#### PHYS 139/239: Machine Learning in Physics Lecture 4: (Boosted) Decision Trees

Javier Duarte – January 19, 2023



### Updated supervised learning pipeline

- Training dataset:  $S = \{(x_1, y_1), \dots, (x_N, y_N)\}$  where  $x \in \mathbb{R}^D$  and  $y \in \mathbb{R}$ • Model / hypothesis class:  $f(x | w) = w^{\mathsf{T}} x$  (linear models) For regression • Loss function:  $L(y, y') = (y - y')^2$  (squared loss) or  $\phi(x)$  instead of x
- Optimization algorithm: SGD with regularization ( $L^1$  or  $L^2$ )
- Cross validation and model selection:
- Testing and deployment

Select  $\lambda$ 

#### Recap: Probabilistic approach

- Choose a form for p(y | x; w) (different for regression and classification)
- training dataset S given the inputs  $x_i$ :

$$p(S | w) = \prod_{i=1}^{N} p(y_i | x_i)$$

$$\log p(S | w) = \sum_{i=1}^{N} \log p(y_i | x_i; w) =$$



Parametrized by *w* 

Idea: Model a probability distribution p(y | x; w) of labels y given inputs x

• Write the likelihood of w, i.e. the probability of observing the labels  $y_i$  of the

Assuming training examples are independent

• Maximum likelihood estimation (MLE): find w that maximizes the (log) likelihood:

= -l(w)

Equivalently, minimize the loss function!



### **Binary classification revisited**

- - Idea: raw score to model the probability of each class

 $\sigma(w^{\mathsf{T}}x) \approx \text{probability that } y = +1$  $\sigma(w^{\mathsf{T}}x) \approx y = +1$ 

Logistic/sigmoid function  $\mathscr{G}: \mathbb{R} \to (0, 1)$ 

# • Linear model for binary classification: $f(x|w) = \operatorname{sign}_{\mathcal{W}} x \in \{+1, -1\}$ model for binary classification: $f(x|w) = \operatorname{sign}_{W} x \in \{+1, -1\}$ Raw score



### What is the right loss function?

- Assume that the true probability that y = +1 given x is  $\sigma(\bar{w}^{T}x)$  and that  $p(y \mid \sigma(\bar{w}^{T}x))$  is a Bernoulli distribution True value of w
  - Only one of these two terms
- Likelihood of *w*: appears depending on  $y_i$  $p(S | w) = \prod^N \sigma(w^T x_i)^{\delta_{\{y_i = +1\}}} (1 - \sigma(w^T x_i)^{\delta_{\{y_i = +1\}}})^{\delta_{\{y_i = +1\}}})^{\delta_{\{y_i = +1\}}} (1 - \sigma(w^T x_i)^{\delta_{\{y_i = +1\}}})^{\delta_{\{y_i = +1$
- i=1
- Negative log likelihood of w a.k.a. logistic / log / binary cross-entropy loss:

$$-\log p(S | w) = -\sum_{i=1}^{N} \delta_{\{y_i = +1\}} \log \sigma(w^{\mathsf{T}} x_i) + \delta_{\{y_i = -1\}} \log(1 - \sigma(w^{\mathsf{T}} x_i))$$

$$(w^{\mathsf{T}}x_i))^{\delta_{\{y_i=-1\}}}$$

#### Logistic loss

• Logistic / log / binary cross-entropy loss:

$$L(y, y') = -\delta_{\{y=+1\}} \log y' - \delta_{\{y=-1\}}$$



#### -1 log(1 - y')





- SGD update: w(t+1) = w(t+1(logistic regression)
- SGD update:  $w(t+1) = w(t) + 2\eta(y w^{T}x)x$  for  $(x, y) \in S$ (linear regression)

Using:  $\sigma'(a) = \sigma(a)(1 - \sigma(a))$ 

$$t) + \eta \left( \delta_{\{y=+1\}} - \sigma(w^{\mathsf{T}}x) \right) x \text{ for } (x, y) \in$$



#### **Multiclass logistic regression**

- Predict a raw score for each of K classes
- Example:  $K = 3, Y = \{\nu_{\mu} \text{ CC}, \nu_{e} \text{ CC}, \text{ NC}\}$





Model parameters:  $w \in \mathbb{R}^{K \times D}$ 





### **Multiclass logistic regression**

• Sigmoid is replaced by softmax:





#### **Multiclass logistic regression example**







### **Categorical cross-entropy loss**

• Negative log likelihood of w a.k.a. categorical cross-entropy loss:

$$-\log p(S | w) = -\sum_{i=1}^{N} \sum_{k=1}^{K} \delta_{\{y_i = k\}} 1$$

• Generalizes the binary cross-entropy loss (and equivalent when k = 2)

 $\log f_k(x \mid w)$ 

### **Recap: Activations and loss functions**

- Linear regression:
  - Activation: linear; loss: mean-squared error
- Binary classification:
  - Activation: linear; loss: perceptron (PLA)
  - Activation: linear; loss: hinge (SVM)
  - Activation: sigmoid; loss: binary cross-entropy
- Multiclass classification:
  - Activation: softmax; loss: categorical cross-entropy

#### **Decision trees**



• Leaf nodes classify events as either signal ( $\nu_e$ ) or background ( $\nu_u$ )



MiniBooNE: 1520 photomultiplier signals Goal: separate  $\nu_e$  and  $\nu_\mu$  events







#### **Decision trees**



- Branch node (further branching)
- Every leaf node has a prediction (0 or 1)
- Prediction starts at root node
  - Recursively calls query function
  - Positive response  $\rightarrow$  left child
  - Negative response  $\rightarrow$  right child
  - Repeat until leaf node

 Every internal/branch node has a binary query function q(x)









#### Queries

- Decision tree defined by tree of queries
- Binary query q(x) maps features to 0 or 1
- Basic form is a "cut":  $q(x) = \delta[x^{(d)} > c]$ 
  - $q(x) = \delta[x^{(3)} > 5]$
  - $q(x) = \delta[x^{(1)} > 0]$
  - $q(x) = \delta[x^{(55)} > 1.2]$

### **Decision tree function class**

- "Piecewise static" function class
  - All possible partitioning over feature space
  - Each partition has a static prediction
- Partitions are **axis-aligned** 
  - i.e. no diagonals!



### **Decision trees vs. linear models**

- Decision trees are nonlinear models!
- Examples:

No linear model can achieve 0 error







- Simple decision tree can achieve 0 error







### **Decision trees vs. linear models**

- Decision trees are axis-aligned!
- Example:

margin



### **Decision trees vs. linear models**

- Decision Trees are often more accurate!
- Non-linearity is often more important
  - Just use many axis-aligned boundaries to approximate diagonal boundaries
  - It's OK to waste model capacity
- **Catch**: requires sufficient training data



### **Decision tree training**

- Every node = partition/subset of dataset S
- Every layer = complete partitioning of S
- Children = complete partitioning of parent



### **Decision tree training**

- What if just one node?
  - i.e. just root node
  - No queries
  - Single prediction for all data
- Make a single prediction: majority class in training set (i.e. signal here)











### **Decision tree training**

- What if just two levels?
  - i.e. root node and 2 children
  - Single query (Which one?)
  - How many possible queries?
    - Number of possible queries = Number of possible splits = DN
    - D =Number of features
    - N =Number of training samples
  - How do we choose the "best" query?









### Impurity

Define impurity function, e.g. 0/1 loss:  $\bullet$ 

## $L(S') = \min_{f(x) \in \{0,1\}} \sum_{(x,y) \in S} \delta[f(x) \neq y]$

L(S') =







L(S) = 1

Classification error of best single prediction in each partition

$$= \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

Impurity = 0 Reduction **No Benefit From** 

**This Split!** 

23

### Impurity

Define impurity function, e.g. 0/1 loss:  $\bullet$ 

## $L(S') = \min_{f(x) \in \{0,1\}} \sum_{(x,y) \in S} \delta[f(x) \neq y]$

L(S') =



L(S) = 1

Classification error of best single prediction in each partition

$$= \min_{\hat{y} \in \{0,1\}} \sum_{(x,y) \in S'} 1_{[\hat{y} \neq y]}$$

Impurity = 1 Reduction

**Choose Split with** largest impurity reduction!

24

### Impurity as loss function

- Training goal: find decision tree with low impurity
- Impurity over leaf nodes = training loss

$$L(S) = \sum_{S' \subset S} L(S') \text{ where } L(S') = \int_{f'}^{f'} L(S') = \int$$

## $\min_{f(x)\in\{0,1\}} \sum_{\substack{(x,y)\in S}} \delta[f(x) \neq y]$

### **Problems with 0/1 loss**

- 0/1 loss is discontinuous  $\hat{y} \in \{0,1\}$
- Degeneracies: all partitioning give same impurity reduction



 $1_{\left[\hat{y}\neq y\right]}$ 

L(S) = 1

 A good partitioning choice may not improve 0/1 loss, e.g., leads to an accurate model with a subsequent split



 $L(S_1) = 0$   $L(S_2) = 1$  $L(S_1) = 0$   $L(S_2) = 1$ 

### **Continuous impurity measures**

Bernoulli variance:

 $L(S') = |S'| p_{S'}(1 - p_{S'})$ 

- Entropy / information gain: IG(A, B | S') = L(S') - L(A) - L(B) $L(S') = - |S'| (p_{S'} \log p_{S'} + (1 - p_{S'}) \log(1 - p_{S'}))$
- Gini index / impurity:

 $L(S') = |S'| (1 - p_{S'}^2 - (1 - p_{S'})^2)$ 

• All behave similar  $V(S') = |S'| (1 - p_{S'}^2 - (1 - p_{S'})^2)$ 











### When/how to stop splitting?

- When do we stop growing a tree?
  - When all the nodes are pure? No, that's overfitting!
- How do we regularize?



## **Stopping conditions (regularizers)**

- Minimum size: do not split if resulting children are smaller than a minimum size
- Maximum depth: do not split if the resulting children are beyond some maximum tree depth
- Maximum number of nodes: do not split if tree already has maximum number of allowable nodes
- Minimum reduction in impurity: do not split if resulting children do not reduce impurity by at least  $\delta\%$

### Single decision trees

- Pros:
  - Requires little data preparation (unlike neural networks)
  - Can use continuous and categorical inputs
- Cons:
  - Danger of overfitting training data
  - Sensitive to fluctuations in training data
  - Hard to find global optimum
  - When to stop slitting?



### **Ensemble methods: combine weak learners**

- Bootstrap aggregation (bagging)
  - Sample training data (with replacement) and train a (minimally regularized) tree on each of the derived training sets  $\Rightarrow$  high variance, low bias
  - Classify example with majority vote or compute average output from each tree as model output
  - Reduce variance of low-bias models
- Boosting
  - Train (highly regularized) models in sequence, giving more weight to examples not correctly classified by previous model  $\Rightarrow$  high bias, low variance
  - Take weighted average to classify examples
  - Reduce bias of low-variance models
    31







### **Bagging vs. boosting**



Parallel



Sequential

#### **Tree boosting**

- Each tree is created iteratively
- Tree's output  $f_i(x)$  is given a weight  $w_i$  relative to its accuracy
- The ensemble output is the weighted sum

$$f(x) = \sum_{t=1}^{N_{\text{trees}}} \alpha_t f_t(x)$$

- After each iteration, each data sample is given a weight based on how often it's misclassification
- Goal is to minimize the objective function

$$l(S) = \sum_{i=1}^{N} L(f(x_i), x_i) + \sum_{t=1}^{N_{\text{trees}}} \Omega(f_t) \text{ where}$$

e L is the loss function and  $\Omega$  is a regularization term



### **Types of boosting**

- Adaptive boosting (AdaBoost)
  - One of the originals
  - Freund and Schapire (1997): <u>10.1006/jcss.1997.1504</u>
- Gradient boosting
  - Uses gradient descent to create new learners
  - The loss function is differentiable
  - Friedman (2001): <u>10.1214/aos/1013203451</u>
- **Extreme gradient boosting (XGBoost)** 
  - Very popular in data science (Kaggle) competitions
  - Chen and Guestrin (2016): <u>10.1145/2939672.2939785</u>

#### XGBoost



#### How it works: <u>https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html</u>

where  $lpha_i$  , and  $r_i$  are the regularization parameters and residuals computed with the  $i^{th}$  tree respectfully, and  $h_i$ is a function that is trained to predict residuals,  $r_i$  using X for the  $i^{th}$  tree. To compute  $\alpha_i$  we use the residuals mcomputed,  $r_i$  and compute the following:  $arg \min_{lpha} = \sum_{i=1} L(Y_i, F_{i-1}(X_i) + lpha h_i(X_i, r_{i-1}))$  where F(X)) is a differentiable loss function.



### **Tunable parameters**

- Loss function: How to define the distance between the truth and the prediction
  - Use binary logistic when you have two classes
- Learning rate: how much to adjust data weights after each iteration
  - Smaller is better but slower
- Subsample size: How many samples to train each new tree
  - Data samples are randomly selected each iteration
- Number of trees: How many total trees to create
  - This is the same as the number of iterations
  - Usually more is better, but could lead to overfitting

### **BDTs in the wild**

- 1st place in Kaggle Higgs Boson Machine Learning Challenge [kaggle.com/ <u>competitions/higgs-boson</u>]
  - And many other uses at LHC, e.g. in Higgs boson discovery [10.1038/ <u>s41586-018-0361-2</u>]
- Predicting critical temperature of a superconductor [10.1016/ j.commatsci.2018.07.052]
- MiniBooNE neutrino event classification [10.1016/j.nima.2004.12.018]
- Observation of single top quark production at D0 [10.1103/PhysRevLett.103.092001]

| 🔍 🔍 🗼 Higgs Boson Machine Learnin | ng × +                                            |                                                |                                                                              |          |         |             |          |
|-----------------------------------|---------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|----------|---------|-------------|----------|
| → C A  kaggle.com/comp.           | etitions/higgs-boson/lead                         | lerboard                                       |                                                                              |          |         | ☆           |          |
| ■ kaggle                          | Q Search                                          |                                                |                                                                              |          |         | Sign In     | Re       |
| Create                            |                                                   |                                                |                                                                              |          |         |             | _        |
| Home                              | Featured Prediction                               |                                                |                                                                              |          |         |             |          |
| Competitions                      | Higgs Bose                                        | on Machine                                     | Learning Challenge                                                           |          |         |             | \$1      |
| Datasets                          | Use the ATLAS                                     | experiment to i                                | identify the Higgs boson                                                     |          |         |             | Priz     |
| > Code                            | 1,784 teams · 8 ye                                | ars ago                                        |                                                                              |          |         |             |          |
| Discussions                       | Overview Data                                     | Code Discussion                                | Leaderboard Rules                                                            |          |         | Join Co     | mpetitio |
| n Learn                           | Leaderboard                                       |                                                |                                                                              |          |         | ⊻. Raw Data | ) ( c    |
| Y More                            |                                                   |                                                |                                                                              |          |         |             |          |
|                                   | Q Search leader                                   | poard                                          |                                                                              |          |         |             |          |
|                                   | Dublin Drivets                                    |                                                |                                                                              |          |         |             |          |
|                                   |                                                   |                                                |                                                                              |          |         |             |          |
|                                   | The private leaderboar<br>This competition has co | d is calculated with a<br>ompleted. This leade | approximately 82% of the test data.<br>erboard reflects the final standings. |          |         |             |          |
|                                   | Prize Winners                                     |                                                |                                                                              |          |         |             |          |
|                                   | <b>#</b> $\Delta$                                 | Team                                           | Members                                                                      |          | Score   | Entries     | Last     |
|                                   | 1 1                                               | Gábor Melis                                    | ۲                                                                            | 0        | 3.80581 | 110         | 8y       |
|                                   | 2 1                                               | Tim Salimans                                   |                                                                              | <i>(</i> | 3.78912 | 57          | 8y       |
|                                   | 3 • 1                                             | nhlx5haze                                      | <b>(</b>                                                                     | ۵        | 3.78682 | 254         | 8y       |
|                                   | 4 • 38                                            | ChoKo Team                                     |                                                                              | ۲        | 3.77526 | 216         | 8y       |
| View Active Events                | 5 <b>^ 35</b>                                     | cheng chen                                     |                                                                              | 0        | 3.77383 | 21          | 8y       |
|                                   |                                                   |                                                |                                                                              |          |         |             |          |
|                                   |                                                   |                                                |                                                                              |          |         |             |          |







#### Next time

• Neural networks