PHYS 139/239:
Machine Learni

Lecture 4:
(Boosted) Decisior




Updated supervised learning pipeline

. Training dataset: S = {(x{, ;) ..., Xy yy)} Wwherex € R” and y € |

|

« Model / hypothesis class: f(x |w) = wTx (linear models) For regression

\ or ¢p(x) instead of x

. Loss function: L(y, y") = (y — y)? (squared loss)

. Optimization algorithm: SGD with regularization ( L' or L?)

e Cross validation and model selection:

e Testi d depl t
esting and deploymen ——




Recap: PrObab“iStiC appr()aCh Parametrized by w

/

» |dea: Model a probability distribution p(y | x; w) of labels y given inputs x
» Choose a form for p(y | x; w) (different for regression and classification)

« Write the likelihood of w, i.e. the probability of observing the labels y: of the
training dataset S given the inputs x::

Assuming training

N
pSIw) = | |01 x) examples are independen
=1

o Maximum likelihood estimation (MLE): find w that maximizes the (log) likelihood:

N
logp(S|w) = Z log p(y: | x5 w) = — [(w) Equivalently, minimize

the loss function!
=1
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Binary classification revisited

. A
» Linear model for binary classification: f(x|w) = sign(w'x) & {—Ifl, — 1}
Raw score

* |dea: raw score to model the probability of each class

o(wlx) ~ probability that y = + 1

Logistic/sigmoid function o : R — (0,1)

I +e=a o4l




What is the right loss function?
 Assume that the true probability that y = + 1 given x is 6(w'x) and that

|

p(y|o(wlx)) is a Bernoulli distribution True value of w

Only one of these two terms
 Likelihood of w: appears depending on y,

N RN
pS|w) = HG(WTXZ-)(S{YF“}(I — a(wai))é{yF—l}
i=1

 Negative log likelihood of w a.k.a. logistic / log / binary cross-entropy loss:

N
—log p(S|w) = — Z Ofy=+1110go(W'x) + 0y, 1y log(l — a(w'x)))
i=1



Logistic loss

e Logistic / log / binary cross-entropy loss:

L(y,y) = = Opy=11y 108 y" — O¢ =y log(1 — y")

hinge loss (SVM)

logistic loss

0/1 loss




Logistic regression update

. Logistic loss: — (5{yi=+1} log o(w'x;) + 01y log(l = G(WTxi)))

. Gradient: — (5{)’i=+1} — G(WTXZ-)) X; Using: ¢'(a) = o(a)(1 — o(a))
T T
1ify, =+ 1 Model’s
0 otherwise prediction
. SGD update: wit+1)=w(i)+ny (5{y=+1} — a(wa)) x for (x,y) €S

(logistic regression)

» SGD update: wit+1)=w()+2n(y —wlx)x for (x,y) €S
(linear regression)



arXiv:1604.01444

Multiclass logistic regression

 Predict a raw score for each of K classes .
- Example: K = 3.1 = {1, CC.1;, CC.NC} o
D 40| P Ly o | ] : : : q(ADCj
) 3o-l:'..-'"- . | T
B | \ WiA| - U, CC score
: T+ — T
| WX = | War] - v, CC score
o WiX | - NC score

x € RP

KXD

Model parameters: w € |
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https://arxiv.org/abs/1604.01444

Multiclass logistic regression

e Sigmoid is replaced by softmax:

a exp(a;)
a, 1 exp(a,) K numbers between 0
softmax | . pa— : and 1 that sum to 1
. zk_l €Xp(dk) )
, —
K exp(ag)
wix fi(x|w)
u R - wlx = [wyx - softmax(wTx) = | (x| w)
| _ Wwix J(x|[w)

PPPPP




Multiclass logistic regression example

o 3.1 ) 0.919] v, CC: 93%
eI | - wix=1] 05| —— 10.068| v, CC: 7%
| | —1.2 0.013|] NC:1%

PPPPP

softmax outputs
sum to 1
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Categorical cross-entropy loss

 Negative log likelihood of w a.k.a. categorical cross-entropy loss:

—logp(S|w) = Z Z Oty,=ky 108 filx | W)

=1 k=1

» Generalizes the binary cross-entropy loss (and equivalent when k = 2)
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Recap: Activations and loss functions

* Linear regression:

o Activation: linear; loss: mean-squared error

* Binary classification:
» Activation: linear; loss: perceptron (PLA)
* Activation: linear; loss: hinge (SVM)

e Activation: sigmoid; loss: binary cross-entropy

e Multiclass classification:

» Activation: softmax; loss: categorical cross-entropy
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arXiv:physics/0408124

Decision trees ohysics/0

Signal region

Veto rcgi()n

S/B
J2/48
< 100 = 100 -
PMT Hits? -
B S/B e
4/37 438/11 e
<0.2GeV >0.2 GeV k|
Energy? ﬁ ‘
S/B S MiniBooNE: 1520 photomultiplier signals
9/10 39/1 Goal: separate v, and v, events
<500 cm , > 500 cm
Radius? O .:.. :
s : VOO0 g B
7/1 2/9 I/en - pe_ } :..o 0® :o
. Lgaf nodes classify events as either 4, CCQE 5:.:.5:.::5::::.:
signal (v,) or background (1/”) un — pu- S Soteasds
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https://arxiv.org/abs/physics/0408124

Decision trees » Every internal/branch node

has a binary query function

Root node . /B q ()C)
52/48
<100 S\ 100 aranchnode © EVEry leat node has a
PMI Hits: / (further branching) prediction (O or 1)
B S/B o
4/37 48/11  Prediction starts at root node
< 0.2 GeV. >0.2 GeV :
Energy? * Recursively calls query
L eaf nodes S function
(no further branching) 9/10 39/1 N
< 500 cm | > 500 cm o Positive response — left
\ Radius? Chlld
S B
//1 2/9 « Negative response — right
child

 Repeat until leaf node
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Queries

* Decision tree defined by tree of queries
 Binary query g(x) maps features to 0 or 1
. Basic form is a “cut™: g(x) = S[x'?Y > ¢]

+ q(x) = 6[x®) > 5]

. g(x) = o[x > 0]

e g(x) = O[x®> > 1.2]
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Decision tree function class

* “Plecewise static” function class
* All possible partitioning over feature space

 Each partition has a static prediction

T O == o —=
o P i1ti 1 I - d v'_H F' | - —_— -
artitions are axis-aligne | 5
— == ] -
== l_l_J [_|‘|_
" " e e - .
* |.e. no diagonals! + =
Il Ja e
- — —= .
st T 4
C.& [ o
== = ==
—m — CHQ
e -
. B % |
—= [l —
i ]
== == ==
i == ==
nar —=
N — S B
M - |
S -k -
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Decision trees vs. linear models

e Decision trees are nonlinear models!

« Examples: No linear model Simple decision tree
can achieve 0 error can achieve 0O error
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Decision trees vs. linear models

* Decision trees are axis-alignhed!

 Example:

Simple linear SVM Decision trees require
can easily find max complex axis-aligned
margin partitioning
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Decision trees vs. linear models

e Decision Trees are often more accurate!
* Non-linearity is often more important

e Just use many axis-aligned boundaries to approximate diagonal boundaries
* |t’s OK to waste model capacity

» Catch: requires sufficient training data
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Decision tree training

" S/B
« Every node = partition/subset of dataset S 59/4%
e < 100 > 100
 Every layer = complete partitioning of § PMT Hits?
| o B S/B
* Children = complete partitioning of parent 4/37 48/11
<0.2 GeV > (0.2 GeV
Energy?
S/B S
9/10 39/1
<500 cm Radiug? > 500 cm
S B

7/1 2/9
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Decision tree training

[ | u S
. ?
What if just one node* 57/48

e |.e. just root node

 NoO queries
» Single prediction for all data

 Make a single prediction: majority class in
training set (i.e. signal here)
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Decision tree training

 What if just two levels?

e |.e. root node and 2 children

Single query (Which one?)
How many possible queries?

 Number of possible queries =
Number of possible splits = DN

e ) = Number of features

» N = Number of training samples

How do we choose the “best” query?
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4/37
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Impurity

* Define impurity function, e.g. 0/1 loss: Classification error of best single

L(S)= min ) S5[fix) #)]

xX,Y)ES

.—_  prediction in each partition

f(X)E{O,l}

Impurity -0
Reduction

No Benefit From
This Split!

L(S1)=0 L(Sy) =1
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Impurity

* Define impurity function, e.g. 0/1 loss: Classification error of best single

L(S)= min ) S5[fix) #)]

xX,Y)ES

.—_  prediction in each partition

f(X)E{O,l}

Impurity _1
Reduction

Choose Split with
largest impurity
reduction!

L(S1)=0 L(S;)=0
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Impurity as loss function

e Jraining goal: find decision tree with low impurity

* |mpurity over leaf nodes = training loss

L(S)= ) L(S) where L(S) = min ) 8[f(x) # ]

P J(x)€10,1} (xy)ES
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Problems with 0/1 loss

e 0/1 loss is discontinuous

 Degeneracies: all partitioning give same impurity reduction

s S, S, S, s,
l || l F [_I | J
|| T -~ 3 | |3
lH [ | . l_H_ l lH [
[ | = [—' | ‘ = l | =
B (3 F
L | |t |
L(S)=1 L(S1)=0 L(S;)=1 L(S;)=0 L(S,)=1

* A good partitioning choice may not improve 0/1 loss, e.g., leads to an
accurate model with a subsequent split




Continuous impurity measures

e Bernoulli variance:

L(S')

L(S") = |8 | ps(1 — pg)

. 0 0.2 0.4 pS’ofe
where p¢ = fraction of $'thatarey = + 1

* Entropy / information gain:

L(S) = — | 8’| (pglog pg + (1 — pg)log(1 — pg))
o Gini index / impurity:
L) =S| (1 = p2— (1 - pg)?)

* All behave similarly

Ps’

L(S")

0 L L L
0 0.2 04 0.6
Ps’
27




When/how to stop splitting?

 When do we stop growing a tree?
 When all the nodes are pure? No, that’s overfitting!

 How do we regularize?
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Stopping conditions (regularizers)

 Minimum size: do not split if resulting children are smaller than a
minimum size

 Maximum depth: do not split if the resulting children are beyond some
maximum tree depth

 Maximum number of nodes: do not split if tree already has maximum
number of allowable nodes

 Minimum reduction in impurity: do not split if resulting children do not
reduce impurity by at least 0 %
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Single decision trees

* Pros:
 Requires little data preparation (unlike neural networks)
» (Can use continuous and categorical inputs
* Cons:
» Danger of overfitting training data
» Sensitive to fluctuations in training data
 Hard to find global optimum

* When to stop slitting?
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Ensemble methods: combine weak learners

* Bootstrap aggregation (bagging)

 Sample training data (with replacement) and train a Y,
(minimally regularized) tree on each of the derived training 1 LSS
sets = high variance, low bias Jx) = Zfl(x)
Ntrees

. . . =]
» Classify example with majority vote or compute average l

output from each tree as model output

e Reduce variance of low-bias models

* Boosting
* Train (highly regularized) models in sequence, giving more
weight to examples not correctly classified by previous Nirees
model = high bias, low variance flx) = Z a; f:(x)
» Take weighted average to classify examples =1

e Reduce bias of low-variance models .



Bagging vs. boosting

Boosting

Classifier-1

Classifier-2

Classifier-3

Classifier-3

Parallel Sequential
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Tree boosting

 Each tree is created iteratively

» Tree’s output f(x) is given a weight w; relative to its accuracy

* The ensemble output is the weighted sum

N,

trees

f) = ) a,fx
=1

» After each iteration, each data sample is given a weight based on how often it’s
misclassification

* Goal is to minimize the objective function

N,

trees

N
[(S) = Z L(f(x),x;) + Z Q(f,) where L is the loss function and €2 is a regularization term
i=1

=1
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Types of boosting

» Adaptive boosting (AdaBoost)
* One of the originals

* Freund and Schapire (1997): 10.1006/jcss.199/7.1504

» Gradient boosting
 Uses gradient descent to create new learners

e The loss function iIs differentiable

+ Friedman (2001): 10.1214/a0s/1013203451

 Extreme gradient boosting (XGBoost)
* Very popular in data science (Kaggle) competitions

 Chen and Guestrin (2016): 10.1145/2939672.2939785
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https://doi.org/10.1006/jcss.1997.1504
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1145/2939672.2939785

XG BOO St How it works: https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowltWorks.html

Data Set: (X, Y)

F1 (X) Fy(X) l Fp(X)

Tree 1 Tree 2 Tree m

 J  / v  J
Compute Compute «; Compute Compute Compute Compute &; Compute Compute o,
Residuals Residuals Residuals Residuals

(7'1) (72) (7i) ("m)

Fm.(X) — Fm—l (X) 2 amhm (X, Pm—1 ),
where «;, and 7; are the regularization parameters and residuals computed with the i'" tree respectfully, and h;

is a function that is trained to predict residuals, 7; using X for the it tree. To compute «; we use the residuals
m

computed, 7; and compute the following: arg min — z L(Y;, F; 1(X;) + ah;(X;,r;_1)) where
o
i—1
L(Y, F(X)) is a differentiable loss function.
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https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowItWorks.html

Tunable parameters

e [Loss function: How to define the distance between the truth and the
prediction

* Use binary logistic when you have two classes
* |earning rate: how much to adjust data weights after each iteration
 Smaller is better but slower
 Subsample size: How many samples to train each new tree
 Data samples are randomly selected each iteration
 Number of trees: How many total trees to create
* This is the same as the number of iterations

* Usually more is better, but could lead to overfitting
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BDTs in the wild

» st place in Kaggle Higgs Boson Machine
Learning Challenge [kaggle.com/
competitions/higgs-boson]

 And many other uses at LHC, e.g. in Higgs
boson discovery [10.1038/
s41586-018-0361-2]

* Predicting critical temperature of a
superconductor [10.1016/
j.commatsci.2018.07.052]

e MiniBooNE neutrino event classification
[10.1016/].nima.2004.12.01 8]}

* Observation of single top quark production at
DO [10.1103/PhysRevl ett.103.092001]
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a
Q_ Search leaderboard
Public  Private
The private leaderboard is calculated with approximately 82% of the test data.
This competition has completed. This leaderboard reflects the final standings.
@ Prize Winners
# A Team Members Score Entries Last Solution
| 1 -1 Gabor Melis @ @ 3.80581 110 8y @
| 2 -1 Tim Salimans #% O 3.78912 57 8y @
| 3 N nhix5haze () @ 3.78682 254 8y @
4 ~38  ChoKo Team @@ @ 3.77526 216 8y
[ View Active Events 5 +35  chengchen @ @ 3.77383 21 8y
e ————————————————————
a
- Model, u = 1.4
----- Model, u = 1
o Z->t'r
c 108
% B Other decays
s W Fake tau particles
® 77, Uncertainty
£ 2
e 10
=
.
10’
o
%o 15
O
T O
- DR
©
©
Ec o05f
O
< | | I |
-1 -0.5 0 0.5 1

BDT output


https://www.kaggle.com/competitions/higgs-boson
https://www.kaggle.com/competitions/higgs-boson
https://www.kaggle.com/competitions/higgs-boson
http:///10.1038/s41586-018-0361-2
http:///10.1038/s41586-018-0361-2
http:///10.1038/s41586-018-0361-2
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.commatsci.2018.07.052
https://doi.org/10.1016/j.nima.2004.12.018
https://doi.org/10.1103/PhysRevLett.103.092001%5D

Next time

e Neural networks



