
Javier Duarte — January 31, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 7:  
Convolutional neural networks

1

� EQUIVARIANCE IN MACHINE LEARNING 5

Figure 1: An illustration of the di�erences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, 5 : - ! . is a map between vector spaces
- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 (5 (G)) for all G 2 - and 6 2 ⌧.

Symmetries

2

� EQUIVARIANCE IN MACHINE LEARNING 5

Figure 1: An illustration of the di�erences between symmetry group invariance and equivariance for the
example case of identifying a handwritten letter in an image. Here, 5 : - ! . is a map between vector spaces
- and . . d6 (G) ⌘ d(6, G) is an action of a group ⌧ on - and d

0
6 (H) ⌘ d

0(6, H) is an action of a group ⌧ on
. . The invariant model (left) will output the same result on both the original and translated images, while the
equivariant model (right) will transform the translated image in a way that reflects the underlying symmetry
group. More formally, this means that the map 5 is equivariant with respect to the actions d : ⌧ ⇥ - ! -

and d
0 : ⌧ ⇥ . ! . if 5 (d6 (G)) = d

0
6 (5 (G)) for all G 2 - and 6 2 ⌧.

Translational invariance

3

• For the purpose of classifying galaxy  
morphologies (e.g. spiral), the 
answer shouldn’t depend on  
the absolute location of the pixels

• For simplicity, imagine there are 4
possible locations the galaxy might
show up (top left, top right, bottom left,
and bottom right)

Fully-connected neural networks

4
4

32

these are the inductive biases of convolutional neural networks

special case of standard (fully-connected) neural networks

⌃

fully-connected

⌃

convolutional

weight savings

convolutional

⌃

⌃

(same weights)

fully-connected

⌃

⌃

(different weights)

weight savings

these inductive biases make the number of weights independent of the input size!

Fully connected networks are not translation equivariant
Fully-connected neural networks

are not translation invariant

Fully-connected neural networks

5

What if the same fully-connected
neural network is applied to each

corner?

Convolutions

6

Filter weights: (
0 1 2
2 2 0
0 1 2)

Theorem: the only linear and translation-equivariant operations are convolutions

Locality and translation invariance

7 7
31

let’s convert locality and translation invariance into inductive biases

locality
nearby areas tend
to contain stronger

patterns

inputs can be
restricted to regions

⌃

maintain spatial ordering

translation
invariance
relative positions

are relevant

same filters can be applied
throughout the input

⌃

⌃

same weights

7
31

let’s convert locality and translation invariance into inductive biases

locality
nearby areas tend
to contain stronger

patterns

inputs can be
restricted to regions

⌃

maintain spatial ordering

translation
invariance
relative positions

are relevant

same filters can be applied
throughout the input

⌃

⌃

same weights

Let’s convert locality and translation invariance into inductive biases

2D convolution hyperparameters

8

• input

• filter

• stride

• No zero padding

➡ output

4 × 4

3 × 3

1 × 1

2 × 2

2D convolution hyperparameters

9

• input

• filter

• stride

• No zero padding

➡ output

5 × 5

3 × 3

2 × 2

2 × 2

2D convolution hyperparameters

10

• input

• filter

• stride

• “Same” zero padding

➡ output

5 × 5

3 × 3

1 × 1

5 × 5

2D convolution hyperparameters

11

• input

• filter

• stride

• “Full” zero padding

➡ output

5 × 5

3 × 3

1 × 1

7 × 7

Pooling

12

• Pooling: downsampling operation, typically applied after a convolution layer

• Max: Each pooling operation selects the maximum value of the current view

• Most commonly used

• Average: Each pooling operation averages the values of the current view

• “Smooths” image (may be undesirable); may better preserve information

Receptive field

13

• The receptive field at layer is the area of the input that each pixel of the th
activation map can “see”

k k

Feature visualization

14 https://distill.pub/2017/feature-visualization/

GoogLeNet

https://distill.pub/2017/feature-visualization/

Convolutions with multiple channels

15 6
36

filters are applied to all input channels

3 x 3 x 3 filter tensor

each filter results in a new output channel

channel 2

channel 1

channel 3

Size of a filter is Nin

sL+1 = W ∘ XL
dim(W) = Nin × kh × kw
dim(XL) = Nin × H × W

sL+1 = W ⋅ XL
dim(W) = Nin
dim(XL) = Nin

Size of a filter is
Nin × kh × kw

Fully-connected networksConvolutional Network

6
36

filters are applied to all input channels

3 x 3 x 3 filter tensor

each filter results in a new output channel

channel 2

channel 1

channel 3

Size of a filter is Nin

sL+1 = W ∘ XL
dim(W) = Nin × kh × kw
dim(XL) = Nin × H × W

sL+1 = W ⋅ XL
dim(W) = Nin
dim(XL) = Nin

Size of a filter is
Nin × kh × kw

Fully-connected networksConvolutional Network

How many parameters?

16

• Conv.:  
 
 

• Input:

• Output:

• Parameters:

I × I × C

O × O × K

(F2C + 1)K

• Pool.:  
 
 

• Input:

• Output:

• Parameters:

I × I × C

O × O × C

0

• FC:  
 
 

• Input:

• Output:

• Parameters:

Nin

Nout

(Nin + 1)Nout

In practice: VGG16

17

• VGG16 [arXiv:1409.1556] is a classic  
deep CNN

• 1st runner up 2014 ImageNet Large Scale  
Visual Recognition Competition (ILSVRC)

https://arxiv.org/abs/1409.1556

In practice: ResNet-34

18

• Use skip connections to make CNN even deeper!

• ResNet-50 still used for many purposes

Sparsity

19

• In physics, image data is often sparse (mostly empty)

• Even worse for 3D data

• How can we deal with this efficiently?

Figure 8. Output of the first inception module
Shown above are three example input images and corresponding example human readable feature
maps from the output of the first inception module in the Y view branch of our trained network.
Darker regions indicate greater activation, and since this is the output from an early convolutional
layer the regions correspond to the regions of the original image. The top-most feature map shows
strong responses only in regions where hadronic activity can be found in the original image and the
bottom-most feature map shows strong activation only along the path of the muon track. Shown
are an example ⌫µ CC DIS interaction (top), ⌫µ CC QE interaction (middle), and ⌫ NC interaction
(bottom).

– 13 –

Jet Images 12

Unrolled	slice	of	detector

Calorimeter	towers	as	pixels
Energy	depositions	as	intensity

Slide	from	B.	Nachman

32- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Even more non-linearity: Going Deep

Deep Convolutional Architectures for
Jet-Images at the Large Hadron Collider

Introduction
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new
and uncharted physics at unprecedented collision energies.

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million
channel detector captures snapshots of particle collisions occurring 40 million times per second.
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space.
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ)
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue.
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118],
enabling the connection between LHC physics event reconstruction and computer vision.. We
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often
done in Computer Vision, to account for non-discriminative difference in pixel intensities.

In our experiments, we build discriminants on top of Jet Images to distinguish between a
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully
Connected
ReLU Unit

ReLU Dropout ReLU Dropout
Local

Response
Normalization

W’→ WZ event

Convolutions
Convolved

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements
Our analysis shows that Deep Convolutional Networks significantly improve the classification of
new physics processes compared to state-of-the-art methods based on physics features,
enhancing the discovery potential of the LHC. More importantly, the improved performance
suggests that the deep convolutional network is capturing features and representations beyond
physics-motivated variables.

Concluding Remarks
We show that modern Deep Convolutional Architectures can significantly enhance the discovery
potential of the LHC for new particles and phenomena. We hope to both inspire future research
into Computer Vision-inspired techniques for particle discovery, and continue down this path
towards increased discovery potential for new physics.

Difference in average
image between signal

and background

Deep Convolutional Networks
Deep Learning — convolutional networks in particular — currently represent the state of the art in
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and
perform model selection. Below, we visualize a simple architecture used to great success.

We found that architectures with large filters captured the physics response with a higher level of
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based
structure that sheds light on phenomenological structures within jets.

Visualizing Learning
Below, we have the learned convolutional filters (left) and the difference in between the average
signal and background image after applying the learned convolutional filters (right). This novel
difference-visualization technique helps understand what the network learns.

2D
Convolutions
to Jet Images

Understanding Improvements
Since the selection of physics-driven variables is driven by physical understanding, we want to be
sure that the representations we learn are more than simple recombinations of basic physical
variables. We introduce a new method to test this — we derive sample weights to apply such that

meaning that physical variables have no discrimination power. Then, we apply our learned
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated
discriminants — mass (top)
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of
the physics-related variables leads to a likelihood
performance equivalent to a random guess, but
the Deep Convolutional Network retains some
discriminative power. This indicates that the deep
network learns beyond theory-driven variables —
we hypothesize these may have to do with
density, shape, spread, and other spatially driven
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory, cStanford University, Department of Statistics

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

Simple: use larger filters

20

• While filters or smaller are common for natural images, often need
wider filters, e.g. , for sparse images

3 × 3
11 × 11

More exotic: dilated convolution

21

• input

• filter

• stride

• No zero padding

• dilation

➡ output

7 × 7

3 × 3

1 × 1

2 × 2

3 × 3

More exotic: sparse convolution

22

• Uses sparse tensors as basic
data representation

• Only computes convolution
where output is nonzero

• Implementation: https://
github.com/NVIDIA/
MinkowskiEngine

https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine

Caution: Are CNNs actually translation invariant?

23

• Most CNNs are not
architecturally invariant to
translation, but they can learn to
be by training on a data set that
contains this regularity

• Also, architecture can be
modified to be robust to small
translations

Journal of Machine Learning Research 22 (2021) 1-28 Submitted 1/21; Revised 7/21; Published 9/21

Convolutional Neural Networks Are Not Invariant to

Translation, but They Can Learn to Be

Valerio Biscione valerio.biscione@bristol.ac.uk
Department of Psychology

University of Bristol

Bristol BS8 1TL, United Kingdom

Je↵rey S. Bowers j.bowers@bristol.ac.uk

Department of Psychology

University of Bristol

Bristol BS8 1TL, United Kingdom

Editor: Amos Storkey

Abstract

When seeing a new object, humans can immediately recognize it across di↵erent retinal
locations: the internal object representation is invariant to translation. It is commonly be-
lieved that Convolutional Neural Networks (CNNs) are architecturally invariant to trans-
lation thanks to the convolution and/or pooling operations they are endowed with. In fact,
several studies have found that these networks systematically fail to recognise new objects
on untrained locations. In this work, we test a wide variety of CNNs architectures showing
how, apart from DenseNet-121, none of the models tested was architecturally invariant to
translation. Nevertheless, all of them could learn to be invariant to translation. We show
how this can be achieved by pretraining on ImageNet, and it is sometimes possible with
much simpler data sets when all the items are fully translated across the input canvas. At
the same time, this invariance can be disrupted by further training due to catastrophic
forgetting/interference. These experiments show how pretraining a network on an environ-
ment with the right ‘latent’ characteristics (a more naturalistic environment) can result in
the network learning deep perceptual rules which would dramatically improve subsequent
generalization.

Keywords: Equivariance, internal representation, convolutional neural networks, trans-
lation invariance

1. Introduction

Human have no di�culty in recognizing objects across a wide range of retinal locations.
Taking inspiration from biological models, artificial neural networks have been endowed
with convolution and pooling operations (LeCun et al., 1998, 1990) in order to support this
translation invariance. It is often claimed that Convolutional Neural Networks (CNNs) are
robust to translation thanks to their architecture. For example:

“[CNNs] have an architecture hard-wired for some translation-invariance
while they rely heavily on learning through extensive data or data augmentation
for invariance to other transformations” (Han et al., 2020)

©2021 Valerio Biscione and Je↵rey S. Bowers.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/21-0019.html.

ar
X

iv
:2

11
0.

05
86

1v
1

 [c
s.C

V
]

12
 O

ct
 2

02
1

Truly shift-invariant convolutional neural networks

Anadi Chaman
University of Illinois at Urbana-Champaign

achaman2@illinois.edu

Ivan Dokmanić
University of Basel

ivan.dokmanic@unibas.ch

Abstract

Thanks to the use of convolution and pooling layers, con-

volutional neural networks were for a long time thought to

be shift-invariant. However, recent works have shown that

the output of a CNN can change significantly with small

shifts in input—a problem caused by the presence of down-

sampling (stride) layers. The existing solutions rely either

on data augmentation or on anti-aliasing, both of which

have limitations and neither of which enables perfect shift

invariance. Additionally, the gains obtained from these

methods do not extend to image patterns not seen during

training. To address these challenges, we propose adaptive

polyphase sampling (APS), a simple sub-sampling scheme

that allows convolutional neural networks to achieve 100%

consistency in classification performance under shifts, with-

out any loss in accuracy. With APS, the networks exhibit

perfect consistency to shifts even before training, making it

the first approach that makes convolutional neural networks

truly shift-invariant.

1. Introduction

The output of an image classifier should be invariant to
small shifts in the image. For a long time, convolutional
neural networks (CNNs) were simply assumed to exhibit
this desirable property [36, 37, 38, 39]. This was thanks to
the use of convolutional layers which are shift equivariant,
and non-linearities and pooling layers which progressively
build stability to deformations [6, 42]. However, recent
works have shown that CNNs are in fact not shift-invariant
[2, 58, 18, 34, 31]. Azulay and Weiss [2] show that the
output of a CNN trained for classification can change with
a probability of 30% with merely a one-pixel shift in input
images. Related works [31, 34] have also revealed that
CNNs can encode absolute spatial location in images: a
consequence of a lack of shift invariance.

Code available at https://github.com/achaman2/truly_
shift_invariant_cnns.

Shifted image

Unshifted image

Shifted image

Unshifted image

Conventional linear downsampling
(a)

Our proposed non-linear sampling
(b)

Figure 1. (a) Conventional downsampling is not robust to shifts.
It samples image pixels at fixed locations on the grid (shown with
small squares). Shifting the image changes pixel intensities lo-
cated on the fixed grid, resulting in a different subsampled output.
(b) By choosing the sampling grid that supports pixels with highest
energy, our approach results in shift invariance.

One of the key reasons why CNNs are not shift-invariant
is downsampling1 [2, 58], or stride, which is a linear op-
eration that samples evenly spaced image pixels located
at fixed positions on the grid and discards the rest. As
shown in Fig. 1(a), the results of downsampling an image
and its shifted version can be significantly different. This
is because shifting an image can change the pixel intensi-
ties located over the sampling grid. Various measures have
been proposed in literature to counter this problem. With
data augmentation [48], the output of a CNN can be made
more robust to shifts by training it on randomly shifted ver-
sions of input images [2, 58]. This, however, improves
the network’s invariance only for image patterns seen dur-
ing training [2]. Anti-aliasing or blurring spreads sharp
image features across their neighbouring pixels which im-
proves structural similarity between subsampled outputs of
an image and its shifted version (Fig. 2(a)-(c)). One in-
stance of this technique are strided average pooling lay-
ers [38]. Azulay and Weiss [2] showed that anti-aliasing

1Layers like strided max-pooling in CNNs can be regarded as a combi-
nation of a dense max-pooling operation followed by downsampling.

1

ar
X

iv
:2

01
1.

14
21

4v
4

 [c
s.C

V
]

30
 M

ar
 2

02
1 Polyphase

components

!!! !!"

!"! !""

!!!Select highest ""
norm component

!!!

Polyphase
components

#!!! #!!#

#!#! #!##

#!##Select highest ""
norm component

Unshifted image

Shifted image

#!!!

Output of
APS

Output of
APS

Output of
conventional

sampling

Output of
conventional

sampling
(a) (b) (c) (d)

Figure 3. APS on single channel input. (a) Image and its shift. (b)
The two images share the same set of polyphase components (with
a potential shift between them). (c) By choosing the component
with the highest lp norm, APS returns the same output for both the
images. (d) Output of conventional sampling in contrast.

is spoiled by the action of ReLU in subsequent layers.
As Fig. 2(c) suggests, while ya0 and ya1 are similar, they
are not identical. Minor differences between the signals
become more prominent when they are thresholded by the
ReLU non-linearity, resulting in

P
relu(ya0) 6=

P
relu(ya1)

(see A.2 in supplementary material for a more formal
discussion). One could ask—can increasing the amount
of blurring alleviate this problem caused by ReLUs?
The answer is no. In fact, even ideal low-pass filtering
does not help. This is because irrespective of the type of
anti-aliasing used, ya0 and ya1 always have some differences
and, therefore, are thresholded differently by ReLU.

While various non-linearities can spoil sum-shift-
invariance similar to ReLU, exceptions like polynomial ac-
tivations do not cause this problem. We state this formally
in Theorem 1 (proof in A.1 in supplementary material).

Theorem 1. Given non-linear activation function g(y) =
ym with integer m > 1, and anti-aliased outputs of sam-

pling ya0 and ya1 as defined above, we have

X

n2Z
g(ya0)(n) =

X

n2Z
g(ya1)(n). (4)

Note that the above discussion and conclusions directly
apply to 2-D images, with the difference that instead of 2,
there exist 4 polyphase components to choose from.

3.3. Adaptive polyphase sampling

Consider stride-2 subsampling of a single channel image
x. As shown in Fig. 3(a)-(b), the image can be downsam-
pled along 4 possible grids, resulting in the set of 4 potential
candidates for subsampling. We refer to these candidate re-
sults of sampling as polyphase components and denote them

by {yij}1i,j=0. Similarly, the polyphase components of a 1-
pixel shifted version of x, namely x̃ = x(m � 1, n � 1),
are denoted by {ỹij}1i,j=0. Notice from Fig. 3(b) that {ỹij}
is just a re-ordered and potentially shifted version of the set
{yij}. More formally,

ỹ00 = y11(n1 � 1, n2 � 1), ỹ10 = y01(n1, n2 � 1), (5)
ỹ01 = y10(n1 � 1, n2), ỹ11 = y00(n1, n2).

As we saw in Section 3.2, the key reason why conven-
tional sampling is not shift invariant is that it always returns
the first polyphase component of an image as output. This
results in y00 and ỹ00 as subsampled outputs, which from
(5) are not equal. To address this challenge, we propose
adaptive polyphase sampling (APS). The key idea that APS
exploits is that {yij} and {ỹij} are sets of identical2 but
re-ordered images. Therefore, the same subsampled out-
put for x and x̃ can be obtained by selecting a polyphase
component from {yij} and {ỹij} in a permutation invariant
manner—for example choosing the one with the highest lp
norm. This is illustrated in Fig. 3(c). APS obtains its output
yAPS by using the following criterion with p = 2.

yAPS = yi1j1 , (6)

where i1, j1 = argmax
i,j

{||yij ||p}1i,j=0.

For reference, conventional sampling returns yc = y00 as
the output for x. It can be observed that for a shift n0 > 1
between x and x̃, the resulting subsampled outputs yAPS
and ỹAPS are identical upto a shift ⇠ dn0

2 e, making the
operation sum-shift-invariant. Additionally, note that since
we did not use blurring in (6), yAPS will contain aliased
components if x has high frequencies. This indicates
that while anti-aliasing has been shown to improve shift
invariance [58, 2], it is not strictly necessary.

When x is an image with C channels given by x =
(xk)Ck=1, we define its polyphase components {yij}1i,j=0,
by gathering the respective components for all channels, as
shown in Fig. 4. In particular, if we assume each channel
xk, to have components {xk,ij}1i,j=0, then for i, j 2 {0, 1},

yij = (xk,ij)
C
k=1. (7)

The output of subsampling x using APS, denoted by yAPS,
can then be obtained similar to (6). The above method can
be extended to a general stride s, in a straightforward man-
ner by norm maximization over s2 polyphase components.
The overall approach is summarized in Algorithm 1.

2The images in the two sets could have some shifts between them as
well. However, this does not impact shift invariance for networks ending
with global average pooling.

4

Generalizations: Data augmentations

24

• One way to generalize CNNs to
rotation-invariant operations:

• Use data augmentations,
concatenate feature maps,
and apply dense layers

Mon. Not. R. Astron. Soc. 000, 1–20 (2014) Printed 25 March 2015 (MN LATEX style file v2.2)

Rotation-invariant convolutional neural networks for galaxy
morphology prediction

Sander Dieleman1?, Kyle W. Willett2? and Joni Dambre1
1Electronics and Information Systems department, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium
2School of Physics and Astronomy, University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA

Accepted 20 March 2015

ABSTRACT
Measuring the morphological parameters of galaxies is a key requirement for studying
their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS)
have resulted in the availability of very large collections of images, which have per-
mitted population-wide analyses of galaxy morphology. Morphological analysis has
traditionally been carried out mostly via visual inspection by trained experts, which
is time-consuming and does not scale to large (& 104) numbers of images.

Although attempts have been made to build automated classification systems,
these have not been able to achieve the desired level of accuracy. The Galaxy Zoo
project successfully applied a crowdsourcing strategy, inviting online users to classify
images by answering a series of questions. Unfortunately, even this approach does not
scale well enough to keep up with the increasing availability of galaxy images.

We present a deep neural network model for galaxy morphology classification which
exploits translational and rotational symmetry. It was developed in the context of the
Galaxy Challenge, an international competition to build the best model for morphology
classification based on annotated images from the Galaxy Zoo project.

For images with high agreement among the Galaxy Zoo participants, our model
is able to reproduce their consensus with near-perfect accuracy (> 99%) for most
questions. Confident model predictions are highly accurate, which makes the model
suitable for filtering large collections of images and forwarding challenging images to
experts for manual annotation. This approach greatly reduces the experts’ workload
without a↵ecting accuracy. The application of these algorithms to larger sets of training
data will be critical for analysing results from future surveys such as the LSST.

Key words: methods: data analysis – catalogues – techniques: image processing –
galaxies: general.

1 INTRODUCTION

Galaxies exhibit a wide variety of shapes, colours and sizes.
These properties are indicative of their age, formation con-
ditions, and interactions with other galaxies over the course
of many Gyr. Studies of galaxy formation and evolution
use morphology to probe the physical processes that give
rise to them. In particular, large, all-sky surveys of galax-
ies are critical for disentangling the complicated relation-
ships between parameters such as halo mass, metallicity, en-
vironment, age, and morphology; deeper surveys probe the
changes in morphology starting at high redshifts and taking
place over timescales of billions of years.

Such studies require both the observation of large num-

?
E-mail: sander.dieleman@ugent.be (SD), wil-

lett@physics.umn.edu (KWW)

bers of galaxies and accurate classification of their morpholo-
gies. Large-scale surveys such as the Sloan Digital Sky Sur-
vey (SDSS)1 have resulted in the availability of image data
for millions of celestial objects. However, manually inspect-
ing all these images to annotate them with morphological
information is impractical for either individual astronomers
or small teams.

Attempts to build automated classification systems for
galaxy morphologies have historically had di�culties in
reaching the levels of reliability required for scientific anal-
ysis (Clery 2011). The Galaxy Zoo project2 was conceived
to accelerate this task through the method of crowdsourc-
ing. The original goal of the project was to obtain reliable

1 http://www.sdss.org/
2 http://www.galaxyzoo.org/

c� 2014 RAS

ar
X

iv
:1

50
3.

07
07

7v
1

 [a
st

ro
-p

h.
IM

]
24

 M
ar

 2
01

58 Dieleman, Willett & Dambre

.

.

.

.

.

.

.

.

.

1. input 2. rotate 3. crop 4. convolutions 5. dense 6. predictions

Figure 4. Schematic overview of a neural network architecture for exploiting rotational symmetry. The input image (1) is first rotated to

various angles and optionally flipped to yield di↵erent viewpoints (2), and the viewpoints are subsequently cropped to reduce redundancy

(3). Each of the cropped viewpoints is processed by the same stack of convolutional layers and pooling layers (4), and their output

representations are concatenated and processed by a stack of dense layers (5) to obtain predictions (6).

input augmented input

predictions

preprocessing

Section 7.3

viewpoint extraction

Section 7.5

model averaging

Section 7.8

preprocessed input viewpoints

averaged predictions

augmentation

Section 7.4

convnet

Section 7.6

Figure 5. Schematic overview of the processing pipeline.

c� 2014 RAS, MNRAS 000, 1–20

Generalizations: Other symmetry groups

25

• By employing weight sharing
across group actions, we can
generalize to other symmetry
groups

Group Equivariant Convolutional Networks

Taco S. Cohen T.S.COHEN@UVA.NL

University of Amsterdam

Max Welling M.WELLING@UVA.NL

University of Amsterdam
University of California Irvine
Canadian Institute for Advanced Research

Abstract
We introduce Group equivariant Convolutional
Neural Networks (G-CNNs), a natural general-
ization of convolutional neural networks that re-
duces sample complexity by exploiting symme-
tries. G-CNNs use G-convolutions, a new type of
layer that enjoys a substantially higher degree of
weight sharing than regular convolution layers.
G-convolutions increase the expressive capacity
of the network without increasing the number of
parameters. Group convolution layers are easy
to use and can be implemented with negligible
computational overhead for discrete groups gen-
erated by translations, reflections and rotations.
G-CNNs achieve state of the art results on CI-
FAR10 and rotated MNIST.

1. Introduction
Deep convolutional neural networks (CNNs, convnets)
have proven to be very powerful models of sensory data
such as images, video, and audio. Although a strong the-
ory of neural network design is currently lacking, a large
amount of empirical evidence supports the notion that both
convolutional weight sharing and depth (among other fac-
tors) are important for good predictive performance.

Convolutional weight sharing is effective because there is
a translation symmetry in most perception tasks: the la-
bel function and data distribution are both approximately
invariant to shifts. By using the same weights to analyze
or model each part of the image, a convolution layer uses
far fewer parameters than a fully connected one, while pre-
serving the capacity to learn many useful transformations.

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Convolution layers can be used effectively in a deep net-
work because all the layers in such a network are trans-

lation equivariant: shifting the image and then feeding
it through a number of layers is the same as feeding the
original image through the same layers and then shifting
the resulting feature maps (at least up to edge-effects). In
other words, the symmetry (translation) is preserved by
each layer, which makes it possible to exploit it not just
in the first, but also in higher layers of the network.

In this paper we show how convolutional networks can be
generalized to exploit larger groups of symmetries, includ-
ing rotations and reflections. The notion of equivariance is
key to this generalization, so in section 2 we will discuss
this concept and its role in deep representation learning.
After discussing related work in section 3, we recall a num-
ber of mathematical concepts in section 4 that allow us to
define and analyze the G-convolution in a generic manner.

In section 5, we analyze the equivariance properties of stan-
dard CNNs, and show that they are equivariant to trans-
lations but may fail to equivary with more general trans-
formations. Using the mathematical framework from sec-
tion 4, we can define G-CNNs (section 6) by analogy to
standard CNNs (the latter being the G-CNN for the transla-
tion group). We show that G-convolutions, as well as var-
ious kinds of layers used in modern CNNs, such as pool-
ing, arbitrary pointwise nonlinearities, batch normalization
and residual blocks are all equivariant, and thus compatible
with G-CNNs. In section 7 we provide concrete implemen-
tation details for group convolutions.

In section 8 we report experimental results on MNIST-rot
and CIFAR10, where G-CNNs achieve state of the art re-
sults (2.28% error on MNIST-rot, and 4.19% resp. 6.46%
on augmented and plain CIFAR10). We show that replac-
ing planar convolutions with G-convolutions consistently
improves results without additional tuning. In section 9 we
provide a discussion of these results and consider several
extensions of the method, before concluding in section 10.

https://medium.com/swlh/geometric-deep-learning-group-
equivariant-convolutional-networks-ec687c7a7b41

https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41
https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41

Generalizations: Other geometries

26

• Can generalize to other
geometries like hexagonal data

step length of one for the first lk columns and then decreases
for the onward columns.

For max-pooling and average-pooling, we either pick the
maximum or average the value of all elements within a
sliding window to obtain an output element. Take maxpooling
as example, we iteratively fetch the elements from the red
bounded area (output) in Fig. 4a and obtain the corresponding
sliding window from the input. More formally, the procedure
is represented as:

Ou,v = max
vj<v+2·lk�1, isi<ie

Ii,j (2)

Backpropagation: In backpropagation, the operations for
dense layers are the same as those for rectangle-based frame-
works. For convolutional and pooling layers, we backpropa-
gate the error and update the weights of each layer.

For back propagating the error in convolutional layers,
HexCNN upsamples the error �

c to �̂c to get the same size
as the input of the current layer I . HexCNN then performs
full convolution on the upsampled �̂c and the filter k that has
been rotated for 180 degrees. After the full convolution, the
former layer’s error �

p is the Hadamard product [7] with the
derivative of the former layer’s activation function �

p:
�
p = �̂

c ⇤ rot180(k)� �
0
p (3)

where function rot180 rotates a matrix by 180 degrees, opera-
tor ⇤ denotes the full convolution, and operator � computes the
Hadamard product. For pooling layers, we take max-pooling
as an example to illustrate how HexCNN works. HexCNN
first upsamples �

c to �̂c, and figures out which position in I

corresponds to a specific value in �
c (the perceptive field of

�
c). HexCNN then transfers the value in �

c to that position
in �̂

c, and sets the rest positions in �̂
c as zeros. As shown in

Equation 4, each value in the former layer’s error �
p
u,v

is the
element-wise product of �̂

c
u,v

and the sum of those values in
�
c that come from Iu,v .

�
p

u,v
= �̂

c

u,v
·

X

Iu,v!�i,j

�i,j (4)

where Iu,v ! �i,j denotes elements in I that are within the
perceptive filed of �i,j , “·” computes the element-wise product.

For updating the weights, we propose derivative compu-
tation algorithms for native hexagonal processing. HexCNN
computes the partial derivative for both input and filters in
convolutional layers, except the initial input of the network.
The partial derivative of filters is for updating the weights, and
the partial derivative of the input is for updating the weights
of the former layer. (i) The partial derivative for a filter k can
be represented as the convolution between the input I and the
error � (with the same size as the output O) according to the
chain rule. We assume that “VALID” padding is applied. Then
the partial derivative for the filter k can be represented as:

@E

@ku,v
=

v+2·lO�1X

j=v

ieX

i=is

Ii,j · �i�is,j�v (5)

where is and ie are computed similar to Equation 1. (ii) Com-
puting the partial derivative of the input can be transformed
into the full convolution between the error � (with the same

Input

Patch	1
Patch	2
Patch	3
Patch	4
Patch	5
Patch	6
Patch	7

Filter	1
Filter	2

Filter	size:	21

Patch	num
ber:	7

Filter	size:	21

Filter	number:	2

Patch	num
ber:	7

Filter	number:	2

37

34 46

31 43 67 79

64 76

73 97

13 37

34 46

31 43 67 79

64 76

73 97

13 37

34 46

31 43 67 79

64 76

73 97

13
Filter Output

+ =

From
	filter	2

From
	filter	1

Left	matrix Right	matrix Result

Fig. 5: Hexagonal convolution to matrix multiplication. The red and
blue color are used for locating differentiating different filters (sliding
windows) only (best view in color).

size of the output O) and the filter k. If the output size
is smaller than the input size, HexCNN pads zeros around
the � to achieve the same size as the input before the full
convolution. We summarize the procedure as:

@E

@Iu,v
=

v+lkX

j=v�lk+1

ieX

i=is

�i,j · ki�is,j�v+lk�1

is =

(
j � lO + u� lk + 2, j � lO

u� lk + 1, j < lO

ie =

(
is + 2 · lk � 1, j � v

is + 2 · lk + j � v � 1, j < v

(6)

where is and ie are column index i and filter size lk related.
�i,j returns zero when is and ie out of the range of � and this
is the reason that we pad zeros around �.

IV. TRANSFORMATION FROM HEXAGONAL CONVOLUTION
TO MATRIX MULTIPLICATION

Existing deep learning frameworks transform convolution
into matrix multiplication to speed up the computation. In
this section, we present how HexCNN transforms hexagonal
convolution into matrix multiplication. HexCNN splits the
input into multiple patches according to the filter size and
stride. Suppose the hexagon-shaped input has a side length
lI and a channel c. The hexagonal convolution filters have a
side length lk, and the stride during convolution is s. HexCNN
computes the number of patches by lp · (lp � 1) + 1, where
lp = (lI � lk)/s+1. Take Fig. 5 as an example, where lI = 5,
c = 3, lk = 2, and s = 3. The value of lp is two, and hence
there are seven patches in the input (the red and blue colors
are used for differentiation only).

To transform the hexagonal convolution into matrix mul-
tiplication, HexCNN first obtains the number of patches ac-
cording to the input shape, the stride, and padding strategy.
It then re-orders the elements in each patch as a vector in
column-major to obtain the left matrix in Fig. 5. For the
right matrix in Fig. 5, the width is the number of filters, and
the height is the filter size. After transforming the input and
filters into the left and right matrices, HexCNN obtains the
convolutional output via matrix multiplication. To speed up the

HexCNN: A Framework for Native Hexagonal
Convolutional Neural Networks

Yunxiang Zhao†, Qiuhong Ke†, Flip Korn‡, Jianzhong Qi†, Rui Zhang †⇤
†The University of Melbourne, Australia, ‡Google Research, USA

{yunxiangz@student., qiuhong.ke@, jianzhong.qi@, rui.zhang@ }unimelb.edu.au, flip@google.com

Abstract—Hexagonal CNN models have shown superior per-
formance in applications such as IACT data analysis and aerial
scene classification due to their better rotation symmetry and
reduced anisotropy. In order to realize hexagonal processing,
existing studies mainly use the ZeroOut method to imitate
hexagonal processing, which causes substantial memory and
computation overheads. We address this deficiency with a novel
native hexagonal CNN framework named HexCNN. HexCNN
takes hexagon-shaped input and performs forward and backward
propagation on the original form of the input based on hexagon-
shaped filters, hence avoiding computation and memory over-
heads caused by imitation. For applications with rectangle-shaped
input but require hexagonal processing, HexCNN can be applied
by padding the input into hexagon-shape as preprocessing. In
this case, we show that the time and space efficiency of HexCNN
still outperforms existing hexagonal CNN methods substantially.
Experimental results show that compared with the state-of-
the-art models, which imitate hexagonal processing but using
rectangle-shaped filters, HexCNN reduces the training time by
up to 42.2%. Meanwhile, HexCNN saves the memory space cost
by up to 25% and 41.7% for loading the input and performing
convolution, respectively.

Index Terms—Hexagonal Convolution, Convolutional Neural
Networks, Deep Learning

I. INTRODUCTION

Recent studies show that compared with traditional
rectangle-based CNN models, CNN models with hexagon-
shaped filters achieve better performance in applications such
as Imaging Atmospheric Cherenkov Telescope (IACT) data
analysis [2], [19], [20], [23], Hex move-prediction [27], and
IceCube data analysis [8]. Applying hexagonal filters in group
CNNs can even surpass the performance of traditional CNN
models with image classification tasks on data sets such as
CIFAR-10 [6], [22], [26].

To realize hexagonal processing, most existing studies apply
rectangle-shaped filters with the ZeroOut method to imitate
hexagonal processing [6], [17], [11]. We refer to these models
as hexagon-imitation models. These models, however, require
a padding strategy as a pre-processing for the input. Fig. 1b
and Fig. 1c illustrate the idea of such padding on the hexagon
and rectangle-shaped input, and resampling is required if the
input is not hexagonal grids such as Fig 1e. The padded area
(dark elements in Fig. 1b and Fig. 1c) is not needed for the
output but is computed as part of the input throughout the
hexagon-imitation models. This is due to the restrictions of
existing deep learning frameworks where data is represented

⇤Rui Zhang is the corresponding author

Fig. 1: The original inputs (a, e), and the results after pre-processing
using ZeroOut [6] (b, f), Quasi-H [26] (c, g), and HexCNN (d, h).
(a) a hexagonal telescope image of gamma-ray events [18]. (e) a
rectangle-shaped image from CIFAR-10 [13] (best view in color).

in a rectangular way. After padding the input, the rectangle-
shaped filters in the network can be used to process the input
without having to accommodate the boundary of hexagonal
grids. To achieve hexagonal processing in convolution and
pooling, specific positions of the rectangle-shaped filter are
set to zero to eliminate their influence on the output (e.g.,
the two blue-colored elements with “0” in Fig. 2a). These
zeroed-out elements, however, lead to unnecessary memory
and computation costs in hexagon-imitation models. To sum
up, the limitation of hexagon-imitation models is that the
padding strategy and the ZeroOut manner in convolution and
pooling cause significant memory and computation overhead
for both hexagon and rectangle-shaped input.

In this paper, we introduce a new framework called Hex-
CNN to address this limitation. HexCNN takes hexagon-
shaped input and performs hexagonal forward and backward
propagation on the original form of the input based on
hexagon-shaped filters. We refer to this method as “native
hexagonal processing”. Compared with previous methods, the
proposed native hexagonal processing eliminates the memory
and computation overhead from the padding and ZeroOut
operations. As shown in Fig. 1d, for hexagon-shaped input,
the proposed HexCNN does not perform padding as done
in hexagon-imitation models. The convolution is achieved
using hexagon-shaped filters, which bypasses the unneces-
sary computation of the zeroed-out elements, as shown in
Fig. 2b. Therefore, HexCNN saves memory and computation
costs significantly when loading the input and performing
filter related operations such as convolution, pooling, and
backpropagation. For rectangle-shaped input such as images,

ar
X

iv
:2

10
1.

10
89

7v
1

 [c
s.C

V
]

25
 Ja

n
20

21

HexCNN: A Framework for Native Hexagonal
Convolutional Neural Networks

Yunxiang Zhao†, Qiuhong Ke†, Flip Korn‡, Jianzhong Qi†, Rui Zhang †⇤
†The University of Melbourne, Australia, ‡Google Research, USA

{yunxiangz@student., qiuhong.ke@, jianzhong.qi@, rui.zhang@ }unimelb.edu.au, flip@google.com

Abstract—Hexagonal CNN models have shown superior per-
formance in applications such as IACT data analysis and aerial
scene classification due to their better rotation symmetry and
reduced anisotropy. In order to realize hexagonal processing,
existing studies mainly use the ZeroOut method to imitate
hexagonal processing, which causes substantial memory and
computation overheads. We address this deficiency with a novel
native hexagonal CNN framework named HexCNN. HexCNN
takes hexagon-shaped input and performs forward and backward
propagation on the original form of the input based on hexagon-
shaped filters, hence avoiding computation and memory over-
heads caused by imitation. For applications with rectangle-shaped
input but require hexagonal processing, HexCNN can be applied
by padding the input into hexagon-shape as preprocessing. In
this case, we show that the time and space efficiency of HexCNN
still outperforms existing hexagonal CNN methods substantially.
Experimental results show that compared with the state-of-
the-art models, which imitate hexagonal processing but using
rectangle-shaped filters, HexCNN reduces the training time by
up to 42.2%. Meanwhile, HexCNN saves the memory space cost
by up to 25% and 41.7% for loading the input and performing
convolution, respectively.

Index Terms—Hexagonal Convolution, Convolutional Neural
Networks, Deep Learning

I. INTRODUCTION

Recent studies show that compared with traditional
rectangle-based CNN models, CNN models with hexagon-
shaped filters achieve better performance in applications such
as Imaging Atmospheric Cherenkov Telescope (IACT) data
analysis [2], [19], [20], [23], Hex move-prediction [27], and
IceCube data analysis [8]. Applying hexagonal filters in group
CNNs can even surpass the performance of traditional CNN
models with image classification tasks on data sets such as
CIFAR-10 [6], [22], [26].

To realize hexagonal processing, most existing studies apply
rectangle-shaped filters with the ZeroOut method to imitate
hexagonal processing [6], [17], [11]. We refer to these models
as hexagon-imitation models. These models, however, require
a padding strategy as a pre-processing for the input. Fig. 1b
and Fig. 1c illustrate the idea of such padding on the hexagon
and rectangle-shaped input, and resampling is required if the
input is not hexagonal grids such as Fig 1e. The padded area
(dark elements in Fig. 1b and Fig. 1c) is not needed for the
output but is computed as part of the input throughout the
hexagon-imitation models. This is due to the restrictions of
existing deep learning frameworks where data is represented

⇤Rui Zhang is the corresponding author

Fig. 1: The original inputs (a, e), and the results after pre-processing
using ZeroOut [6] (b, f), Quasi-H [26] (c, g), and HexCNN (d, h).
(a) a hexagonal telescope image of gamma-ray events [18]. (e) a
rectangle-shaped image from CIFAR-10 [13] (best view in color).

in a rectangular way. After padding the input, the rectangle-
shaped filters in the network can be used to process the input
without having to accommodate the boundary of hexagonal
grids. To achieve hexagonal processing in convolution and
pooling, specific positions of the rectangle-shaped filter are
set to zero to eliminate their influence on the output (e.g.,
the two blue-colored elements with “0” in Fig. 2a). These
zeroed-out elements, however, lead to unnecessary memory
and computation costs in hexagon-imitation models. To sum
up, the limitation of hexagon-imitation models is that the
padding strategy and the ZeroOut manner in convolution and
pooling cause significant memory and computation overhead
for both hexagon and rectangle-shaped input.

In this paper, we introduce a new framework called Hex-
CNN to address this limitation. HexCNN takes hexagon-
shaped input and performs hexagonal forward and backward
propagation on the original form of the input based on
hexagon-shaped filters. We refer to this method as “native
hexagonal processing”. Compared with previous methods, the
proposed native hexagonal processing eliminates the memory
and computation overhead from the padding and ZeroOut
operations. As shown in Fig. 1d, for hexagon-shaped input,
the proposed HexCNN does not perform padding as done
in hexagon-imitation models. The convolution is achieved
using hexagon-shaped filters, which bypasses the unneces-
sary computation of the zeroed-out elements, as shown in
Fig. 2b. Therefore, HexCNN saves memory and computation
costs significantly when loading the input and performing
filter related operations such as convolution, pooling, and
backpropagation. For rectangle-shaped input such as images,

ar
X

iv
:2

10
1.

10
89

7v
1

 [c
s.C

V
]

25
 Ja

n
20

21

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

Caution: image
preprocessing

27

• Good practice to preprocess data, but  
beware of distortions to physically  
meaningful features

• Example: jet mass in jet images 
 
 
 

• Preprocessing: pixelization, rotation,  
flip, normalization

• Preprocessing distorts distribution of the  
jet mass

• Can choose (Lorentz-invariant) preprocessing
that preserves jet mass

W(qq)

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

Mass
60 70 80 90 100 110

No
rm

al
ize

d
to

 U
ni

ty

0

0.05

0.1

0.15

0.2

0.25

0.3
No pixelation

Only pixelation

0.75)×Pix+Translate (naive) (

Pix+Translate

Pix+Translate+Flip

/2 RotationπPix+Translate+

170)× norm (2
T

Pix+Translate+p

 = 13 TeVsPythia 8,

/GeV < 300 GeV, 65 < mass/GeV < 95
T

250 < p

Mass
60 70 80 90 100 110

No
rm

al
ize

d
to

 U
ni

ty

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
No pixelation

Only pixelation

0.75)×Pix+Translate (naive) (

Pix+Translate

Pix+Translate+Flip

/2 RotationπPix+Translate+

170)× norm (2
T

Pix+Translate+p

 = 13 TeVsPythia 8,

/GeV < 300 GeV, 65 < mass/GeV < 95
T

250 < p

Figure 3: The distribution of the image mass after various states of pre-processing for signal jets (left)
and background jets (right). The No pixelation line is the jet mass without any detector granularity
and without any pre-processing. Only pixelation has only detector granularity but no pre-processing
and all subsequent lines have this pixelation applied as well as translation to center the image at
the origin. The translation is called naive when the energy is used as the pixel intensity instead of
the pixel transverse momentum. Flip denotes the parity inversion operation and the p

2
T norm is a

L
2 normalization scheme. The naive translation and the I

2 normalization image masses are both
multiplied by constants so that the centers of the distribution are roughly in the same location as for
the other distributions.

the sparse nature of these images. However, since speed is not our driving force in this work, we
used convolution implementations defined for dense inputs. We also study fully connected MaxOut
networks [7]. Other architectures were also studied, such as Stack Denoising Autoencoders [32], and
multi-layer fully connected networks with various activation functions, but found that convolution and
MaxOut networks were the most performant.

As a brief aside, we discuss some of the key neural network concepts which are used in the following
section to describe our network architectures. Fully connected (FC) layers take all features as input.
Convolution networks utilize convolution filters (or kernels) which are a set of weights W that operate
linearly on a small n⇥ n (horizontal ⇥ vertical) patch of the input image. For instance, a 3 ⇥ 3 filter
takes as input a 3 ⇥ 3 patch of pixels and outputs z =

P3
i,j=1 xijWij , where xij is the input image

patch. The filter output can be considered as centered on that patch. Each filter is convolved with the
input image, in that the filter is applied to a given input patch and then moved horizontally and/or
vertically to a new input patch on which the filter is applied. By scanning over the entire image
in this way, a the filter is convolved with the input, producing a convolved output. An important
consideration when using convolutional networks is how one handles borders of images. Two main
options exist – one can consider only n⇥ n patches that are fully contained within the input images,
or one can consider every convolution that has at least one pixel from the image, zero-padding as

– 6 –

Average image

m2 = ∑
i<j

pT,ipT,j(1 − cos θij)
cosh ηi cosh ηj

Image Preprocessing
• …in a picture…

9- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Pre-processing and the symmetries of space-time

Pre-process

Translate

Rotate

(Pixelate)

Flip

Re-grid

Translations in h
are boosts along z
Translations in f are
rotations in space

Radiation is symmetric
about the jet axis

Real detectors are
already pixelated!

Need to convert the
rotated grid into a grid!

Parity symmetry
about the jet axis

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

show one at a time

9- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Pre-processing and the symmetries of space-time

Pre-process

Translate

Rotate

(Pixelate)

Flip

Re-grid

Translations in h
are boosts along z
Translations in f are
rotations in space

Radiation is symmetric
about the jet axis

Real detectors are
already pixelated!

Need to convert the
rotated grid into a grid!

Parity symmetry
about the jet axis

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

show one at a time

9- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Pre-processing and the symmetries of space-time

Pre-process

Translate

Rotate

(Pixelate)

Flip

Re-grid

Translations in h
are boosts along z
Translations in f are
rotations in space

Radiation is symmetric
about the jet axis

Real detectors are
already pixelated!

Need to convert the
rotated grid into a grid!

Parity symmetry
about the jet axis

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Image Preprocessing

13"

•  Use subjets of large radius jet as focal points ! like eyes in an image
•  Make use of symmetries ! Center, Rotate, and Flip
•  Introduces some smearing, but huge gain in discrimination!

Average of
unrotated W jet

Not much info!

Average of
rotated W jet

Much better!

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

show one at a time

10- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Pre-processing and the symmetries of space-time

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

Rotate,
Re-grid
 & Flip

Pre-process

Translate

Rotate

(Pixelate)

Flip

Re-grid

sig
na
l

ba
ck
gro
un
d

sig
na
l

ba
ck
gro
un
d

10- -
Generic overview slide

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Boosted Boson Type Tagging
Jet ETmiss

SLAC, Stanford University

March 26, 2014

Benjamin Nachman and Ariel Schartzman

B. Nachman (SLAC) Boosted Boson Type Tagging March 26, 2014 1 / 21

Pre-processing and the symmetries of space-time

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets,
/GeV < 260 GeV, 65 < mass/GeV < 95

T
240 < p

Rotate,
Re-grid
 & Flip

Pre-process

Translate

Rotate

(Pixelate)

Flip

Re-grid

sig
na
l

ba
ck
gro
un
d

sig
na
l

ba
ck
gro
un
d

Next time

• More on convolutional neural networks

28

