PHYS 139/239: Machine Learning in Physics Lecture 7: Convolutional neural networks

Javier Duarte — January 31, 2023

Symmetries

Invariance

 $f(\rho_g(x)) = f(x)$

Equivariance $f(\rho_g(x)) = \rho'_g(f(x))$

Translational invariance

- For the purpose of classifying galaxy morphologies (e.g. spiral), the answer shouldn't depend on the absolute location of the pixels
- For simplicity, imagine there are 4 possible locations the galaxy might show up (top left, top right, bottom left, and bottom right)

Fully-connected neural networks

Fully-ongotedialrelasevolfsstandard (fully-connected) neura are not translation invariant

(different weights)

	공동상상품					말랐다	
							1
		: 18 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	활동으로				
이 아무는 지수가?	문화방상품을				1990-198	5.586.5	
1948 Biris	동물이 같은 좀	MARTIN 1983	물건계 무엇물건물				
				Uï			
				Uï			

(same weights)

Fully-connected neural networks

What if the same fully-connected neural network is applied to each corner?

Convolutions

Filter weights: $\begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$

Theorem: the only linear and translation-equivariant operations are convolutions

30	3,	2_{2}	1	0
02	02	1_0	3	1
30	1_1	2_{2}	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

Locality and translation invariance

locality

nearby areas tend to contain stronger patterns

translation invariance

relative positions are relevant

Let's convert locality and translation invariance into inductive biases

- 4×4 input
- 3×3 filter
- 1×1 stride
- No zero padding

\Rightarrow 2 × 2 output

- 5×5 input
- 3×3 filter
- 2×2 stride
- No zero padding

\Rightarrow 2 × 2 output

- 5×5 input
- 3×3 filter
- 1×1 stride
- "Same" zero padding
 - \Rightarrow 5 × 5 output

- 5×5 input
- 3×3 filter
- 1×1 stride
- "Full" zero padding

Pooling

- - Most commonly used
- Average: Each pooling operation averages the values of the current view

 Pooling: downsampling operation, typically applied after a convolution layer Max: Each pooling operation selects the maximum value of the current view

"Smooths" image (may be undesirable); may better preserve information

Receptive field

activation map can "see"

• The receptive field at layer k is the area of the input that each pixel of the kth

Feature visualization

Edges (layer conv2d0)

Textures (layer mixed3a)

Patterns (layer mixed4a)

https://distill.pub/2017/feature-visualization/

Convolutions with multiple channels

filters are applied to all input channels

each filter results in a new output channel

3 x 3 x 3 filter tensor

 $N_{\rm in} \times k_h \times k_w$

Fully-connected networks

Size of a filter is $N_{\rm in}$

How many parameters?

- Input: $I \times I \times C$ • Input: $I \times I \times C$
- Output: $O \times O \times C$ • Output: $O \times O \times K$
- Parameters: $(F^2C + 1)K$ • Parameters: 0

- Input: N_{in}
- Output: N_{out}
- Parameters: $(N_{in} + 1)N_{out}$

In practice: VGG16

- VGG16 [arXiv:1409.1556] is a classic deep CNN
- 1st runner up 2014 ImageNet Large Scale Visual Recognition Competition (ILSVRC)


```
convolution + ReLU
🧃 max pooling
fully Connected + ReLU
  softmax
```

```
from tensorflow.keras.layers import Input, Conv2D, MaxPooling2D, Flatten, Dense
from tensorflow.keras.models import Model
# Input
img_input = Input(shape=(224, 224, 3))
# Block 1
x = Conv2D(64, (3, 3), activation="relu", padding="same", name="block1_conv1")(
    img_input
x = Conv2D(64, (3, 3), activation="relu", padding="same", name="block1_conv2")(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name="block1_pool")(x)
# Block 2
x = Conv2D(128, (3, 3), activation="relu", padding="same", name="block2_conv1")(x)
x = Conv2D(128, (3, 3), activation="relu", padding="same", name="block2_conv2")(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name="block2_pool")(x)
# Block 3
x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv1")(x)
x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv2")(x)
x = Conv2D(256, (3, 3), activation="relu", padding="same", name="block3_conv3")(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name="block3_pool")(x)
# Block 4
x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv1")(x)
x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv2")(x)
x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block4_conv3")(x)
x = MaxPooling2D((2, 2), strides=(2, 2), name="block4_pool")(x)
# Block 5
x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv1")(x)
x = Conv2D(512, (3, 3), activation="relu", padding="same", name="block5_conv2")(x)
x = Flatten(name="flatten")(x)
x = Dense(4096, activation="relu", name="fc1")(x)
x = Dense(4096, activation="relu", name="fc2")(x)
x = Dense(1000, activation="softmax", name="predictions")(x)
model = Model(inputs=img_input, outputs=x, name="vgg16")
```


In practice: ResNet-34

- Use skip connections to make CNN even deeper!
- ResNet-50 still used for many purposes

Sparsity

- In physics, image data is often sparse (mostly empty)
 - Even worse for 3D data
- How can we deal with this efficiently?

Azimuthal Angle (ф) 0. 1 1 1 1 -0.5 -0.5 0.5 -1 Pseudorapidity (η)

Simple: use larger filters • While 3 × 3 filters or smaller are common for hatural images, often need wider filters, e.g. 11×11 , for sparse intrages

More exotic: dilated convolution

- 7×7 input
- 3×3 filter
- 1×1 stride
- No zero padding
- 2×2 dilation

\Rightarrow 3 × 3 output

More exotic: sparse convolution

- Uses sparse tensors as basic data representation
- Only computes convolution where output is nonzero
- Implementation: <u>https://github.com/NVIDIA/</u> <u>MinkowskiEngine</u>

Caution: Are CNNs actually translation invariant?

- Most CNNs are not architecturally invariant to translation, but they can learn to be by training on a data set that contains this regularity
- Also, architecture can be modified to be robust to small translations

Convolutional Neural Networks Are Not Invariant to Translation, but They Can Learn to Be

Valerio Biscione

Department of Psychology University of Bristol Bristol BS8 1TL, United Kingdom

Jeffrey S. Bowers

Department of Psychology University of Bristol Bristol BS8 1TL, United Kingdom VALERIO.BISCIONE@BRISTOL.AC.UK

J.BOWERS@BRISTOL.AC.UK

Truly shift-invariant convolutional neural networks

Generalizations: Data augmentations

- One way to generalize CNNs to rotation-invariant operations:
 - Use data augmentations, • concatenate feature maps, and apply dense layers

Rotation-invariant convolutional neural networks for galaxy morphology prediction

Sander Dieleman^{1*}, Kyle W. Willett^{2*} and Joni Dambre¹ ¹Electronics and Information Systems department, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium ²School of Physics and Astronomy, University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA

Generalizations: Other symmetry groups

 By employing weight sharing across group actions, we can generalize to other symmetry groups

Group Equivariant Convolutional Networks

Taco S. Cohen T.S.COHEN@UVA.NL University of Amsterdam Max Welling M.WELLING@UVA.NL University of Amsterdam University of California Irvine Canadian Institute for Advanced Research

https://medium.com/swlh/geometric-deep-learning-groupequivariant-convolutional-networks-ec687c7a7b41

Generalizations: Other geometries

 Can generalize to other geometries like hexagonal data

HexCNN: A Framework for Native Hexagonal Convolutional Neural Networks

Yunxiang Zhao[†], Qiuhong Ke[†], Flip Korn[‡], Jianzhong Qi[†], Rui Zhang ^{†*}

[†]The University of Melbourne, Australia, [‡]Google Research, USA

{yunxiangz@student., qiuhong.ke@, jianzhong.qi@, rui.zhang@ }unimelb.edu.au, flip@google.com

- Use subjets of large radius jet as focal points \rightarrow lik
- Make use of symmetries \rightarrow Center, Rotate, and Fli
- Introduces some smearing, but huge gain in discrin

that preserves jet mass

Boosted Boson Type Tagging

Next time

• More on convolutional neural networks