PHYS 139/239:
Machine Learni

Lecture 5:
Neural networks




Homework

e« Some typos in Homework
1 solutions! Please check
latest file!

e Homework 1 final/
corrections due
Wednesday 1/25 5 5pm

« Homework 2 to be
released Wednesday 1/25
as well

* Draft due Friday 2/3
Spm

 Final/corrections due
Wednesday 2/8 5pm

Note: This last part turned out to be more difficult than I anticipated so all answers should get credit.

My initial idea for a solution of two engineered features that would allow the spiral pattern to be linearly separated w

r = /2?2 + x2 and = arctan 2(xy, x2). The four-quadrant arctan 2(z1, x2) has an output range that covers the f;
|—m, w| range as defined in https://en.wikipedia.org/wiki/Atan2. Lalsohad toswap x1 < xo from h
you would usually define this because of a bug in the TensorFlow Playground code! See https://github. cor
tensorflow/playground/blob/02469bd3751764b20486015d4202b792arf5362a6/src/datas
ts#L145-L146.

Howeuver, if we plot these two features, we see that the resulting dataset is not linearly separable! After staring
the source code of how the dataset is generated and some trial and error, we can come up with an engineered feati
that (together with r) lets the dataset be linearly separated, namely (6 — 2r) mod 2 (and there are many variatio
possible). See the figure below.

e o i °

o ° ° 3 ° o o 4
[ J d .' .. ’0
°
e eo°®°°°. ® 2 4 ® .. .O
° L o o ® ®
° [ b L) Y ® (] 31
° ® °
° ° . 1 ° o o* °
0’ ® ® O.
[ ] ® .. ) °®

® )
o P [ J [ J [ ) ..
° o o° °
[ ® ) ® Py ..
® [ ) g .0 ® ®
° ¢ ° e ® o’ o
[ J L4 (J Y Py o 1A
[ ([ ] [ ] @ ) [ ]
° o o © -2 ° PY o °
° ® ) o ®
[ ] o ) ° [ ]
° ¢ .. ® ® 0‘
[ ° [ ] —3 A [ ] o ° 0 i
-2 4 5

0 2 4 0 1 2 3 4 5 0 1 2 3

Figure 11: Spiral dataset in (z1, x2) (left), in (r, 8) (center), and in (r, (0 — 2r) mod 2) (right).



Recap: (Multiclass) Iogistic regression

softmax(w x)
wT

30 X 100 x 1

e Reshape
i _ S0 ()O() Linear Model

> v, +n— u+p(CC)

PPPPP




Linear models & embeddings

Data Linear classifier Embedding + Linear classifier
0.5; \\ / ~ 0.5; \ / - 0.5; \ /

\ / 05 / 0.5 \ /
X : ; ZammRms| ; /

\\ // ' | \\ // ' | \\ //
| A T | | T T
y = softmax(wx) y = softmax(w !¢ (x))

We have seen the polynomial embedding:

d(x) = (1,x,x2, ..., x"

colah.qgithub.io/posts/2014-03-NN-Manifolds-Topology 4



https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Cell

Limitations of linear models

Problem: A linear model considers each feature xW iIndependently and
regresses the weight w'” with which it contributes to the label

80

70}
60}
50}
40} ) T .

LH;H 50
30F N .

20F &

10F

But often individual low-level features (e.g., pixels in an image) are not
meaningful. What matters is the relationship between pixels

Example: To recognize av, + n — p + p interaction, we need to look at parts

and the relationship between parts { T

80

+

70}

60

O 40F

3 a0f T
ol T

20F &

20 40 60 80 100 10k
Plane

0

0

5

20 40 60 80
Plane

— 1, CC

In theory, we can learn an
embedding ¢(x) that

5, encodes all this (and this is

done), but can we learn it?



One artificial neuron

INnput

features weights

SUMS non-linearities



Two artificial neurons

INnput

features weights

SUMS non-linearities

A /
©) % output

features




N artificial neurons

INnput

features weights

SUMS non-linearities

output
features




N artificial neurons form a layer

INnput
features

non-linearities

0 output

o features

P




N artificial neurons form a layer




N artifici
ifi
cial neurons form a la
ver

O :
AN
o
* ,\\ 3
D~



Multiple layers form a network

iiiii

TR T
NN TR0

%0 A

° / . e o ’\\ .

O OGO =




INnput

One features
artificial ~ (O—s,
neuron (= Y

©

SuUum

non-linearity

a output
feature

artificial neuron: weighted sum and non-linearity

bias input features

s =wo+wixry +WweTo + - FWyTpy =W'X

weights

h = o(s)

output feature . .
non-linearity

13



INnput

One features
artificial ~ (O—s,
neuron (= Y

©

SuUum

non-linearity

a output
feature

artificial neuron: weighted sum and non-linearity

HE — I
input features
weights

output feature —

non-linearity

14



INnput
N features weights

agn m sums  non-linearities
artificial Qx‘: 5
neurons

R
| >
in a layer @\

>N

layer: parallelized weighted sum and non-linearity

features

L

0 output
®
o
®

one sum T vector of sums

— . — W'
per weight vector 8.7 W] A > S = X from weight matrix

h = o(s)

15



INnput

N features weights
artificial (S>—
S <X,

neurons X
inalayer CA K¢,
A\t
(2

SUMS non-linearities

output

features

(g i

layer: parallelized weighted sum and non-linearity

— IS

. input features
sum I
-

weights

output feature I — O'( I )
non-linearity sum

16




Input
features hidden

Layers In

G weights eatures o
a network ums “ng;)r?t_iesums Iing;)r?’;ies
NS

O O

O CXE-C

fs 1 0

network: sequence of parallelized weighted sums and non-linearities

>

L M

DEFINE x(0) = X x(1) = h ETtc

Tst layer 2nd layer

(1) — W (LT (0) s(2) — W (2T (1)
(1) — J(S(l)) «(2) — J(5(2))

17



Input
features hidden

Layers In

G weights eatures
anetwork =N - G
umS linearities ums linearities
‘ NG
"\

network: sequence of parallelized weighted sums and non-linearities

1= (- o o -I ) ) eee)

2nd weights Tst weights input

18



Role of nonlinearities

A :" A ¥,

output 2nd weights Tst weights input

If we didn’t have non-linearities, the whole network would reduce to a linear function!

\—\/__/

19




Nonlinearities and coordinate changes

the dot product is the distance between a point and a plane

each artificial neuron defines a (hyper)plane: R

0=wo+wixr1 +woxo + ... WNT N o

distance from
hyperplane

calculating the weighted sum corresponds to finding the shortest

distance between the input point and the weight hyperplane

20



Reinterpretation

the non-linearity transtorms this distance,

creating a field that changes non-linearly with distance

plane ®
distance \\ =

transformed
distance

@ transformed

distance distance

21



Neural networks & topology

Linear classifier

2-layer network

Data
\\ // sl
\ / |
TN\ yah o TN
\\ — // I \

\\——

v

y = softmax(wx)

colah.qgithub.io/posts/2014-03-NN-Manifolds-Topology

22

y — 0(W26(W1X))



https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural networks & topology

colah.qgithub.io/posts/2014-03-NN-Manifolds-Topology



https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

NNs are universal function approximators

Universal approximation theorem (informal). Given a function y = f(x) and an € > 0,
there exists a deep network y = f, (x) (of arbitrary width or depth) such that:

sup |[f(x) = f, (0l <€

xeX

shallow
arbitrarily deep

arbitrarily wide

narrow

Note: This means that a network can represent any function, not that it can learn it! The
*amount” of function a given network can represent is often called its expressive power.

24



Training a NN

We train deep networks using Maximum Likelihood Estimation (MLE): The last layer of a
DNN is a softmax that outputs probabillities over classes:

X = Input data
[ oo
S o pw( |x) = 10.1
W = vector y = label
containing all
weights

We train the weights w to maximize the Iog—likelihood of the data under our model:

PPPPP

Lw)=—— Z logp, (v;|x;) Negative log-likelihood loss
I (cross-entropy loss)

25



Gradient descent

o Start from some initial value w,, of the parameters

e Fort=0,1,2,... do the following:

« Compute the gradient V, L(w,) (direction of steepest increase of L(w) at w))

- Take a small step in the opposite direction: w,,; = w, —nV, L(w,)

|

step size / learning rate

Deep networks have millions or
billions of weights. We can can’t naively

L(w)
| compute all gradients independently!

26



Backpropagation (i.e. the chain rule)

A!

y = 1. H(f[(X)...) 9y

Jr ox;
~ i ' Jy _ﬂ 0x;
axL_l B @xL axL_l
y = fr(x)

dy | [ ay |ox;_,
Xp, = Jr (1) 0x;_»| | 0x;_;)oxL—2
. dy | Oy |0x;_
0X; 3 |0x7_o|0xL3

At each step we can reuse the
computation of the previous step!

x; = f1(x) .
fia |

0
We want to compute d_y foralll e {1,...,L}
Al

27



Backpropagation for NNs

0L oL ox\L) 9sL)

OW L) — 9x(L) sL) oW (L)

/1N,

depends on the derivative of the T (W(L)TX(L—l))
form of the loss non-linearity OW
oL . . .
note Vwa) L = is notational convention

OW (L)

28



BaCkprOpagatiOn fOr NNS Note: we can reuse

previous calculations!

now let's go back one more layer... oL B oL Oox)| osL)
OW (L) | 9x(L) 9s(L) |oW (L)

again we'll draw the dependency graph:

oL oL x| 9s(@) ox(L-1) Hg(L—1)
OW(L-1) ~ |[ox(D) 9s(D) |ox(L—1) §s(L—1) gW(L—1)

29



Backpropagation for NNs

* \WWe can use backpropagation to compute
the gradients on any computation graph

©
o

y = sin(wx + log(x)) + cos(x)

 Modern deep neural networks can have a very complex structure!

30



Automatic differentiation

we need to manually implement backpropagation and weight updates

—» can be difficult for arbitrary, large computation graphs

most deep learning software libraries automatically handle this for you

’ VL ¢
O pyTorch @=xnet [ Keras . 2457 48,

TensorFlow Caffe?

and many more

just build the computational graph and define the loss

31






NNs are highly parallelizable

recall - artificial neuron

:SUMm weight vector :

: T I S
O -
C °
(—l- [ ]
< .
D .
@]
‘—l-
O
Y

< batch s:ze

number of output units

“batch” of data
well suited for mini-
batch SGD

X1Jyew 1ndul

10109A 1ndul

unit parallelization data parallelization

perform all operations within process multiple data examples
a layer simultaneously simultaneously

33



NNs and GPUs

e Single instruction multiple data (SIMD)

GPU (Hundreds of Cores)

CPU (Multiple Cores)

-
O
-
@
=
"
>
D
O

System Memory

34



Vanishing gradients

)
small o
derivative s, >
9 e L. small
> derivative
(%)

saturating non-linearities have small derivatives almost everywhere

Q- C* Q* 0* Q-

1

M»p}»»»»»’}.

gradient goes toward zero

in backprop, the product of many small terms (i.e. 5s@ ) goes to zero

oL Ox (L) Ox(L—1) Ox(+1) Ix®)  Hg®
aW(E) — .. 8S(L) o o o 8S(L—1) c o o 8S(€—|—1) o o o 88(6) 6W(€)

difficult to train very deep networks with saturating non-linearities

35



Nonlinearities

hyperbolic tangent
logistic sigmoid (tanh)

f A
> >

~

exponential linear unit
(ELU)

rectified linear unit
(RelLU)

A A A o
> > >

most often used
ReLU(x) := max(0, x)

leaky RelLU softplus

36

A

saturating

derivative goes to

zero at +o0 and -oo

non-saturating

non-zero derivative

at +o0 and/or -0



Weight initialization

Initialize the weights so that if the input x; to the /-th layer has variance var(x;) = 1 then
the output x;, ; = ReLU(W, - x;) also has var(x;, ) = 1.

sample the weights from a gaussian

Wl ~ ﬂ/ (O, 2 / dlm(xl)) distribution with variance inversely

proportional to the size of the layer input

37



Batch normalization

—> keep the inputs within the dynamic range of the non-linearity

) stay near
-*  here

NNNNN

we can normalize the activations before applying the non-linearity
s — shift
scale

S <

38



Why does batch normalization work?

original motivation: internal covariate shift

changing weights during training results in changing outputs;

input to the next layer changes, making it difficult to learn

histogram of unit activations

| ||AH m

beginning of training

A

during training

A

" Ll MML'“,

end of training

batch norm. should stabilize the activations during training

39



Why does batch normalization work?

pout actually...
batch norm. does not seem to significantly reduce
internal covariate shift

Layer #5 Layer #10

[
o
o

;\5 =
) (S
~ © 75 N
o 2 -
) Q
o"c < -0 — Standard S
(@)] -
£ 5 Standard + <
= BatchNorm v 0
© (@)
= O

gradient difference before and after updating previous layers

rather, it seems that batch norm. stabilizes and
smooths the optimization surface

1
10 I Standard 250 B Standard 45 - Standard
I Standard + BatchNorm ﬁ i Standard + BatchNorm 40 - Standard + BatchNorm
c 200
5 g
(@] A
e, | 5
cC Q)
3 4 . a
~ S S
10° : ©
O
0 5k 10k 15k 0 5k 10k 15k 0 5k 10k 15k
Steps Steps Steps
(a) loss landscape (b) gradient predictiveness (c) “effective” [3-smoothness
(tOpiC of OﬂgOiﬂg research) How Does Batch Normalization Help Optimization?, Santurkar et al., 2018

40






Loss landscape of NNs

Convex problem
(logistic regression, SVMs)

Deep Networks

42



Consequences of nonconvexity

based on where you start you may end up in different minima

we may get stuck in a suboptimal local minimum

But SGD can jump out!

The noise of stochastic
gradient descent is
actually a benefit in

deep learning!

Gradient descent gets
stuck in shallow local
minima

43



Flat & sharp minima

If the IS too
large we can’t enter a

. _ sharp minimum
To converge to a minimum we need;

2 ~—

n< -

curvature \

The noise of SGD makes us jump out \
of sharp minima

Flat minimum

Sharp minimum

Is this a problem? In deep learning it is often observed that
SO avoiding sharp minima is good!

44



Learning rate annealing

Stepwise Annealing

/ 0010*\4 But to converge we need to

We start with an high decrease the learning rate later
. 0.008 -
learning rate
£ 0006 - B _If we decrease too fast we end up
Converges faster and - — in a bad minimum, so we do it in
avoids sharp minima S 0,004 - -] multiple steps
2
0.002 |
0.000 A

0 200 400 600 800 1000
iterations

45



Res i d ual CO n neCti O nS Without residual connections

Sequeﬂtia‘ connectiVity: information must flow through the entire sequence to reach the output

—0—0—0—0—0—0

information may not be able to propagate easily
—» make shorter paths to output

residual & highway dense (concatenated)
connections connections
Deep residual learning for image recognition, He et al., 2016 Densely connected convolutional networks, Huang et al., 2017

Highway networks, Srivastava et al., 2015

With residual connections

Pictures from https://arxiv.org/abs/1712.09913 55







Data memorization

Given a training dataset with millions of completely random labels, DNNs networks can
easily reach zero training error.

> Monkey > Salamander > Wine bottle

& N\S

They do so my memorizing the association between meaningless but unique patterns in the
samples and the label.

iIf the image contains this patch: j then output: Monkey

The problem is that they learn these degenerate patterns even on real data...
(which is also a privacy risk)



Generalization bounds

One can show that the * ” Is bounded by the amount of information
memorized by the network:

I(W D) - — Information that the weights contain about
[ < — the training examples
t

Lt rain — N

est

Ways to limit the information stored in the weights:

stochasticity (uncertainty) constraints
1 ||||II||||"|I|I.I. / o w1 ,
+ /w ‘O"O‘O Loss t = tran
\\
Il ~ T & v
1 h i 000000 ">
b atch Iterations

SGD  dropout early stopping weight penalties

49

NNrm



Next time

 Optimizers
* [raining ISsues
e Optimization tips and tricks

e Keras hands-on exercise

50



