
Javier Duarte — January 24, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 5:  
Neural networks

1

Homework

2

• Some typos in Homework
1 solutions! Please check
latest file!

• Homework 1 final/
corrections due
Wednesday 1/25 5 5pm

• Homework 2 to be
released Wednesday 1/25
as well

• Draft due Friday 2/3
5pm

• Final/corrections due
Wednesday 2/8 5pm

Machine Learning in Physics UCSD PHYS 139/239
Homework 1 Draft version due: Friday, January 20, 2023, 5:00pm

Final version due: Wednesday, January 25, 2023, 5:00pm

Note: This last part turned out to be more difficult than I anticipated so all answers should get credit.

My initial idea for a solution of two engineered features that would allow the spiral pattern to be linearly separated was
r =

p
x2
1 + x2

2 and ✓ = arctan 2(x1, x2). The four-quadrant arctan 2(x1, x2) has an output range that covers the full
[�⇡,⇡] range as defined in https://en.wikipedia.org/wiki/Atan2. I also had to swap x1 $ x2 from how
you would usually define this because of a bug in the TensorFlow Playground code! See https://github.com/
tensorflow/playground/blob/02469bd3751764b20486015d4202b792af5362a6/src/dataset.
ts#L145-L146.

However, if we plot these two features, we see that the resulting dataset is not linearly separable! After staring at
the source code of how the dataset is generated and some trial and error, we can come up with an engineered feature
that (together with r) lets the dataset be linearly separated, namely (✓� 2r) mod 2⇡ (and there are many variations
possible). See the figure below.

Figure 11: Spiral dataset in (x1, x2) (left), in (r, ✓) (center), and in (r, (✓ � 2r) mod 2⇡) (right).

17

Recap: (Multiclass) logistic regression

3
26

10,000

1

100 x 100 x 1

10,000

reshape

Logistic regression

3

Linear Model

y0

y1

⋮

yC

Softmax

dog

100 x 100 x 3

30,000

30,000

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

 (CC)νμ + n → μ + p

80 × 100 × 1

80,000
Reshape

w⊺

x
softmax(w⊺x)

2

1234567890

CHEP IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072053 doi :10.1088/1742-6596/898/7/072053

Figure 1. NOvA characteristic data events. Side views of 3x11 meter sections of the detector.

The color of the hits indicates deposited charge (measured in ADC counts). The neutrino neutral

current interactions (bottom), as well as the charged current interactions for electron (middle)

and muon (top) flavor are each the main signal on NOvA’s neutral current, ⌫e appearance and

⌫µ disappearance analyses, respectively. This makes the classification of these events the crucial

first step for these analyses.

for our first analyses[1, 2] was done in two main steps. First, reconstruction algorithms make

a geometrical separation of each particle’s contribution to the event. Then, identification

algorithms extract physics information, i.e. dE/dx and projected trajectory, from each particle’s

contribution (given as a cluster of hits) and attempt to identify the leptonic component of the

interaction
1
by using neural networks trained on these features.

2. The CVN Convolutional Neural Network

2.1. Advantages of Convolutional Neural Networks

Deep learning algorithms[7] have been successful in tasks like image recognition[6, 9]. These

networks–and in particular convolutional neural networks (CNNs)–present several advantages

with respect to the traditional identification methods described in Section 1. Not only do

traditional algorithms rely heavily on the e�ciency of the geometric separation of the compo-

nents, they are also limited in that the features they employ for identification are only those

1 As seen in Figure 1 the outgoing lepton carries the same flavor as the original neutrino by lepton conservation.

Linear models & embeddings

4Images from https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Data Linear classifier Embedding + Linear classifier

y = softmax (w ⋅ x + b) y = softmax (w ⋅ ϕ(x) + b)

ϕ(x) = (1, x, x2, …, xn)
We have seen the polynomial embedding:

y = softmax(w⊺x) y = softmax(w⊺ϕ(x))

ϕ(x) = (1,x, x2, …, xn)

ϕ(x)

colah.github.io/posts/2014-03-NN-Manifolds-Topology

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

Limitations of linear models

5

• Problem: A linear model considers each feature independently and
regresses the weight with which it contributes to the label

• But often individual low-level features (e.g., pixels in an image) are not
meaningful. What matters is the relationship between pixels

• Example: To recognize a interaction, we need to look at parts
and the relationship between parts

x(i)

w(i)

νμ + n → μ + p

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

 CCνμ

+

In theory, we can learn an
embedding that

encodes all this (and this is
done), but can we learn it?

ϕ(x)

14

weights
sums

⌃

non-linearities

x1

x2

xM

1

input
features

6

One artificial neuron

15

weights
sums

⌃

non-linearities

output
features

⌃

x1

x2

xM

1

input
features

7

Two artificial neurons

16

weights
sums

⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

 artificial neuronsN

8

17

multiple neurons form a layer

weights
sums

⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

 artificial neurons form a layerN

9

18

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

 artificial neurons form a layerN

10

19

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

 artificial neurons form a layerN

11

20

multiple layers form a network

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

Multiple layers form a network

12

21

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

output feature sumnon-linearity

artificial neuron: weighted sum and non-linearity

h = �(s)

s = w0 + w1x1 + w2x2 + · · ·+ wMxM = w|x
sum

bias

weights

input features

13

One
artificial
neuron

21

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

output feature sumnon-linearity

artificial neuron: weighted sum and non-linearity

h = �(s)

s = w0 + w1x1 + w2x2 + · · ·+ wMxM = w|x
sum

bias

weights

input features

22

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

artificial neuron: weighted sum and non-linearity

=

= �()

input features
weightssum

output feature

sumnon-linearity

14

One
artificial
neuron

23

weights
sums
⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

h = �(s)

layer: parallelized weighted sum and non-linearity

s = W|xsj = w|
j x

one sum
per weight vector

vector of sums
from weight matrix

1523

weights
sums
⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

h = �(s)

layer: parallelized weighted sum and non-linearity

s = W|xsj = w|
j x

one sum
per weight vector

vector of sums
from weight matrix

22

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

artificial neuron: weighted sum and non-linearity

=

= �()

input features
weightssum

output feature

sumnon-linearity

artificial
neurons
in a layer

N

24

layer: parallelized weighted sum and non-linearity

weights
sums
⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

input features

weights

sum

output feature

sumnon-linearity

=

= �()

1623

weights
sums
⌃

non-linearities

output
features

⌃

⌃

x1

x2

xM

1

input
features

h = �(s)

layer: parallelized weighted sum and non-linearity

s = W|xsj = w|
j x

one sum
per weight vector

vector of sums
from weight matrix

22

x1

x2

xM

weights

sum

⌃

non-linearity
output
feature

input
features

1

artificial neuron: weighted sum and non-linearity

=

= �()

input features
weightssum

output feature

sumnon-linearity

artificial
neurons
in a layer

N

25

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

network: sequence of parallelized weighted sums and non-linearities

DEFINE , , ETC.x(1) ⌘ hx(0) ⌘ x

s(1) = W(1)|x(0)

x(1) = �(s(1))

1st layer

s(2) = W(2)|x(1)

x(2) = �(s(2))

2nd layer

17

Layers in  
a network

26

network: sequence of parallelized weighted sums and non-linearities

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

= �()�()�()

input1st weights2nd weightsoutput

18

Layers in  
a network

24

!26

network: sequence of parallelized weighted sums and non-linearities

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

= �()�()�()

input1st weights2nd weightsoutput

=

=

If we didn’t have non-linearities, the whole network would reduce to a linear function!

24

!26

network: sequence of parallelized weighted sums and non-linearities

x1

x2

xM

input
features

weights

sums

⌃

non-
linearities

⌃

⌃

1

1

⌃

⌃

⌃

hidden
features

weights

sums
non-

linearities

= �()�()�()

input1st weights2nd weightsoutput

=

=

If we didn’t have non-linearities, the whole network would reduce to a linear function!

19

Role of nonlinearities

20

Nonlinearities and coordinate changes

25

reinterpretation

the dot product is the distance between a point and a plane

each artificial neuron defines a (hyper)plane:

0 = w0 + w1x1 + w2x2 + . . . wMxM

calculating the weighted sum corresponds to finding the shortest
distance between the input point and the weight hyperplane

!28

x1

x2

xM

⌃

1

inputs
distance from
hyperplane

(up to a factor)

25

reinterpretation

the dot product is the distance between a point and a plane

each artificial neuron defines a (hyper)plane:

0 = w0 + w1x1 + w2x2 + . . . wMxM

calculating the weighted sum corresponds to finding the shortest
distance between the input point and the weight hyperplane

!28

x1

x2

xM

⌃

1

inputs
distance from
hyperplane

(up to a factor)

reinterpretation

the non-linearity transforms this distance,
creating a field that changes non-linearly with distance

distance

plane

transformed
distance

plane

29

x1

x2

xM

distance
⌃

transformed
distance

inputs

1

21

Reinterpretation

22

y = softmax(w⊺x) y = σ(W2σ(W1x))

Images from https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Data Linear classifier 2-layer network

y = softmax (w ⋅ x + b) y = σ(w1 ⋅ σ(w0 ⋅ x))

colah.github.io/posts/2014-03-NN-Manifolds-Topology

Neural networks & topology

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Images from https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Neural networks & topology

23colah.github.io/posts/2014-03-NN-Manifolds-Topology

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

NNs are universal function approximators

24

Universal approximation theorem (informal). Given a function and an ,
there exists a deep network (of arbitrary width or depth) such that:

y = f(x) ϵ > 0
y = fw(x)

sup
x∈X

∥f(x) − fw(x)∥ < ϵ

input

output

input

output

arbitrarily wide

sh
al

lo
w

ar
bi

tra
ril

y
de

ep

narrow

Note: This means that a network can represent any function, not that it can learn it! The
“amount” of function a given network can represent is often called its expressive power.

Universal approximation theorem (informal). Given a function and an ,
there exists a deep network (of arbitrary width or depth) such that:

y = f(x) ϵ > 0
y = fw(x)

sup
x∈X

∥f(x) − fw(x)∥ < ϵ

input

output

input

output

arbitrarily wide

sh
al

lo
w

ar
bi

tra
ril

y
de

ep

narrow

Note: This means that a network can represent any function, not that it can learn it! The
“amount” of function a given network can represent is often called its expressive power.

Training a NN

25 30

We train deep networks using Maximum Likelihood Estimation (MLE): The last layer of a
DNN is a softmax that outputs probabilities over classes:

pw(y |x) =
0.9
0.1
⋮

x = input data

y = labelw = vector
containing all

weights

We train the weights to maximize the log-likelihood of the data under our model:w

L(w) = 1
N

N

∑
i=1

− log pw(yi |xi) Negative log-likelihood loss

(cross-entropy loss)

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

30

We train deep networks using Maximum Likelihood Estimation (MLE): The last layer of a
DNN is a softmax that outputs probabilities over classes:

pw(y |x) =
0.9
0.1
⋮

x = input data

y = labelw = vector
containing all

weights

We train the weights to maximize the log-likelihood of the data under our model:w

L(w) = 1
N

N

∑
i=1

− log pw(yi |xi) Negative log-likelihood loss

(cross-entropy loss)

L(w) = −
1
N

N

∑
i=1

log pw(yi |xi)

Gradient descent

26 31

• Start from some initial value of the parameters

• For do the following:

• Compute the gradient (direction of steepest increase of at)

• Take a small step in the opposite direction:

w0

t = 0,1,2,…
∇wL(wt) L(w) wt

wt+1 = wt − η∇wL(wt)

Source: Andrew Ng / Stanford

step size / learning rate

L(w)
Problem: Deep networks have millions or
billions of weights. We can can’t naïvely
compute all gradients independently!

31

• Start from some initial value of the parameters

• For do the following:

• Compute the gradient (direction of steepest increase of at)

• Take a small step in the opposite direction:

w0

t = 0,1,2,…
∇wL(wt) L(w) wt

wt+1 = wt − η∇wL(wt)

Source: Andrew Ng / Stanford

step size / learning rate

L(w)
Problem: Deep networks have millions or
billions of weights. We can can’t naïvely
compute all gradients independently!

31

• Start from some initial value of the parameters

• For do the following:

• Compute the gradient (direction of steepest increase of at)

• Take a small step in the opposite direction:

w0

t = 0,1,2,…
∇wL(wt) L(w) wt

wt+1 = wt − η∇wL(wt)

Source: Andrew Ng / Stanford

step size / learning rate

L(w)
Problem: Deep networks have millions or
billions of weights. We can can’t naïvely
compute all gradients independently!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

27

Backpropagation (i.e. the chain rule)

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

32

y = fL(…f2(f1(x))…)

f(w) = sin(y)
y = w + log(w)

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

d
dw

f(w) = d
dy

sin(y) ⋅ d
dw

y

∂y
∂w(L−1) = ∂y

∂x(L)

y

xL

fL

xL−1

fL−1

xL−2

fL−2

⋮

∂y
∂x(L−1) = ∂fL(xL)

∂xL

∂y
∂x(L−2) = ∂y

∂x(L−1) ⋅ ∂fL−1(xL−1)
∂XL

∂y
∂x(L−3) = ∂y

∂x(L−2) ⋅ ∂σ(xL−2)
∂XL

y = fL(xL)
xL = fL−1(xL−1)

⋮
x1 = f1(x)

We want to compute for all
∂y
∂xl

l ∈ {1,…, L}

At each step we can reuse the
computation of the previous step!

∂y
∂xL

∂y
∂xL−1

=
∂y
∂xL

∂xL

∂xL−1

∂y
∂xL−2

=
∂y

∂xL−1

∂xL−1

∂xL−2

∂y
∂xL−3

=
∂y

∂xL−2

∂xL−2

∂xL−3

28

Backpropagation for NNs

!38

backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the
form of the loss

derivative of the
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

29

Backpropagation for NNs

!39

backpropagation

now let’s go back one more layer…

L
x(L)s(L)

W(L)

x(L�1)

TARGET

s(L�1)x(L�2)

W(L�1)

again we’ll draw the dependency graph:

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

@L
@W(L�1)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@x(L�1)

@x(L�1)

@s(L�1)

@s(L�1)

@W(L�1)

Note: we can reuse
previous calculations!

!38

backpropagation

L
x(L)s(L)

W(L)

x(L�1)

TARGET

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

rW(L)L ⌘ @L
@W(L)

note is notational convention

depends on the
form of the loss

derivative of the
non-linearity

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@

@W(L)
(W(L)|x(L�1)) = x(L�1)|

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

@L
@W(L)

=
@L

@x(L)

@x(L)

@s(L)

@s(L)

@W(L)

• We can use backpropagation to compute  
the gradients on any computation graph 
 

 
 
 
 
 
 
 
 
 
 

• Modern deep neural networks can have a very complex structure!

y = sin(w1x + log(x)) + cos(x)

yy = sin(w1 ⋅ x + log(w2 ⋅ x)) + cos(x)

sin

+

log

x w1

cos

w1 ⋅ x

We can use back-propagation to compute the gradients on any computational graph.

Modern deep networks can have a very complex structure!

Backpropagation for NNs

30

39

!53

implementation

most deep learning software libraries automatically handle this for you

we need to manually implement backpropagation and weight updates

can be difficult for arbitrary, large computation graphs

and many more

just build the computational graph and define the loss

Automatic differentiation

31

Implementation & training issues

NNs are highly parallelizable

33

41!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

“batch” of data

well suited for mini-

batch SGD

41!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

“batch” of data

well suited for mini-

batch SGD

41!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

!50

parallelization

neural networks can be parallelized
- matrix multiplications
- point-wise operations

using parallel computing architectures, we can efficiently implement
neural network operations

=
sum weight vector inp

ut vecto
r

recall - artificial neuron

perform all operations within
a layer simultaneously

unit parallelization

=
sum vector weight matrix

inp
ut vecto

r

number of output units

process multiple data examples
simultaneously

data parallelization

=
sum vector weight vector

inp
ut m

atrix

batch size

“batch” of data

well suited for mini-

batch SGD

42

NNs and GPUs

34

• Single instruction multiple data (SIMD)

44

!57

vanishing gradients

difficult to train very deep networks with saturating non-linearities

saturating non-linearities have small derivatives almost everywhere

small
derivative

small
derivative

gradient goes toward zero

in backprop, the product of many small terms (i.e.) goes to zero
@x(`)

@s(`)

x(`)

s(`)

@L
@W(`)

= . . .
@x(L)

@s(L)
. . .

@x(L�1)

@s(L�1)
. . .

@x(`+1)

@s(`+1)
. . .

@x(`)

@s(`)
@s(`)

@W(`)

!57

vanishing gradients

difficult to train very deep networks with saturating non-linearities

saturating non-linearities have small derivatives almost everywhere

small
derivative

small
derivative

gradient goes toward zero

in backprop, the product of many small terms (i.e.) goes to zero
@x(`)

@s(`)

x(`)

s(`)

@L
@W(`)

= . . .
@x(L)

@s(L)
. . .

@x(L�1)

@s(L�1)
. . .

@x(`+1)

@s(`+1)
. . .

@x(`)

@s(`)
@s(`)

@W(`)

Vanishing gradients

35
44

!57

vanishing gradients

difficult to train very deep networks with saturating non-linearities

saturating non-linearities have small derivatives almost everywhere

small
derivative

small
derivative

gradient goes toward zero

in backprop, the product of many small terms (i.e.) goes to zero
@x(`)

@s(`)

x(`)

s(`)

@L
@W(`)

= . . .
@x(L)

@s(L)
. . .

@x(L�1)

@s(L�1)
. . .

@x(`+1)

@s(`+1)
. . .

@x(`)

@s(`)
@s(`)

@W(`)

!57

vanishing gradients

difficult to train very deep networks with saturating non-linearities

saturating non-linearities have small derivatives almost everywhere

small
derivative

small
derivative

gradient goes toward zero

in backprop, the product of many small terms (i.e.) goes to zero
@x(`)

@s(`)

x(`)

s(`)

@L
@W(`)

= . . .
@x(L)

@s(L)
. . .

@x(L�1)

@s(L�1)
. . .

@x(`+1)

@s(`+1)
. . .

@x(`)

@s(`)
@s(`)

@W(`)

45

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to

zero at +∞ and -∞

non-saturating
non-zero derivative

at +∞ and/or -∞

hyperbolic tangent
(tanh)

rectified linear unit
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit

(ELU)

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to

zero at +∞ and -∞

non-saturating
non-zero derivative

at +∞ and/or -∞

hyperbolic tangent
(tanh)

rectified linear unit
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit

(ELU)

most often used
ReLU(x) := max(0, x)

Nonlinearities

36 45

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to

zero at +∞ and -∞

non-saturating
non-zero derivative

at +∞ and/or -∞

hyperbolic tangent
(tanh)

rectified linear unit
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit

(ELU)

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to

zero at +∞ and -∞

non-saturating
non-zero derivative

at +∞ and/or -∞

hyperbolic tangent
(tanh)

rectified linear unit
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit

(ELU)

most often used
ReLU(x) := max(0, x)

45

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to

zero at +∞ and -∞

non-saturating
non-zero derivative

at +∞ and/or -∞

hyperbolic tangent
(tanh)

rectified linear unit
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit

(ELU)

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to

zero at +∞ and -∞

non-saturating
non-zero derivative

at +∞ and/or -∞

hyperbolic tangent
(tanh)

rectified linear unit
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit

(ELU)

most often used
ReLU(x) := max(0, x)

Weight initialization

37 47

Initialize the weights so that if the input to the -th layer has variance then
the output also has .

xl l var(xl) = 1
xl+1 = ReLU(Wl ⋅ xl) var(xl+1) = 1

Kaiming Initialization:

wl ∼ # (0, 2/dim(xl))
sample the weights from a gaussian
distribution with variance inversely

proportional to the size of the layer input

Batch normalization

38 48
!59

normalization

can we prevent the gradients from saturating non-linearities
from becoming too small?

keep the inputs within the dynamic range of the non-linearity

we can normalize the activations before applying the non-linearity

stay near
here

x(`)

s(`)

s s� shift
scale

Why does batch normalization work?

3961

why does batch norm. work?

changing weights during training results in changing outputs;
input to the next layer changes, making it difficult to learn

during training end of trainingbeginning of training

histogram of unit activations

internal covariate shiftoriginal motivation:

Batch Normalization, Szegedy & Ioffe, 2015

batch norm. should stabilize the activations during training

Why does batch normalization work?

4062

why does batch norm. work?

batch norm. does not seem to significantly reduce
internal covariate shift

rather, it seems that batch norm. stabilizes and
smooths the optimization surface

but actually…

How Does Batch Normalization Help Optimization?, Santurkar et al., 2018

gradient difference before and after updating previous layers

(topic of ongoing research)

Optimizing nonconvex functions

Loss landscape of NNs

42 51

Convex problem

(logistic regression, SVMs) Deep Networks

L(w) L(w)

Consequences of nonconvexity

43 52

Sensitivity to initialization: based on where you start you may end up in different minima

Shallow minima: we may get stuck in a suboptimal local minimum

Gradient descent gets
stuck in shallow local

minima

But SGD can jump out!

The noise of stochastic
gradient descent is
actually a benefit in

deep learning!

Flat & sharp minima

44 53

Sharp minimum

Flat minimum

If the learning rate is too
large we can’t enter a

sharp minimum

η < 2
curvature

To converge to a minimum we need:

The noise of SGD makes us jump out
of sharp minima

Is this a problem? In deep learning it is often observed that flat minima are better solutions,
so avoiding sharp minima is good!

Learning rate annealing

45 54

We start with an high
learning rate

Converges faster and
avoids sharp minima

But to converge we need to
decrease the learning rate later

If we decrease too fast we end up
in a bad minimum, so we do it in

multiple steps

46

Residual connections

55

67

connectivity

sequential connectivity: information must flow through the entire sequence to reach the output

residual & highway
connections

Deep residual learning for image recognition, He et al., 2016

Highway networks, Srivastava et al., 2015

dense (concatenated)
connections

Densely connected convolutional networks, Huang et al., 2017

information may not be able to propagate easily
make shorter paths to output

Without residual connections

With residual connections

Pictures from https://arxiv.org/abs/1712.09913

Residual connections

Generalization

48

Data memorization

57

Given a training dataset with millions of completely random labels, DNNs networks can
easily reach zero training error.

They do so my memorizing the association between meaningless but unique patterns in the
samples and the label.

Monkey Salamander Wine bottle

if the image contains this patch: then output: Monkey

The problem is that they learn these degenerate patterns even on real data…

(which is also a privacy risk)

49

Generalization boundsGeneralization bounds

58

One can show that the “generalization gap” is bounded by the amount of information
memorized by the network:

Ltest − Ltrain ≤ I(w; D)
N

Information that the weights contain about
the training examples

!63

regularization

neural networks are amazingly flexible…
given enough parameters, they can perfectly fit random noise

regularization combats overfitting

stochasticity (uncertainty) constraints

early stopping

val
train

Loss

Iterations

dropout

by formalizing prior beliefs on the model or data

weight penalties

w1

w2

L2

SGDbatch
norm

Ways to limit the information stored in the weights:

Next time

• Optimizers

• Training issues

• Optimization tips and tricks

• Keras hands-on exercise

50

