
Javier Duarte — January 19, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 4:  
(Boosted) Decision Trees

1

Updated supervised learning pipeline
• Training dataset: where and

• Model / hypothesis class: (linear models)

• Loss function: (squared loss)

• Optimization algorithm: SGD with regularization (or)

• Cross validation and model selection:

• Testing and deployment

S = {(x1, y1), . . . , (xN, yN)} x ∈ ℝD y ∈ ℝ

f(x |w) = w⊺x

L(y, y′) = (y − y′)2

L1 L2

2

or instead of ϕ(x) x
For regression

Select λ

Recap: Probabilistic approach
• Idea: Model a probability distribution of labels given inputs

• Choose a form for (different for regression and classification)

• Write the likelihood of , i.e. the probability of observing the labels of the
training dataset given the inputs : 
 

• Maximum likelihood estimation (MLE): find that maximizes the (log) likelihood: 
 

p(y |x; w) y x

p(y |x; w)

w yi
S xi

p(S |w) =
N

∏
i=1

p(yi |xi)

w

log p(S |w) =
N

∑
i=1

log p(yi |xi; w) = − l(w)
3

Assuming training
examples are independent

Equivalently, minimize
the loss function!

Parametrized by w

Binary classification revisited

4

• Linear model for binary classification:  

• Idea: raw score to model the probability of each class 
 

probability that

f(x |w) = sign(w⊺x) ∈ {+1, − 1}

σ(w⊺x) ≈ y = + 1

Raw score

+

Logistic/sigmoid function σ : ℝ → (0,1)

Classification with a probabilistic approach
(logistic regression)

Idea: we want the raw score to model the probability of each class:

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Linear model for binary classification: f(x |w) = sign(wtx) ∈ {+1, −1}
raw score

a = wtx

σ(a) = 1
1 + e−a

logistic / sigmoid function σ : ℝ → (0, 1)

probability that σ(wtx) ≈ y = +1

σ(a) =
1

1 + e−a

a = w⊺x

What is the right loss function?

5

• Assume that the true probability that given is and that 
 

 is a Bernoulli distribution 

• Likelihood of :  
 

• Negative log likelihood of a.k.a. logistic / log / binary cross-entropy loss: 
 

 

y = + 1 x σ(w̄⊺x)

p(y |σ(w̄⊺x))

w

p(S |w) =
N

∏
i=1

σ(w⊺xi)
δ{yi=+1}(1 − σ(w⊺xi))

δ{yi=−1}

w

−log p(S |w) = −
N

∑
i=1

δ{yi=+1} log σ(w⊺xi) + δ{yi=−1} log(1 − σ(w⊺xi))

True value of w

Only one of these two terms
appears depending on yi

Logistic loss

6

• Logistic / log / binary cross-entropy loss: 
 

 L(y, y′) = − δ{y=+1} log y′ − δ{y=−1} log(1 − y′)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Logistic loss
log p(S |w) =

N

∑
i=1

1{yi = +1} log σ(wtxi) + 1{yi = −1} log(1 − σ(wtxi))Log likelihood of :w

We find by maximizing the (log) likelihood, or equivalently, minimizing the logistic loss:w

−(1{yi = +1} log σ(wtxi) + 1{yi = −1} log(1 − σ(wtxi)))

target y
0/1 loss

hinge loss (SVM)

logistic loss

raw score

loss a.k.a. log loss /

binary cross-entropy loss

Logistic regression update

7

• Logistic loss:

• Gradient:  
 
 

• SGD update: for  
(logistic regression) 

• SGD update: for  
(linear regression)

−(δ{yi=+1} log σ(w⊺xi) + δ{yi=−1} log(1 − σ(w⊺xi)))
−(δ{yi=+1} − σ(w⊺xi)) xi

w(t + 1) = w(t) + η (δ{y=+1} − σ(w⊺x)) x (x, y) ∈ S

w(t + 1) = w(t) + 2η(y − w⊺x)x (x, y) ∈ S

1 if

0 otherwise

yi = + 1 Model’s
prediction

Using: σ′ (a) = σ(a)(1 − σ(a))

Multiclass logistic regression

8

• Predict a raw score for each of classes

• Example:

K

K = 3,Y = {νμ CC, νe CC, NC}

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072053 doi :10.1088/1742-6596/898/7/072053

Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

arXiv:1604.01444

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

x ∈ ℝD

w⊺x =
w⊺

1x
w⊺

2x
w⊺

3x

 CC scoreνμ

 CC scoreνe

NC score

Model parameters: w ∈ ℝK×D

https://arxiv.org/abs/1604.01444

Multiclass logistic regression

9

• Sigmoid is replaced by softmax: 
 

softmax

a1
a2
⋮
aK

=
1

∑K
k=1 exp(ak)

exp(a1)
exp(a2)

⋮
exp(aK)

K numbers between 0
and 1 that sum to 1

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

x ∈ ℝD

w⊺x =
w⊺

1x
w⊺

2x
w⊺

3x
softmax(w⊺x) =

f1(x |w)
f2(x |w)
f3(x |w)

Multiclass logistic regression example

10

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

x ∈ ℝD

w⊺x =
3.1
0.5

−1.2

0.919
0.068
0.013

softmax
 CC: 93%νμ

 CC: 7%νe
NC: 1%

softmax outputs
sum to 1

Categorical cross-entropy loss

11

• Negative log likelihood of a.k.a. categorical cross-entropy loss: 
 

 

• Generalizes the binary cross-entropy loss (and equivalent when)

w

−log p(S |w) = −
N

∑
i=1

K

∑
k=1

δ{yi=k} log fk(x |w)

k = 2

Recap: Activations and loss functions

12

• Linear regression:

• Activation: linear; loss: mean-squared error 

• Binary classification:

• Activation: linear; loss: perceptron (PLA)

• Activation: linear; loss: hinge (SVM)

• Activation: sigmoid; loss: binary cross-entropy 

• Multiclass classification:

• Activation: softmax; loss: categorical cross-entropy

Decision trees

13

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

• Leaf nodes classify events as either
signal () or background ()νe νμ

 CCQE νe
νen → pe−

 CCQE νμ
νμn → pμ−

MiniBooNE: 1520 photomultiplier signals

Goal: separate and eventsνe νμ

arXiv:physics/0408124

https://arxiv.org/abs/physics/0408124

Decision trees

14

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

• Every internal/branch node
has a binary query function

• Every leaf node has a
prediction (0 or 1)

• Prediction starts at root node

• Recursively calls query
function

• Positive response left
child

• Negative response right
child

• Repeat until leaf node

q(x)

→

→

Branch node  
(further branching)

Root node

Leaf nodes  
(no further branching)

Queries

15

• Decision tree defined by tree of queries

• Binary query maps features to 0 or 1

• Basic form is a “cut”:

•

•

•

• …

q(x)

q(x) = δ[x(d) > c]

q(x) = δ[x(3) > 5]

q(x) = δ[x(1) > 0]

q(x) = δ[x(55) > 1.2]

Decision tree function class

16

• “Piecewise static” function class

• All possible partitioning over feature space

• Each partition has a static prediction

• Partitions are axis-aligned

• i.e. no diagonals!

9

Decision Trees vs Linear Models

• Decision Trees are NON-LINEAR Models!

• Example:

12

No Linear Model
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

x1>0

1x1>1

1 0

Decision trees vs. linear models

17

• Decision trees are nonlinear models!

• Examples: No linear model  
can achieve 0 error

Simple decision tree
can achieve 0 error

Decision Trees vs Linear Models

• Decision Trees are NON-LINEAR Models!

• Example:

11

No Linear Model
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

x1>0

1x2>0

0 1

Decision Trees vs Linear Models

• Decision Trees are NON-LINEAR Models!

• Example:

11

No Linear Model
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

x1>0

1x2>0

0 1

Decision Trees vs Linear Models

• Decision Trees are NON-LINEAR Models!

• Example:

11

No Linear Model
Can Achieve 0 Error

Simple Decision Tree
Can Achieve 0 Error

x1>0

1x2>0

0 1

Decision trees vs. linear models

18

• Decision trees are axis-aligned!

• Example:
Simple linear SVM
can easily find max

margin

Decision trees require
complex axis-aligned

partitioning

Decision Trees vs Linear Models

• Decision Trees are AXIS-ALIGNED!
– Cannot easily model diagonal boundaries

• Example:

13

Simple Linear SVM can
Easily Find Max Margin

Decision Trees Require
Complex Axis-Aligned
Partitioning

Wasted
Boundary

Decision trees vs. linear models

19

• Decision Trees are often more accurate!

• Non-linearity is often more important

• Just use many axis-aligned boundaries to approximate diagonal boundaries

• It’s OK to waste model capacity

• Catch: requires sufficient training data

Decision tree training

20

• Every node = partition/subset of dataset

• Every layer = complete partitioning of

• Children = complete partitioning of parent

S

S

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

Decision tree training

21

• What if just one node?

• i.e. just root node

• No queries

• Single prediction for all data

• Make a single prediction: majority class in
training set (i.e. signal here)

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

Impurity

• Define impurity function:
– E.g., 0/1 Loss:

23

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

S

L(S) = 1 L(S1) = 0

S1

S2

L(S2) = 1

Impurity
Reduction = 0

Classification Error
of best single prediction

No Benefit From
This Split!

Decision tree training

22

• What if just two levels?

• i.e. root node and 2 children

• Single query (Which one?)

• How many possible queries?

• Number of possible queries =  
Number of possible splits =

• = Number of features

• = Number of training samples

• How do we choose the “best” query?

DN

D

N

S/B
52/48

B
4/37

S/B
48/11

S/B
9/10

S
39/1

S
7/1

B
2/9

PMT Hits?
< 100 ≥ 100

Energy?
< 0.2 GeV ≥ 0.2 GeV

Radius?
< 500 cm ≥ 500 cm

Impurity

• Define impurity function:
– E.g., 0/1 Loss:

23

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

S

L(S) = 1 L(S1) = 0

S1

S2

L(S2) = 1

Impurity
Reduction = 0

Classification Error
of best single prediction

No Benefit From
This Split!

Impurity

23

• Define impurity function, e.g. 0/1 loss: 
 

L(S′) = min
f(x)∈{0,1} ∑

(x,y)∈S

δ[f(x) ≠ y]

Impurity

• Define impurity function:
– E.g., 0/1 Loss:

23

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

S

L(S) = 1 L(S1) = 0

S1

S2

L(S2) = 1

Impurity
Reduction = 0

Classification Error
of best single prediction

No Benefit From
This Split!

Classification error of best single
prediction in each partition

• Define impurity function, e.g. 0/1 loss: 
 

L(S′) = min
f(x)∈{0,1} ∑

(x,y)∈S

δ[f(x) ≠ y]

Impurity

24

Impurity

• Define impurity function:
– E.g., 0/1 Loss:

24

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

S

L(S) = 1 L(S1) = 0

S1 S2

L(S2) = 0

Impurity
Reduction = 1

Classification Error
of best single prediction

Choose Split with
largest impurity
reduction!

Classification error of best single
prediction in each partition

• Training goal: find decision tree with low impurity

• Impurity over leaf nodes = training loss 
 

 where
L(S) = ∑
S′ ⊂S

L(S′) L(S′) = min
f(x)∈{0,1} ∑

(x,y)∈S

δ[f(x) ≠ y]

Impurity as loss function

25

• 0/1 loss is discontinuous

• Degeneracies: all partitioning give same impurity reduction

 
 

• A good partitioning choice may not improve 0/1 loss, e.g., leads to an
accurate model with a subsequent split

Problems with 0/1 Loss

• 0/1 Loss is discontinuous

• A good partitioning may not improve 0/1 Loss…
– E.g., leads to an accurate model with subsequent split…

27

S

L(S) = 1 L(S) = 1 L(S) = 0

S1 S2 S1 S2

S3

è è

Problems with 0/1 Loss

• What split best reduces impurity?

26

S

L(S) = 1

L(S ') = min
ŷ∈ 0,1{ }

1 ŷ≠y[]
(x,y)∈S '
∑

L(S1) = 0

All Partitionings Give Same
Impurity Reduction!

S1 S2 S1 S2

L(S2) = 1 L(S1) = 0 L(S2) = 1

Problems with 0/1 loss

26

• Bernoulli variance: 
 

  
 
where = fraction of that are

• Entropy / information gain: 
 

• Gini index / impurity: 
 

• All behave similarly

L(S′) = |S′ |pS′
(1 − pS′

)

pS′
S′ y = + 1

L(S′) = − |S′ |(pS′
log pS′

+ (1 − pS′
)log(1 − pS′

))

L(S′) = |S′ |(1 − p2
S′

− (1 − pS′
)2)

Continuous impurity measures

27

Other Impurity Measures

• Entropy:

– aka: Information Gain:

– (aka: Entropy Impurity Reduction)
– Most popular.

• Gini Index:

31
See also: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
(Terminology is slightly different.)

L(S ') = − S ' pS ' log pS ' + 1− pS '() log 1− pS '()()

pS’

L(
S’

)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Define: 0*log(0) = 0

IG(A,B | S ') = L(S ')− L(A)− L(B)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

pS’

L(
S’

)

L(S ') = S ' 1− pS '
2 − 1− pS '()2()

Surrogate Impurity Measures

• Want more continuous impurity measure

• First try: Bernoulli Variance:

28

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

pS’

L(
S’

) P = 1/2, L(S’) = |S’|*1/4
P = 1, L(S’) = |S’|*0
P = 0, L(S’) = |S’|*0

Perfect Purity

Worst Purity

L(S ') = S ' pS ' (1− pS ') =
pos*#neg

| S ' |
pS’ = fraction of S’ that are

positive examples

Assuming |S’|=1

Other Impurity Measures

• Entropy:

– aka: Information Gain:

– (aka: Entropy Impurity Reduction)
– Most popular.

• Gini Index:

31
See also: http://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
(Terminology is slightly different.)

L(S ') = − S ' pS ' log pS ' + 1− pS '() log 1− pS '()()

pS’

L(
S’

)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Define: 0*log(0) = 0

IG(A,B | S ') = L(S ')− L(A)− L(B)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

pS’

L(
S’

)

L(S ') = S ' 1− pS '
2 − 1− pS '()2()

• When do we stop growing a tree?

• When all the nodes are pure? No, that’s overfitting!

• How do we regularize?

When/how to stop splitting?

28

When to Stop?
• If kept going, can learn tree with zero training error.

– But such tree is probably overfitting to training set.

• How to stop training tree earlier?
– I.e., how to regularize?

42

Which one has better test error?

• Minimum size: do not split if resulting children are smaller than a
minimum size

• Maximum depth: do not split if the resulting children are beyond some
maximum tree depth

• Maximum number of nodes: do not split if tree already has maximum
number of allowable nodes

• Minimum reduction in impurity: do not split if resulting children do not
reduce impurity by at least δ %

Stopping conditions (regularizers)

29

• Pros:

• Requires little data preparation (unlike neural networks)

• Can use continuous and categorical inputs

• Cons:

• Danger of overfitting training data

• Sensitive to fluctuations in training data

• Hard to find global optimum

• When to stop slitting?

Single decision trees

30

• Bootstrap aggregation (bagging)

• Sample training data (with replacement) and train a
(minimally regularized) tree on each of the derived training
sets high variance, low bias

• Classify example with majority vote or compute average
output from each tree as model output

• Reduce variance of low-bias models

• Boosting

• Train (highly regularized) models in sequence, giving more
weight to examples not correctly classified by previous
model high bias, low variance

• Take weighted average to classify examples

• Reduce bias of low-variance models

⇒

⇒

Ensemble methods: combine weak learners

31

f(x) =
1

Ntrees

Ntrees

∑
i=1

fi(x)

f(x) =
Ntrees

∑
i=1

αi fi(x)

Bagging vs. boosting

32

• Each tree is created iteratively

• Tree’s output is given a weight relative to its accuracy

• The ensemble output is the weighted sum 
 

• After each iteration, each data sample is given a weight based on how often it’s
misclassification

• Goal is to minimize the objective function 
 

 where is the loss function and is a regularization term 

 

ft(x) wi

f(x) =
Ntrees

∑
t=1

αt ft(x)

l(S) =
N

∑
i=1

L(f(xi), xi) +
Ntrees

∑
t=1

Ω(ft) L Ω

Tree boosting

33

• Adaptive boosting (AdaBoost)

• One of the originals

• Freund and Schapire (1997): 10.1006/jcss.1997.1504

• Gradient boosting

• Uses gradient descent to create new learners

• The loss function is differentiable

• Friedman (2001): 10.1214/aos/1013203451

• Extreme gradient boosting (XGBoost)

• Very popular in data science (Kaggle) competitions

• Chen and Guestrin (2016): 10.1145/2939672.2939785

Types of boosting

34

https://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1145/2939672.2939785

XGBoost

35

How it works: https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html

• Loss function: How to define the distance between the truth and the
prediction

• Use binary logistic when you have two classes

• Learning rate: how much to adjust data weights after each iteration

• Smaller is better but slower

• Subsample size: How many samples to train each new tree

• Data samples are randomly selected each iteration

• Number of trees: How many total trees to create

• This is the same as the number of iterations

• Usually more is better, but could lead to overfitting

Tunable parameters

36

• 1st place in Kaggle Higgs Boson Machine
Learning Challenge [kaggle.com/
competitions/higgs-boson]

• And many other uses at LHC, e.g. in Higgs
boson discovery [10.1038/
s41586-018-0361-2]

• Predicting critical temperature of a
superconductor [10.1016/
j.commatsci.2018.07.052]

• MiniBooNE neutrino event classification
[10.1016/j.nima.2004.12.018]

• Observation of single top quark production at
D0 [10.1103/PhysRevLett.103.092001]

BDTs in the wild

37

https://www.kaggle.com/competitions/higgs-boson
https://www.kaggle.com/competitions/higgs-boson
https://www.kaggle.com/competitions/higgs-boson
http:///10.1038/s41586-018-0361-2
http:///10.1038/s41586-018-0361-2
http:///10.1038/s41586-018-0361-2
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.nima.2004.12.018
https://doi.org/10.1103/PhysRevLett.103.092001%5D

Next time

• Neural networks

38

