PHYS 139/239:
Machine Learni

Lecture 6:
Neural network or

Input

Neural
hetworks

features hidden

G weights eatures
\ weights
non- non-
@ SUMS |inaarities ums inearities
»

O
S\t

network: sequence of parallelized weighted sums and non-linearities

1= (- o o -I)) eee)

2nd weights Tst weights input

Nonlinearities

hyperbolic tangent
logistic sigmoid (tanh)

f A
> >

~

exponential linear unit
(ELU)

rectified linear unit
(RelLU)

A A A o
> > >

most often used
ReLU(x) := max(0, x)

leaky RelLU softplus

A

saturating

derivative goes to

zero at +o0 and -oo

non-saturating

non-zero derivative

at +o0 and/or -0

Data preprocessing

* (Generally good practice to preprocess data to have mean 0, and standard
deviation 1 (i.e. standardized)

original data zero-centered data normalized data

10 : 10 10

. 2 : 6
~10 =5 0 5 19 210 5 0 5 T "210 3 0 5 10

>
|

np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

Data preprocessing: why?

Remember: Consider what happens when the input to a

neuron Is always positive... e
gradient
update
directions
f E wz CEZ _|_ b allowed 219 zag path
; gradient
[/ update
directions
hypothetical
What can we say about the gradients on w? optimal w
vector

Always all positive or all negative :(
(this is also why you want zero-mean datal)

Loss landscape of NNs

Convex problem
(logistic regression, SVMs)

Deep Networks

Consequences of nonconvexity

based on where you start you may end up in different minima

we may get stuck in a suboptimal local minimum

But SGD can jump out!

The noise of stochastic
gradient descent is
actually a benefit in

deep learning!

Gradient descent gets
stuck in shallow local
minima

Flat & sharp minima

If the IS too
large we can’t enter a

. _ sharp minimum
To converge to a minimum we need;

2 ~—

n< -

curvature \

The noise of SGD makes us jump out \
of sharp minima

Flat minimum

Sharp minimum

Is this a problem? In deep learning it is often observed that
SO avoiding sharp minima is good!

Learning rate annealing

Stepwise Annealing

/ 0010*\4 _ But to converge we need to

We start with an high decrease the learning rate later
. 0.008 -
learning rate
£ 0006 - N _ If we decrease too fast we end up
Converges faster and - — in a bad minimum, so we do it in
avoids sharp minima B | — multiple steps
2
0.002 |
0.000 A
0 200 400 600 800 1000

iterations

But are there more sophisticated optimization algorithms than SGD (with variable learning rates)?

Vanilla SGD

SGD:;
w1 =w,—nVL(w)

Problems with vanilla SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

e oo

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

11

Problems with vanilla SGD

What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest
singular value of the Hessian matrix is large

12

Problems with vanilla SGD

What if the loss
function has a
local minima or
saddle point?

Zero gradient,
gradient descent
gets stuck

Saddle points much
more common In
high dimension

13

Problems with vanilla SGD

Our gradients come from
minibatches so they can be noisy!

1 N

L(W) = N ZLi(xiayia W)

N
1
VwL(W) = — > VwLi(zi,yi, W)
i—1

14

Momentum

Imagine a ball on the error surface. The ¢ It damps oscillations in directions of
location of the ball in the horizontal high curvature by combining
plane represents the weight vector. gradients with opposite signs.

— The ball starts off by following the ¢ It builds up speed in directionswith
gradient, but once it has velocity, a gentle but consistent gradient.
it no longer does steepest descent.

— |ts momentum makes it keep
going in the previous direction.

&>

15

SGD + momentum update

* Build up “velocity” as a running mean of

SGD: gradients

Wib1 = W — 1 VL(Wt) » Effect of the gradient is to increment the
previous velocity

» Velocity also decays by p, usually 0.9 or
0.99

SGD + momentum: e Can be thought of as “friction”
Viep = PV, — 1 VL(w))

* [he weight change Is equal to the current

16

SGD + momentum behavior

Gradient Noise

Local Minima Saddle points

N

Poor Conditioning

il

Better type of momentum: Nesterov

e Standard momentum method
first computes the gradient at the
current location and then takes a
big jump in the direction of the
updated accumulated gradient

 llya Sutskever (2012) suggested
a nhew form of momentum that
works better

* |nspired by the Nesterov
method for optimizing convex
functions

18

* First make a big jump in the
direction of the previous
accumulated gradient.

 [hen measure the gradient
where you end up and make a
correction

e |t's better to correct a mistake
after you have made it!

Nesterov momentum update

Momentum update:

Velocity

actual step

Gradient

SGD + momentum:
Vie1r = PV, — 1 VL(w,)

Wi = Wt Vg

Nesterov Momentum

Gradient

Velocity

actual step

SGD + Nesterov momentum:
Vi = pv,—nVL(w, + pv,)

Wi = Wt Vg

SGD + Nesterov momentum behavior

—— SGD+Momentum

== Nesterov

In @ multilayer net, the appropriate learning rates
can vary widely between weights:

— The magnitudes of the gradients are often very
different for different layers, especially if the initial

weights are small.

— The fan-in of a unit determines the size of the
“overshoot” effects caused by simultaneously

changing many of the incoming weights of a unit to
correct the same error.

So use a global learning rate (set by hand)

multiplied by an appropriate local gain that is
determined empirically for each weight.

21

Separate, adaptive learning rates

LU
N
O O O

Gradients can get very
small in the early layers of

very deep nets.

The fan-in often varies
widely between layers.

AdaGrad

 AdaGrad normalizes the learning rate per parameter based on the sum of
squares of previous gradients g,

e € Is typically 10~% to prevent division by zero

SGD update:
Wir1,i = Wi — N4 g, =[VLW)]
AdaGrad update: t
H
Wir1,i = Wi = — ———— 81 G, = Z &ng

22

RMSProp

« RMSProp (and AdaDelta) is similar, but uses a running average with a decay rate
of y instead of saving all previous gradients

» yis usually set to 0.9

RMSProp update:

Elg?], = yE[g*],_; + (1 — y)g?
H

\/ Elg?], + €

W1 = W — 8t

23

RMSProp behavior

—— SGD+Momentum

— RMSProp

Adam

 Adaptive moment estimation My = ’Blmf—l T (1 B ’Bl)gt
(Adam) combines many of the previous - 9)
tricks Vi = ﬁzvt—l T (1 o ﬁz)gt
» m, and v, estimate the 1st moment 5 = "
(mean) and 2nd moment (uncentered ! 1 — ﬁt
variance) of the gradients 1
%
« As m,and v, are initialized as Os, they W __r
are biased towards 0, especially initially J] — ﬁt
and when f; and /), are close to 1 2
* Counteract these biases by computing Adam update:
bias-corrected first and second
moment estimates 71, and V, 1

W = W, —
» Typically, f; = 0.9 and 5, = 0.999 +1 A

and € = 107°) \/;t + €

Comparison

— = =
sgd

momentum
nesterov
adagrad
rmsprop
adam

-;,--/:,:5

A\

T T T W W W

Momentum can be
seen as a ball running
down a slope, Adam
behaves like a heavy _

ball with friction
(prefers flat minima in
the error surface)

I
k

W

N
(0))

Residual connections

Without residual connections

Sequeﬂtia‘ connectivity: information must flow through the entire sequence to reach the output

000000

information may not be able to propagate easily
—» make shorter paths to output

residual & highway dense (concatenated)
connections connections
Deep residual learning for image recognition, He et al., 2016 Densely connected convolutional networks, Huang et al., 2017

Highway networks, Srivastava et al., 2015

With residual connections
27

Data memorization

Given a training dataset with millions of completely random labels, DNNs networks can
easily reach zero training error.

> Monkey > Wine bottle

(N “
> Salamander % -

d &\S
R\

They do so my memorizing the association between meaningless but unique patterns in the
samples and the label.

If the image contains this patch: j then output: Monkey

The problem is that they learn these degenerate patterns even on real data...
(which is also a privacy risk)

28

Generalization bounds

One can show that the * ” Is bounded by the amount of information
memorized by the network:

I(W D) - — Information that the weights contain about
[< — the training examples
t

Lt rain — N

est

Ways to limit the information stored in the weights:

stochasticity (uncertainty) constraints
i1 IIIII|||||I||IIIlIl / — /3] i L2
+ /w 000000 e A m— train
\\
Il ~ T & v
Ilb IL i eo0c000 —
atC ter.ations . .
SGD dropout early stopping weight penalties

Nnorm
29

Dropout

* During training, randomly set some neurons to zero

* Probability of dropping is a hyper parameter: 0.5 is common

30

Dropout

Forces the network to have a redundant representation,
Prevents co-adaptation of features

Q - has an ear X

Q - has a tall s
Q - is furry X—— . cat
G has claws

5 .

- mischievous
look

Dropout is training a large ensemble of
models (that share parameters).

Each binary mask is one mode|

An FC layer with 4096 units has
2409 ~ 101233 possible masks!
« Only ~ 10% atoms in the universe...

Early stopping

 Monitor some important metric on a
validation dataset, such as loss value or
accuracy (typically compute at the end of
each epoch)

Validation Error

Error

Increasing Variance

Increasing Bias

Training

* Jerminate training if metric has not improved

for n epochs (hyperparameter known as
patience)

Error

 But beware: “deep double descent”:
openai.com/blog/deep-double-descent

Test Error Train Error
: 0.8

—0.80

Interpolation
Threshold

Model-wise

Double Descent E 0.6 1ki 0.60

Epoch-wise E
Double Descent :

4
0 0.40

100
0.3

0.20
0.2 10

0.01

1 15 30 45 60 1 15 30 45 60
ResNetl8 Width Parameter 30 ResNetl8 Width Parameter

https://openai.com/blog/deep-double-descent/

Summary

* Optimization of nonconvex functions can be tricky

* Optimizers: (Nesterov) Momentum, RMSProp, Adam, SGD with learning
rate schedule

 Model/data choices: data preprocessing, batch normalization, residual
connections

* |n practice, Adam with default settings does a great job

o SGD with optimized learning rate schedule can likely achieve “best” results
 Memorization/generalization can be an issue; regularization to the rescue!

» Constraints: L1/L2, early stopping

» Stochasticity: small batch size, batch normalization, dropout, data
augmentations

33

Next time

o Structured image-like data and convolutional neural networks

34

