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PHYS 139/239:  
Machine Learning in Physics
Lecture 6:  
Neural network optimization
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network: sequence of parallelized weighted sums and non-linearities
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Neural 
networks



45

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to 

zero at +∞ and -∞

non-saturating
non-zero derivative 

at +∞ and/or -∞

hyperbolic tangent 
(tanh)

rectified linear unit 
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit 

(ELU)

!56

non-linearities

“old school”

“new school”

saturating
derivative goes to 

zero at +∞ and -∞

non-saturating
non-zero derivative 

at +∞ and/or -∞

hyperbolic tangent 
(tanh)

rectified linear unit 
(ReLU)

logistic sigmoid

softplusleaky ReLU
exponential linear unit 

(ELU)

most often used
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Data preprocessing
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Step 1: Preprocess the data

(Assume X [NxD] is data matrix, 
each example in a row)

• Generally good practice to preprocess data to have mean 0, and standard 
deviation 1 (i.e. standardized)



Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 20, 201736

Remember: Consider what happens when the input to a 
neuron is always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions

Data preprocessing: why?
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Loss landscape of NNs
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Convex problem

(logistic regression, SVMs) Deep Networks

L(w) L(w)



Consequences of nonconvexity
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Sensitivity to initialization: based on where you start you may end up in different minima

Shallow minima: we may get stuck in a suboptimal local minimum

Gradient descent gets 
stuck in shallow local 

minima

But SGD can jump out!

The noise of stochastic 
gradient descent is 
actually a benefit in 

deep learning! 



Flat & sharp minima
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Sharp minimum

Flat minimum

If the learning rate is too 
large we can’t enter a 

sharp minimum

η < 2
curvature

To converge to a minimum we need:

The noise of SGD makes us jump out 
of sharp minima

Is this a problem? In deep learning it is often observed that flat minima are better solutions, 
so avoiding sharp minima is good!



Learning rate annealing
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We start with an high 
learning rate

Converges faster and 
avoids sharp minima

But to converge we need to 
decrease the learning rate later

If we decrease too fast we end up 
in a bad minimum, so we do it in 

multiple steps

But are there more sophisticated optimization algorithms than SGD (with variable learning rates)?



Vanilla SGD
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Optimization

W_1

W_2

SGD: 
wt+1 = wt − η∇L(wt)



Problems with vanilla SGD
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Optimization

W_1

W_2
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large
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Optimization: Problems with SGD
What if loss changes quickly in one direction and slowly in another?
What does gradient descent do?
Very slow progress along shallow dimension, jitter along steep direction

Loss function has high condition number: ratio of largest to smallest 
singular value of the Hessian matrix is large

Problems with vanilla SGD

12
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Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Saddle points much 
more common in 
high dimension

Dauphin et al, “Identifying and attacking the saddle point problem in high-dimensional non-convex optimization”, NIPS 2014

Problems with vanilla SGD
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Optimization: Problems with SGD

What if the loss 
function has a 
local minima or 
saddle point?

Zero gradient, 
gradient descent 
gets stuck
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Optimization: Problems with SGD

Our gradients come from 
minibatches so they can be noisy!

Problems with vanilla SGD

14



Momentum
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The!intui@on!behind!the!momentum!method!

!!!!Imagine!a!ball!on!the!error!surface.!The!
loca@on!of!the!ball!in!the!horizontal!
plane!represents!the!weight!vector.!
–  The!ball!starts!off!by!following!the!

gradient,!but!once!it!has!velocity,!
it!no!longer!does!steepest!descent.!!

–  Its!momentum!makes!it!keep!
going!in!the!previous!direc@on.!

•  It!damps!oscilla@ons!in!direc@ons!of!
high!curvature!by!combining!
gradients!with!opposite!signs.!

•  It!builds!up!speed!in!direc@ons!with!
a!gentle!but!consistent!gradient.!



SGD + momentum update
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SGD + momentum: 
vt+1 = ρvt − η∇L(wt)
wt+1 = wt + vt+1

• Build up “velocity” as a running mean of 
gradients


• Effect of the gradient is to increment the 
previous velocity


• Velocity also decays by , usually 0.9 or 
0.99


• Can be thought of as “friction”


• The weight change is equal to the current 
velocity

ρ

SGD: 
wt+1 = wt − η∇L(wt)
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SGD + Momentum

Local Minima Saddle points

Poor Conditioning

Gradient Noise

SGD + momentum behavior
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Better type of momentum: Nesterov
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• Standard momentum method 
first computes the gradient at the 
current location and then takes a 
big jump in the direction of the 
updated accumulated gradient


• Ilya Sutskever (2012) suggested 
a new form of momentum that 
works better


• Inspired by the Nesterov 
method for optimizing convex 
functions

• First make a big jump in the 
direction of the previous 
accumulated gradient.


• Then measure the gradient 
where you end up and make a 
correction


• It’s better to correct a mistake 
after you have made it! 



Nesterov momentum update
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SGD + momentum: 
vt+1 = ρvt − η∇L(wt)
wt+1 = wt + vt+1Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 7 - April 25, 201724

Gradient

Velocity

actual step

Momentum update:

Nesterov Momentum

Nesterov, “A method of solving a convex programming problem with convergence rate O(1/k^2)”, 1983
Nesterov, “Introductory lectures on convex optimization: a basic course”, 2004
Sutskever et al, “On the importance of initialization and momentum in deel learning”, ICML 2013

Gradient
Velocity

actual step

Nesterov Momentum

SGD + Nesterov momentum: 
vt+1 = ρvt − η∇L(wt + ρvt)
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Gradient
Velocity

actual step
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Nesterov Momentum
SGD

SGD+Momentum

Nesterov

SGD + Nesterov momentum behavior

20



Separate, adaptive learning rates
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The!intui@on!behind!separate!adap@ve!learning!rates!!
•  In!a!mul@layer!net,!the!appropriate!learning!rates!

can!vary!widely!between!weights:!
–  The!magnitudes!of!the!gradients!are!oVen!very!

different!for!different!layers,!especially!if!the!ini@al!
weights!are!small.!

–  The!fan9in!of!a!unit!determines!the!size!of!the!
“overshoot”!effects!caused!by!simultaneously!
changing!many!of!the!incoming!weights!of!a!unit!to!
correct!the!same!error.!

•  So!use!a!global!learning!rate!(set!by!hand)!
mul@plied!by!an!appropriate!local!gain!that!is!
determined!empirically!for!each!weight.!!

Gradients!can!get!very!
small!in!the!early!layers!of!
very!!deep!nets.!

The!fan9in!oVen!varies!
widely!between!layers.!



AdaGrad
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• AdaGrad normalizes the learning rate per parameter based on the sum of 
squares of previous gradients 


•  is typically  to prevent division by zero

gt

ϵ 10−8

gt,i = [∇L(wt)]i

Gt =
t

∑
τ=1

gτg
⊺
τ

AdaGrad update: 
wt+1,i = wt,i −

η

Gt,ii + ϵ
gt,i

SGD update: 
wt+1,i = wt,i − ηgt,i



RMSProp
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• RMSProp (and AdaDelta) is similar, but uses a running average with a decay rate 
of  instead of saving all previous gradients


•  is usually set to 0.9

γ

γ

RMSProp update: 
 
E[g2]t = γE[g2]t−1 + (1 − γ)g2

t

wt+1 = wt −
η

E[g2]t + ϵ
gt



RMSProp behavior
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RMSProp
SGD

SGD+Momentum

RMSProp



Adam
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• Adaptive moment estimation 
(Adam) combines many of the previous 
tricks


•  and  estimate the 1st moment 
(mean) and 2nd moment (uncentered 
variance) of the gradients


• As   and  are initialized as 0s, they 
are biased towards 0, especially initially 
and when   and   are close to 1


• Counteract these biases by computing 
bias-corrected first and second 
moment estimates  and 


• Typically,  and  
and 

mt vt

mt vt

β1 β2

m̂t ̂vt

β1 = 0.9 β2 = 0.999
ϵ = 10−8

Adam update: 
 
wt+1 = wt −

η
̂vt + ϵ

m̂t

mt = β1mt−1 + (1 − β1)gt

vt = β2vt−1 + (1 − β2)g2
t

m̂t =
mt

1 − βt
1

̂vt =
vt

1 − βt
2



Comparison
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Momentum can be 
seen as a ball running 
down a slope, Adam 
behaves like a heavy 

ball with friction 
(prefers flat minima in 

the error surface)



Residual connections
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connectivity

sequential connectivity: information must flow through the entire sequence to reach the output

residual & highway 
connections

Deep residual learning for image recognition, He et al., 2016

Highway networks, Srivastava et al., 2015

dense (concatenated) 
connections

Densely connected convolutional networks, Huang et al., 2017

information may not be able to propagate easily
make shorter paths to output

Without residual connections

With residual connections

Pictures from https://arxiv.org/abs/1712.09913
27

Residual connections
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Data memorization
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Given a training dataset with millions of completely random labels, DNNs networks can 
easily reach zero training error.

They do so my memorizing the association between meaningless but unique patterns in the 
samples and the label.

Monkey Salamander Wine bottle

if the image contains this patch: then output: Monkey

The problem is that they learn these degenerate patterns even on real data…

(which is also a privacy risk)



Generalization bounds
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One can show that the “generalization gap” is bounded by the amount of information 
memorized by the network:

Ltest − Ltrain ≤ I(w; D)
N

Information that the weights contain about 
the training examples

!63

regularization

neural networks are amazingly flexible… 
given enough parameters, they can perfectly fit random noise

regularization combats overfitting

stochasticity (uncertainty) constraints

early stopping

val
train

Loss

Iterations

dropout

by formalizing prior beliefs on the model or data

weight penalties

w1

w2

L2

SGDbatch 
norm

Ways to limit the information stored in the weights:

29

Generalization bounds
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Dropout
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Regularization: Dropout
In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

• During training, randomly set some neurons to zero 


• Probability of dropping is a hyper parameter: 0.5 is common
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Dropout
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X
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Regularization: Dropout
How can this possibly be a good idea?

Another interpretation:

Dropout is training a large ensemble of 
models (that share parameters).

Each binary mask is one model

An FC layer with 4096 units has
24096 ~ 101233 possible masks!
Only ~ 1082 atoms in the universe...
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Regularization: Dropout
How can this possibly be a good idea?

Forces the network to have a redundant representation;
Prevents co-adaptation of features

has an ear

has a tail

is furry

has claws

mischievous 
look

cat 
score

X

X

X
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Early stopping
• Monitor some important metric on a 

validation dataset, such as loss value or 
accuracy (typically compute at the end of 
each epoch)


• Terminate training if metric has not improved 
for  epochs (hyperparameter known as 
patience)


• But beware: “deep double descent”: 
openai.com/blog/deep-double-descent

n

https://openai.com/blog/deep-double-descent/
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Summary
• Optimization of nonconvex functions can be tricky


• Optimizers: (Nesterov) Momentum, RMSProp, Adam, SGD with learning 
rate schedule


• Model/data choices: data preprocessing, batch normalization, residual 
connections


• In practice, Adam with default settings does a great job


• SGD with optimized learning rate schedule can likely achieve “best” results


• Memorization/generalization can be an issue; regularization to the rescue!


• Constraints: L1/L2, early stopping


• Stochasticity: small batch size, batch normalization, dropout, data 
augmentations



Next time

• Structured image-like data and convolutional neural networks
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