\delta_{\{y=-1\}} \log \left(1-y^{\prime}\right)
$$

Logistic regression update

- Logistic loss: $-\left(\delta_{\left\{y_{i}=+1\right\}} \log \sigma\left(w^{\top} x_{i}\right)+\delta_{\left\{y_{i}=-1\right\}} \log \left(1-\sigma\left(w^{\top} x_{i}\right)\right)\right)$
- Gradient: $-\left(\delta_{\left\{y_{i}=+1\right\}}-\sigma\left(w^{\top} x_{i}\right)\right) x_{i}$

$$
\text { Using: } \sigma^{\prime}(a)=\sigma(a)(1-\sigma(a))
$$

1 if $y_{i}=+$
0 otherwise

Model's prediction

- SGD update: $\quad w(t+1)=w(t)+\eta\left(\delta_{\{y=+1\}}-\sigma\left(w^{\top} x\right)\right) x$ for $(x, y) \in S$ (logistic regression)
- SGD update:

$$
w(t+1)=w(t)+2 \eta\left(y-w^{\top} x\right) x \text { for }(x, y) \in S
$$ (linear regression)

Multiclass logistic regression

- Predict a raw score for each of K classes
- Example: $K=3, Y=\left\{\nu_{\mu} \mathrm{CC}, \nu_{e} \mathrm{CC}, \mathrm{NC}\right\}$

$$
w^{\top} x=\left[\begin{array}{c}
w_{1}^{\top} x \\
w_{2}^{\top} x \\
w_{3}^{\top} x
\end{array}\right] \longleftarrow \nu_{\mu} \text { CC score }
$$

Model parameters: $w \in \mathbb{R}^{K \times D}$

Multiclass logistic regression

- Sigmoid is replaced by softmax:
$\operatorname{softmax}\left(\left[\begin{array}{c}a_{1} \\ a_{2} \\ \vdots \\ a_{K}\end{array}\right]\right)=\frac{1}{\sum_{k=1}^{K} \exp \left(a_{k}\right)}\left[\begin{array}{c}\exp \left(a_{1}\right) \\ \exp \left(a_{2}\right) \\ \vdots \\ \exp \left(a_{K}\right)\end{array}\right]$
K numbers between 0 and 1 that sum to 1
$x \in \mathbb{R}^{D}$

Multiclass logistic regression example

Categorical cross-entropy loss

- Negative log likelihood of w a.k.a. categorical cross-entropy loss:

$$
-\log p(S \mid w)=-\sum_{i=1}^{N} \sum_{k=1}^{K} \delta_{\left\{y_{i}=k\right\}} \log f_{k}(x \mid w)
$$

- Generalizes the binary cross-entropy loss (and equivalent when $k=2$)

Recap: Activations and loss functions

- Linear regression:
- Activation: linear; loss: mean-squared error
- Binary classification:
- Activation: linear; loss: perceptron (PLA)
- Activation: linear; loss: hinge (SVM)
- Activation: sigmoid; loss: binary cross-entropy
- Multiclass classification:
- Activation: softmax; loss: categorical cross-entropy

Next time

- (Boosted) decision trees
- Tabular data
- Kaggle Higgs boson classification challenge

