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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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Caution: image 
preprocessing
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• Good practice to preprocess data, but  
beware of distortions to physically  
meaningful features


• Example: jet mass in  jet images 
 
 
 

• Preprocessing: pixelization, rotation,  
flip, normalization


• Preprocessing distorts distribution of the  
jet mass


• Can choose (Lorentz-invariant) preprocessing 
that preserves jet mass

W(qq)

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVs WZ, →Pythia 8, W'

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets, 

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

 [G
eV

]
T

Pi
xe

l p

-910

-810

-710

-610

-510

-410

-310

-210

-110

1

10

210

310

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

 = 13 TeVsPythia 8, QCD dijets, 

/GeV < 260 GeV, 65 < mass/GeV < 95
T

250 < p

Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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Figure 3: The distribution of the image mass after various states of pre-processing for signal jets (left)
and background jets (right). The No pixelation line is the jet mass without any detector granularity
and without any pre-processing. Only pixelation has only detector granularity but no pre-processing
and all subsequent lines have this pixelation applied as well as translation to center the image at
the origin. The translation is called naive when the energy is used as the pixel intensity instead of
the pixel transverse momentum. Flip denotes the parity inversion operation and the p

2
T norm is a

L
2 normalization scheme. The naive translation and the I

2 normalization image masses are both
multiplied by constants so that the centers of the distribution are roughly in the same location as for
the other distributions.

the sparse nature of these images. However, since speed is not our driving force in this work, we
used convolution implementations defined for dense inputs. We also study fully connected MaxOut
networks [7]. Other architectures were also studied, such as Stack Denoising Autoencoders [32], and
multi-layer fully connected networks with various activation functions, but found that convolution and
MaxOut networks were the most performant.

As a brief aside, we discuss some of the key neural network concepts which are used in the following
section to describe our network architectures. Fully connected (FC) layers take all features as input.
Convolution networks utilize convolution filters (or kernels) which are a set of weights W that operate
linearly on a small n⇥ n (horizontal ⇥ vertical) patch of the input image. For instance, a 3 ⇥ 3 filter
takes as input a 3 ⇥ 3 patch of pixels and outputs z =

P3
i,j=1 xijWij , where xij is the input image

patch. The filter output can be considered as centered on that patch. Each filter is convolved with the
input image, in that the filter is applied to a given input patch and then moved horizontally and/or
vertically to a new input patch on which the filter is applied. By scanning over the entire image
in this way, a the filter is convolved with the input, producing a convolved output. An important
consideration when using convolutional networks is how one handles borders of images. Two main
options exist – one can consider only n⇥ n patches that are fully contained within the input images,
or one can consider every convolution that has at least one pixel from the image, zero-padding as
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Average image

m2 = ∑
i<j

pT,ipT,j(1 − cos θij)
cosh ηi cosh ηj

Image Preprocessing
• …in a picture…
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2D convolution hyperparameters

3

•  input


•  filter


•  stride


• No zero padding


➡   output

4 × 4

3 × 3

1 × 1

2 × 2



In reverse: transposed convolution

4

•  input


•  filter


•  stride


•  zero padding


➡   output

2 × 2

3 × 3

1 × 1

2 × 2

4 × 4



In reverse: upsampling

5

1 2 5 6

3 4 7 8

9 10 13 14

11 12 15 16

4 8

12 16

4 4 8 8

4 4 8 8

12 12 16 16

12 12 16 16

Max pooling Upsampling

• Upsampling can be used to change the image size



More efficient: depthwise separable convolution

6

• Standard convolution requires many operations, e.g. for a  image, 
 filters, no zero-padding, stride 1:  multiplications


• Depthwise separable convolution factorizes into two separate operations


• For the same settings:  multiplications

15 × 15 × 3
10 3 × 3 45,630

9,633



Reconstruction tasks

7

• Classification: output class of 
image as a whole


• Regression: output a real 
number for the image as a 
whole


• Object detection & localization: 
find a “bounding box” for a 
given object


• Can also be done for multiple 
objects


• Semantic segmentation: pixel-
wise classification 



Reconstruction tasks

8

• Semantic segmentation: pixel-wise classification


• Instance segmentation: classify pixels based on “instances”


• Panoptic segmentation: generalization to multiple classes



U-Net

9

• U-Net first proposed for 
semantic segmentation in 
biomedical imaging


• Also used for detection of 
neutrinos [arXiv:1903.05663], 
galaxies, RF interference 
[arXiv:1609.09077], … 
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arXiv:1505.04597

Concatenation

Concatenation

https://arxiv.org/abs/1903.05663
https://arxiv.org/abs/1609.09077
https://arxiv.org/abs/1505.04597


Generalizations: Data augmentations

10

• One way to generalize CNNs to 
rotation-invariant operations: 


• Use data augmentations, 
concatenate feature maps, 
and apply dense layers

Mon. Not. R. Astron. Soc. 000, 1–20 (2014) Printed 25 March 2015 (MN LATEX style file v2.2)

Rotation-invariant convolutional neural networks for galaxy
morphology prediction
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ABSTRACT
Measuring the morphological parameters of galaxies is a key requirement for studying
their formation and evolution. Surveys such as the Sloan Digital Sky Survey (SDSS)
have resulted in the availability of very large collections of images, which have per-
mitted population-wide analyses of galaxy morphology. Morphological analysis has
traditionally been carried out mostly via visual inspection by trained experts, which
is time-consuming and does not scale to large (& 104) numbers of images.

Although attempts have been made to build automated classification systems,
these have not been able to achieve the desired level of accuracy. The Galaxy Zoo
project successfully applied a crowdsourcing strategy, inviting online users to classify
images by answering a series of questions. Unfortunately, even this approach does not
scale well enough to keep up with the increasing availability of galaxy images.

We present a deep neural network model for galaxy morphology classification which
exploits translational and rotational symmetry. It was developed in the context of the
Galaxy Challenge, an international competition to build the best model for morphology
classification based on annotated images from the Galaxy Zoo project.

For images with high agreement among the Galaxy Zoo participants, our model
is able to reproduce their consensus with near-perfect accuracy (> 99%) for most
questions. Confident model predictions are highly accurate, which makes the model
suitable for filtering large collections of images and forwarding challenging images to
experts for manual annotation. This approach greatly reduces the experts’ workload
without a↵ecting accuracy. The application of these algorithms to larger sets of training
data will be critical for analysing results from future surveys such as the LSST.

Key words: methods: data analysis – catalogues – techniques: image processing –
galaxies: general.

1 INTRODUCTION

Galaxies exhibit a wide variety of shapes, colours and sizes.
These properties are indicative of their age, formation con-
ditions, and interactions with other galaxies over the course
of many Gyr. Studies of galaxy formation and evolution
use morphology to probe the physical processes that give
rise to them. In particular, large, all-sky surveys of galax-
ies are critical for disentangling the complicated relation-
ships between parameters such as halo mass, metallicity, en-
vironment, age, and morphology; deeper surveys probe the
changes in morphology starting at high redshifts and taking
place over timescales of billions of years.

Such studies require both the observation of large num-

?
E-mail: sander.dieleman@ugent.be (SD), wil-

lett@physics.umn.edu (KWW)

bers of galaxies and accurate classification of their morpholo-
gies. Large-scale surveys such as the Sloan Digital Sky Sur-
vey (SDSS)1 have resulted in the availability of image data
for millions of celestial objects. However, manually inspect-
ing all these images to annotate them with morphological
information is impractical for either individual astronomers
or small teams.

Attempts to build automated classification systems for
galaxy morphologies have historically had di�culties in
reaching the levels of reliability required for scientific anal-
ysis (Clery 2011). The Galaxy Zoo project2 was conceived
to accelerate this task through the method of crowdsourc-
ing. The original goal of the project was to obtain reliable

1 http://www.sdss.org/
2 http://www.galaxyzoo.org/
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1. input 2. rotate 3. crop 4. convolutions 5. dense 6. predictions

Figure 4. Schematic overview of a neural network architecture for exploiting rotational symmetry. The input image (1) is first rotated to

various angles and optionally flipped to yield di↵erent viewpoints (2), and the viewpoints are subsequently cropped to reduce redundancy

(3). Each of the cropped viewpoints is processed by the same stack of convolutional layers and pooling layers (4), and their output

representations are concatenated and processed by a stack of dense layers (5) to obtain predictions (6).

input augmented input

predictions

preprocessing

Section 7.3

viewpoint extraction

Section 7.5

model averaging

Section 7.8

preprocessed input viewpoints

averaged predictions

augmentation

Section 7.4

convnet

Section 7.6

Figure 5. Schematic overview of the processing pipeline.
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Generalizations: Other symmetry groups
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• By employing weight sharing 
across group actions, we can 
generalize to other symmetry 
groups

Group Equivariant Convolutional Networks

Taco S. Cohen T.S.COHEN@UVA.NL

University of Amsterdam

Max Welling M.WELLING@UVA.NL

University of Amsterdam
University of California Irvine
Canadian Institute for Advanced Research

Abstract
We introduce Group equivariant Convolutional
Neural Networks (G-CNNs), a natural general-
ization of convolutional neural networks that re-
duces sample complexity by exploiting symme-
tries. G-CNNs use G-convolutions, a new type of
layer that enjoys a substantially higher degree of
weight sharing than regular convolution layers.
G-convolutions increase the expressive capacity
of the network without increasing the number of
parameters. Group convolution layers are easy
to use and can be implemented with negligible
computational overhead for discrete groups gen-
erated by translations, reflections and rotations.
G-CNNs achieve state of the art results on CI-
FAR10 and rotated MNIST.

1. Introduction
Deep convolutional neural networks (CNNs, convnets)
have proven to be very powerful models of sensory data
such as images, video, and audio. Although a strong the-
ory of neural network design is currently lacking, a large
amount of empirical evidence supports the notion that both
convolutional weight sharing and depth (among other fac-
tors) are important for good predictive performance.

Convolutional weight sharing is effective because there is
a translation symmetry in most perception tasks: the la-
bel function and data distribution are both approximately
invariant to shifts. By using the same weights to analyze
or model each part of the image, a convolution layer uses
far fewer parameters than a fully connected one, while pre-
serving the capacity to learn many useful transformations.

Proceedings of the 33 rd
International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Convolution layers can be used effectively in a deep net-
work because all the layers in such a network are trans-

lation equivariant: shifting the image and then feeding
it through a number of layers is the same as feeding the
original image through the same layers and then shifting
the resulting feature maps (at least up to edge-effects). In
other words, the symmetry (translation) is preserved by
each layer, which makes it possible to exploit it not just
in the first, but also in higher layers of the network.

In this paper we show how convolutional networks can be
generalized to exploit larger groups of symmetries, includ-
ing rotations and reflections. The notion of equivariance is
key to this generalization, so in section 2 we will discuss
this concept and its role in deep representation learning.
After discussing related work in section 3, we recall a num-
ber of mathematical concepts in section 4 that allow us to
define and analyze the G-convolution in a generic manner.

In section 5, we analyze the equivariance properties of stan-
dard CNNs, and show that they are equivariant to trans-
lations but may fail to equivary with more general trans-
formations. Using the mathematical framework from sec-
tion 4, we can define G-CNNs (section 6) by analogy to
standard CNNs (the latter being the G-CNN for the transla-
tion group). We show that G-convolutions, as well as var-
ious kinds of layers used in modern CNNs, such as pool-
ing, arbitrary pointwise nonlinearities, batch normalization
and residual blocks are all equivariant, and thus compatible
with G-CNNs. In section 7 we provide concrete implemen-
tation details for group convolutions.

In section 8 we report experimental results on MNIST-rot
and CIFAR10, where G-CNNs achieve state of the art re-
sults (2.28% error on MNIST-rot, and 4.19% resp. 6.46%
on augmented and plain CIFAR10). We show that replac-
ing planar convolutions with G-convolutions consistently
improves results without additional tuning. In section 9 we
provide a discussion of these results and consider several
extensions of the method, before concluding in section 10.

https://medium.com/swlh/geometric-deep-learning-group-
equivariant-convolutional-networks-ec687c7a7b41

https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41
https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41
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• Can generalize to other 
geometries like hexagonal data

step length of one for the first lk columns and then decreases
for the onward columns.

For max-pooling and average-pooling, we either pick the
maximum or average the value of all elements within a
sliding window to obtain an output element. Take maxpooling
as example, we iteratively fetch the elements from the red
bounded area (output) in Fig. 4a and obtain the corresponding
sliding window from the input. More formally, the procedure
is represented as:

Ou,v = max
vj<v+2·lk�1, isi<ie

Ii,j (2)

Backpropagation: In backpropagation, the operations for
dense layers are the same as those for rectangle-based frame-
works. For convolutional and pooling layers, we backpropa-
gate the error and update the weights of each layer.

For back propagating the error in convolutional layers,
HexCNN upsamples the error �

c to �̂c to get the same size
as the input of the current layer I . HexCNN then performs
full convolution on the upsampled �̂c and the filter k that has
been rotated for 180 degrees. After the full convolution, the
former layer’s error �

p is the Hadamard product [7] with the
derivative of the former layer’s activation function �

p:
�
p = �̂

c ⇤ rot180(k)� �
0
p (3)

where function rot180 rotates a matrix by 180 degrees, opera-
tor ⇤ denotes the full convolution, and operator � computes the
Hadamard product. For pooling layers, we take max-pooling
as an example to illustrate how HexCNN works. HexCNN
first upsamples �

c to �̂c, and figures out which position in I

corresponds to a specific value in �
c (the perceptive field of

�
c). HexCNN then transfers the value in �

c to that position
in �̂

c, and sets the rest positions in �̂
c as zeros. As shown in

Equation 4, each value in the former layer’s error �
p
u,v

is the
element-wise product of �̂

c
u,v

and the sum of those values in
�
c that come from Iu,v .

�
p

u,v
= �̂

c

u,v
·

X

Iu,v!�i,j

�i,j (4)

where Iu,v ! �i,j denotes elements in I that are within the
perceptive filed of �i,j , “·” computes the element-wise product.

For updating the weights, we propose derivative compu-
tation algorithms for native hexagonal processing. HexCNN
computes the partial derivative for both input and filters in
convolutional layers, except the initial input of the network.
The partial derivative of filters is for updating the weights, and
the partial derivative of the input is for updating the weights
of the former layer. (i) The partial derivative for a filter k can
be represented as the convolution between the input I and the
error � (with the same size as the output O) according to the
chain rule. We assume that “VALID” padding is applied. Then
the partial derivative for the filter k can be represented as:

@E

@ku,v
=

v+2·lO�1X

j=v

ieX

i=is

Ii,j · �i�is,j�v (5)

where is and ie are computed similar to Equation 1. (ii) Com-
puting the partial derivative of the input can be transformed
into the full convolution between the error � (with the same
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Fig. 5: Hexagonal convolution to matrix multiplication. The red and
blue color are used for locating differentiating different filters (sliding
windows) only (best view in color).

size of the output O) and the filter k. If the output size
is smaller than the input size, HexCNN pads zeros around
the � to achieve the same size as the input before the full
convolution. We summarize the procedure as:

@E

@Iu,v
=

v+lkX

j=v�lk+1

ieX

i=is

�i,j · ki�is,j�v+lk�1

is =

(
j � lO + u� lk + 2, j � lO

u� lk + 1, j < lO

ie =

(
is + 2 · lk � 1, j � v

is + 2 · lk + j � v � 1, j < v

(6)

where is and ie are column index i and filter size lk related.
�i,j returns zero when is and ie out of the range of � and this
is the reason that we pad zeros around �.

IV. TRANSFORMATION FROM HEXAGONAL CONVOLUTION
TO MATRIX MULTIPLICATION

Existing deep learning frameworks transform convolution
into matrix multiplication to speed up the computation. In
this section, we present how HexCNN transforms hexagonal
convolution into matrix multiplication. HexCNN splits the
input into multiple patches according to the filter size and
stride. Suppose the hexagon-shaped input has a side length
lI and a channel c. The hexagonal convolution filters have a
side length lk, and the stride during convolution is s. HexCNN
computes the number of patches by lp · (lp � 1) + 1, where
lp = (lI � lk)/s+1. Take Fig. 5 as an example, where lI = 5,
c = 3, lk = 2, and s = 3. The value of lp is two, and hence
there are seven patches in the input (the red and blue colors
are used for differentiation only).

To transform the hexagonal convolution into matrix mul-
tiplication, HexCNN first obtains the number of patches ac-
cording to the input shape, the stride, and padding strategy.
It then re-orders the elements in each patch as a vector in
column-major to obtain the left matrix in Fig. 5. For the
right matrix in Fig. 5, the width is the number of filters, and
the height is the filter size. After transforming the input and
filters into the left and right matrices, HexCNN obtains the
convolutional output via matrix multiplication. To speed up the

HexCNN: A Framework for Native Hexagonal
Convolutional Neural Networks
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Abstract—Hexagonal CNN models have shown superior per-
formance in applications such as IACT data analysis and aerial
scene classification due to their better rotation symmetry and
reduced anisotropy. In order to realize hexagonal processing,
existing studies mainly use the ZeroOut method to imitate
hexagonal processing, which causes substantial memory and
computation overheads. We address this deficiency with a novel
native hexagonal CNN framework named HexCNN. HexCNN
takes hexagon-shaped input and performs forward and backward
propagation on the original form of the input based on hexagon-
shaped filters, hence avoiding computation and memory over-
heads caused by imitation. For applications with rectangle-shaped
input but require hexagonal processing, HexCNN can be applied
by padding the input into hexagon-shape as preprocessing. In
this case, we show that the time and space efficiency of HexCNN
still outperforms existing hexagonal CNN methods substantially.
Experimental results show that compared with the state-of-
the-art models, which imitate hexagonal processing but using
rectangle-shaped filters, HexCNN reduces the training time by
up to 42.2%. Meanwhile, HexCNN saves the memory space cost
by up to 25% and 41.7% for loading the input and performing
convolution, respectively.

Index Terms—Hexagonal Convolution, Convolutional Neural
Networks, Deep Learning

I. INTRODUCTION

Recent studies show that compared with traditional
rectangle-based CNN models, CNN models with hexagon-
shaped filters achieve better performance in applications such
as Imaging Atmospheric Cherenkov Telescope (IACT) data
analysis [2], [19], [20], [23], Hex move-prediction [27], and
IceCube data analysis [8]. Applying hexagonal filters in group
CNNs can even surpass the performance of traditional CNN
models with image classification tasks on data sets such as
CIFAR-10 [6], [22], [26].

To realize hexagonal processing, most existing studies apply
rectangle-shaped filters with the ZeroOut method to imitate
hexagonal processing [6], [17], [11]. We refer to these models
as hexagon-imitation models. These models, however, require
a padding strategy as a pre-processing for the input. Fig. 1b
and Fig. 1c illustrate the idea of such padding on the hexagon
and rectangle-shaped input, and resampling is required if the
input is not hexagonal grids such as Fig 1e. The padded area
(dark elements in Fig. 1b and Fig. 1c) is not needed for the
output but is computed as part of the input throughout the
hexagon-imitation models. This is due to the restrictions of
existing deep learning frameworks where data is represented

⇤Rui Zhang is the corresponding author

Fig. 1: The original inputs (a, e), and the results after pre-processing
using ZeroOut [6] (b, f), Quasi-H [26] (c, g), and HexCNN (d, h).
(a) a hexagonal telescope image of gamma-ray events [18]. (e) a
rectangle-shaped image from CIFAR-10 [13] (best view in color).

in a rectangular way. After padding the input, the rectangle-
shaped filters in the network can be used to process the input
without having to accommodate the boundary of hexagonal
grids. To achieve hexagonal processing in convolution and
pooling, specific positions of the rectangle-shaped filter are
set to zero to eliminate their influence on the output (e.g.,
the two blue-colored elements with “0” in Fig. 2a). These
zeroed-out elements, however, lead to unnecessary memory
and computation costs in hexagon-imitation models. To sum
up, the limitation of hexagon-imitation models is that the
padding strategy and the ZeroOut manner in convolution and
pooling cause significant memory and computation overhead
for both hexagon and rectangle-shaped input.

In this paper, we introduce a new framework called Hex-
CNN to address this limitation. HexCNN takes hexagon-
shaped input and performs hexagonal forward and backward
propagation on the original form of the input based on
hexagon-shaped filters. We refer to this method as “native
hexagonal processing”. Compared with previous methods, the
proposed native hexagonal processing eliminates the memory
and computation overhead from the padding and ZeroOut
operations. As shown in Fig. 1d, for hexagon-shaped input,
the proposed HexCNN does not perform padding as done
in hexagon-imitation models. The convolution is achieved
using hexagon-shaped filters, which bypasses the unneces-
sary computation of the zeroed-out elements, as shown in
Fig. 2b. Therefore, HexCNN saves memory and computation
costs significantly when loading the input and performing
filter related operations such as convolution, pooling, and
backpropagation. For rectangle-shaped input such as images,
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Abstract—Hexagonal CNN models have shown superior per-
formance in applications such as IACT data analysis and aerial
scene classification due to their better rotation symmetry and
reduced anisotropy. In order to realize hexagonal processing,
existing studies mainly use the ZeroOut method to imitate
hexagonal processing, which causes substantial memory and
computation overheads. We address this deficiency with a novel
native hexagonal CNN framework named HexCNN. HexCNN
takes hexagon-shaped input and performs forward and backward
propagation on the original form of the input based on hexagon-
shaped filters, hence avoiding computation and memory over-
heads caused by imitation. For applications with rectangle-shaped
input but require hexagonal processing, HexCNN can be applied
by padding the input into hexagon-shape as preprocessing. In
this case, we show that the time and space efficiency of HexCNN
still outperforms existing hexagonal CNN methods substantially.
Experimental results show that compared with the state-of-
the-art models, which imitate hexagonal processing but using
rectangle-shaped filters, HexCNN reduces the training time by
up to 42.2%. Meanwhile, HexCNN saves the memory space cost
by up to 25% and 41.7% for loading the input and performing
convolution, respectively.

Index Terms—Hexagonal Convolution, Convolutional Neural
Networks, Deep Learning

I. INTRODUCTION

Recent studies show that compared with traditional
rectangle-based CNN models, CNN models with hexagon-
shaped filters achieve better performance in applications such
as Imaging Atmospheric Cherenkov Telescope (IACT) data
analysis [2], [19], [20], [23], Hex move-prediction [27], and
IceCube data analysis [8]. Applying hexagonal filters in group
CNNs can even surpass the performance of traditional CNN
models with image classification tasks on data sets such as
CIFAR-10 [6], [22], [26].

To realize hexagonal processing, most existing studies apply
rectangle-shaped filters with the ZeroOut method to imitate
hexagonal processing [6], [17], [11]. We refer to these models
as hexagon-imitation models. These models, however, require
a padding strategy as a pre-processing for the input. Fig. 1b
and Fig. 1c illustrate the idea of such padding on the hexagon
and rectangle-shaped input, and resampling is required if the
input is not hexagonal grids such as Fig 1e. The padded area
(dark elements in Fig. 1b and Fig. 1c) is not needed for the
output but is computed as part of the input throughout the
hexagon-imitation models. This is due to the restrictions of
existing deep learning frameworks where data is represented
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Fig. 1: The original inputs (a, e), and the results after pre-processing
using ZeroOut [6] (b, f), Quasi-H [26] (c, g), and HexCNN (d, h).
(a) a hexagonal telescope image of gamma-ray events [18]. (e) a
rectangle-shaped image from CIFAR-10 [13] (best view in color).

in a rectangular way. After padding the input, the rectangle-
shaped filters in the network can be used to process the input
without having to accommodate the boundary of hexagonal
grids. To achieve hexagonal processing in convolution and
pooling, specific positions of the rectangle-shaped filter are
set to zero to eliminate their influence on the output (e.g.,
the two blue-colored elements with “0” in Fig. 2a). These
zeroed-out elements, however, lead to unnecessary memory
and computation costs in hexagon-imitation models. To sum
up, the limitation of hexagon-imitation models is that the
padding strategy and the ZeroOut manner in convolution and
pooling cause significant memory and computation overhead
for both hexagon and rectangle-shaped input.

In this paper, we introduce a new framework called Hex-
CNN to address this limitation. HexCNN takes hexagon-
shaped input and performs hexagonal forward and backward
propagation on the original form of the input based on
hexagon-shaped filters. We refer to this method as “native
hexagonal processing”. Compared with previous methods, the
proposed native hexagonal processing eliminates the memory
and computation overhead from the padding and ZeroOut
operations. As shown in Fig. 1d, for hexagon-shaped input,
the proposed HexCNN does not perform padding as done
in hexagon-imitation models. The convolution is achieved
using hexagon-shaped filters, which bypasses the unneces-
sary computation of the zeroed-out elements, as shown in
Fig. 2b. Therefore, HexCNN saves memory and computation
costs significantly when loading the input and performing
filter related operations such as convolution, pooling, and
backpropagation. For rectangle-shaped input such as images,
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Next time

• Time series and recurrent neural networks
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