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Homework

2

• Some typos in Homework 
1 solutions! Please check 
latest file!


• Homework 1 final/
corrections due 
Wednesday 1/25 5 5pm


• Homework 2 to be 
released Wednesday 1/25 
as well


• Draft due Friday 2/3 
5pm


• Final/corrections due 
Wednesday 2/8 5pm

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm

Final version due: Wednesday, January 25, 2023, 5:00pm

Note: This last part turned out to be more difficult than I anticipated so all answers should get credit.

My initial idea for a solution of two engineered features that would allow the spiral pattern to be linearly separated was
r =

p
x2
1 + x2

2 and ✓ = arctan 2(x1, x2). The four-quadrant arctan 2(x1, x2) has an output range that covers the full
[�⇡,⇡] range as defined in https://en.wikipedia.org/wiki/Atan2. I also had to swap x1 $ x2 from how
you would usually define this because of a bug in the TensorFlow Playground code! See https://github.com/
tensorflow/playground/blob/02469bd3751764b20486015d4202b792af5362a6/src/dataset.
ts#L145-L146.

However, if we plot these two features, we see that the resulting dataset is not linearly separable! After staring at
the source code of how the dataset is generated and some trial and error, we can come up with an engineered feature
that (together with r) lets the dataset be linearly separated, namely (✓� 2r) mod 2⇡ (and there are many variations
possible). See the figure below.

Figure 11: Spiral dataset in (x1, x2) (left), in (r, ✓) (center), and in (r, (✓ � 2r) mod 2⇡) (right).
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Recap: (Multiclass) logistic regression
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Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).
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Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.



Linear models & embeddings

4Images from https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Data Linear classifier Embedding + Linear classifier

y = softmax (w ⋅ x + b) y = softmax (w ⋅ ϕ(x) + b)

ϕ(x) = (1, x, x2, …, xn)
We have seen the polynomial embedding:

y = softmax(w⊺x) y = softmax(w⊺ϕ(x))

ϕ(x) = (1,x, x2, …, xn)

ϕ(x)

colah.github.io/posts/2014-03-NN-Manifolds-Topology

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Limitations of linear models

5

• Problem: A linear model considers each feature  independently and 
regresses the weight  with which it contributes to the label


• But often individual low-level features (e.g., pixels in an image) are not 
meaningful. What matters is the relationship between pixels


• Example: To recognize a  interaction, we need to look at parts 
and the relationship between parts

x(i)

w(i)

νμ + n → μ + p
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In theory, we can learn an 
embedding  that 

encodes all this (and this is 
done), but can we learn it? 

ϕ(x)
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layer: parallelized weighted sum and non-linearity

weights
sums
⌃

non-linearities

output 
features

⌃

⌃

x1

x2

xM

1

input 
features

input features

weights

sum

output feature

sumnon-linearity

=

= �( )

1623

weights
sums
⌃

non-linearities

output 
features

⌃

⌃

x1

x2

xM

1

input 
features

h = �(s)

layer: parallelized weighted sum and non-linearity

s = W|xsj = w|
j x

one sum 
per weight vector

vector of sums 
from weight matrix

22

x1

x2

xM

weights

sum

⌃

non-linearity
output 
feature

input 
features

1

artificial neuron: weighted sum and non-linearity

=

= �( )

input features
weightssum

output feature

sumnon-linearity

 
artificial 
neurons 
in a layer

N



25

x1

x2

xM

input 
features

weights

sums

⌃

non- 
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden 
features

weights

sums
non- 

linearities

network: sequence of parallelized weighted sums and non-linearities

DEFINE , , ETC.x(1) ⌘ hx(0) ⌘ x

s(1) = W(1)|x(0)

x(1) = �(s(1))

1st layer

s(2) = W(2)|x(1)

x(2) = �(s(2))

2nd layer

17

Layers in  
a network



26

network: sequence of parallelized weighted sums and non-linearities
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Nonlinearities and coordinate changes

25

reinterpretation

the dot product is the distance between a point and a plane

each artificial neuron defines a (hyper)plane:

0 = w0 + w1x1 + w2x2 + . . . wMxM

calculating the weighted sum corresponds to finding the shortest 
distance between the input point and the weight hyperplane
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reinterpretation

the non-linearity transforms this distance, 
creating a field that changes non-linearly with distance
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y = softmax(w⊺x) y = σ(W2σ(W1x))

Images from https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ 

Data Linear classifier 2-layer network

y = softmax (w ⋅ x + b) y = σ(w1 ⋅ σ(w0 ⋅ x))

colah.github.io/posts/2014-03-NN-Manifolds-Topology

Neural networks & topology

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
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Neural networks & topology
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NNs are universal function approximators

24

Universal approximation theorem (informal). Given a function  and an , 
there exists a deep network  (of arbitrary width or depth) such that:
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Note: This means that a network can represent any function, not that it can learn it! The 
“amount” of function a given network can represent is often called its expressive power.
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Training a NN

25 30

We train deep networks using Maximum Likelihood Estimation (MLE): The last layer of a 
DNN is a softmax that outputs probabilities over classes:

pw(y |x) =
0.9
0.1
⋮

x = input data

y = labelw = vector 
containing all 

weights

We train the weights  to maximize the log-likelihood of the data under our model:w

L(w) = 1
N

N

∑
i=1

− log pw(yi |xi) Negative log-likelihood loss

(cross-entropy loss)

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).
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We train deep networks using Maximum Likelihood Estimation (MLE): The last layer of a 
DNN is a softmax that outputs probabilities over classes:
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Gradient descent

26 31

• Start from some initial value  of the parameters


• For  do the following:


• Compute the gradient   (direction of steepest increase of  at )


• Take a small step in the opposite direction:  

w0

t = 0,1,2,…
∇wL(wt) L(w) wt

wt+1 = wt − η∇wL(wt)

Source: Andrew Ng / Stanford

step size / learning rate

L(w)
Problem: Deep networks have millions or 
billions of weights. We can can’t naïvely 
compute all gradients independently!
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Backpropagation (i.e. the chain rule)
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We want to compute  for all 
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the 
computation of the previous step!
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Backpropagation for NNs

!38

backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the 
form of the loss

derivative of the 
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)
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Backpropagation for NNs
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backpropagation

now let’s go back one more layer…

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

again we’ll draw the dependency graph:

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L�1)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

Note: we can reuse 
previous calculations! 
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backpropagation
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@s(L)
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@W(L)



• We can use backpropagation to compute  
the gradients on any computation graph 
 

 
 
 
 
 
 
 
 
 
 

• Modern deep neural networks can have a very complex structure!

y = sin(w1x + log(x)) + cos(x)

yy = sin(w1 ⋅ x + log(w2 ⋅ x)) + cos(x)

sin

+

log

x w1

cos

w1 ⋅ x

We can use back-propagation to compute the gradients on any computational graph.

Modern deep networks can have a very complex structure!

Backpropagation for NNs

30
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implementation

most deep learning software libraries automatically handle this for you

we need to manually implement backpropagation and weight updates

can be difficult for arbitrary, large computation graphs

and many more

just build the computational graph and define the loss

Automatic differentiation

31



Implementation & training issues



NNs are highly parallelizable

33

41!50

parallelization

neural networks can be parallelized 
- matrix multiplications 
- point-wise operations

using parallel computing architectures, we can efficiently implement 
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within 
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples 
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size
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NNs and GPUs

34

• Single instruction multiple data (SIMD)
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vanishing gradients

difficult to train very deep networks with saturating non-linearities

saturating non-linearities have small derivatives almost everywhere

small 
derivative

small 
derivative

gradient goes toward zero

in backprop, the product of many small terms (i.e.        ) goes to zero
@x(`)

@s(`)

x(`)

s(`)

@L
@W(`)

= . . .
@x(L)

@s(L)
. . .

@x(L�1)

@s(L�1)
. . .

@x(`+1)

@s(`+1)
. . .

@x(`)

@s(`)
@s(`)

@W(`)
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non-linearities

“old school”

“new school”

saturating
derivative goes to 

zero at +∞ and -∞

non-saturating
non-zero derivative 

at +∞ and/or -∞

hyperbolic tangent 
(tanh)

rectified linear unit 
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit 

(ELU)
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Weight initialization

37 47

Initialize the weights so that if the input  to the -th layer has variance  then 
the output  also has .

xl l var(xl) = 1
xl+1 = ReLU(Wl ⋅ xl) var(xl+1) = 1

Kaiming Initialization:

wl ∼ # (0, 2/dim(xl))
sample the weights from a gaussian 
distribution with variance inversely 

proportional to the size of the layer input



Batch normalization

38 48
!59

normalization

can we prevent the gradients from saturating non-linearities 
from becoming too small?

keep the inputs within the dynamic range of the non-linearity

we can normalize the activations before applying the non-linearity

stay near 
here

x(`)

s(`)

s s� shift
scale



Why does batch normalization work?

3961

why does batch norm. work?

changing weights during training results in changing outputs;
input to the next layer changes, making it difficult to learn

during training end of trainingbeginning of training

histogram of unit activations

internal covariate shiftoriginal motivation:

Batch Normalization, Szegedy & Ioffe, 2015

batch norm. should stabilize the activations during training 



Why does batch normalization work?

4062

why does batch norm. work?

batch norm. does not seem to significantly reduce 
internal covariate shift

rather, it seems that batch norm. stabilizes and 
smooths the optimization surface

but actually…

How Does Batch Normalization Help Optimization?, Santurkar et al., 2018

gradient difference before and after updating previous layers

(topic of ongoing research)



Optimizing nonconvex functions



Loss landscape of NNs

42 51

Convex problem

(logistic regression, SVMs) Deep Networks

L(w) L(w)



Consequences of nonconvexity

43 52

Sensitivity to initialization: based on where you start you may end up in different minima

Shallow minima: we may get stuck in a suboptimal local minimum

Gradient descent gets 
stuck in shallow local 

minima

But SGD can jump out!

The noise of stochastic 
gradient descent is 
actually a benefit in 

deep learning! 



Flat & sharp minima

44 53

Sharp minimum

Flat minimum

If the learning rate is too 
large we can’t enter a 

sharp minimum

η < 2
curvature

To converge to a minimum we need:

The noise of SGD makes us jump out 
of sharp minima

Is this a problem? In deep learning it is often observed that flat minima are better solutions, 
so avoiding sharp minima is good!



Learning rate annealing

45 54

We start with an high 
learning rate

Converges faster and 
avoids sharp minima

But to converge we need to 
decrease the learning rate later

If we decrease too fast we end up 
in a bad minimum, so we do it in 

multiple steps
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Residual connections

55

67

connectivity

sequential connectivity: information must flow through the entire sequence to reach the output

residual & highway 
connections

Deep residual learning for image recognition, He et al., 2016

Highway networks, Srivastava et al., 2015

dense (concatenated) 
connections

Densely connected convolutional networks, Huang et al., 2017

information may not be able to propagate easily
make shorter paths to output

Without residual connections

With residual connections

Pictures from https://arxiv.org/abs/1712.09913

Residual connections



Generalization
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Data memorization

57

Given a training dataset with millions of completely random labels, DNNs networks can 
easily reach zero training error.

They do so my memorizing the association between meaningless but unique patterns in the 
samples and the label.

Monkey Salamander Wine bottle

if the image contains this patch: then output: Monkey

The problem is that they learn these degenerate patterns even on real data…

(which is also a privacy risk)
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Generalization boundsGeneralization bounds

58

One can show that the “generalization gap” is bounded by the amount of information 
memorized by the network:

Ltest − Ltrain ≤ I(w; D)
N

Information that the weights contain about 
the training examples

!63

regularization

neural networks are amazingly flexible… 
given enough parameters, they can perfectly fit random noise

regularization combats overfitting

stochasticity (uncertainty) constraints

early stopping

val
train

Loss

Iterations

dropout

by formalizing prior beliefs on the model or data

weight penalties

w1

w2

L2

SGDbatch 
norm

Ways to limit the information stored in the weights:



Next time

• Optimizers


• Training issues


• Optimization tips and tricks


• Keras hands-on exercise
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