PHYS 139/239: Machine Learning in Physics

Lecture 8: Advanced convolutions neural networks

Javier Duarte — January 31, 2023
Caution: image preprocessing

- Good practice to preprocess data, but beware of distortions to physically meaningful features

- Example: jet mass in $W(qq)$ jet images

$$m^2 = \sum_{i<j} \frac{p_{T,i} p_{T,j} (1 - \cos \theta_{ij})}{\cosh \eta_i \cosh \eta_j}$$

- Preprocessing: pixelization, rotation, flip, normalization

- Preprocessing distorts distribution of the jet mass

- Can choose (Lorentz-invariant) preprocessing that preserves jet mass
2D convolution hyperparameters

- 4 × 4 input
- 3 × 3 filter
- 1 × 1 stride
- No zero padding

⇒ 2 × 2 output
In reverse: transposed convolution

- 2 × 2 input
- 3 × 3 filter
- 1 × 1 stride
- 2 × 2 zero padding
 ➞ 4 × 4 output
In reverse: upsampling

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

- Upsampling can be used to change the image size
More efficient: depthwise separable convolution

- Standard convolution requires many operations, e.g. for a $15 \times 15 \times 3$ image, 10 3×3 filters, no zero-padding, stride 1: 45,630 multiplications

- Depthwise separable convolution factorizes into two separate operations
 - For the same settings: 9,633 multiplications
Reconstruction tasks

- **Classification**: output class of image as a whole

- **Regression**: output a real number for the image as a whole

- **Object detection & localization**: find a “bounding box” for a given object
 - Can also be done for multiple objects

- **Semantic segmentation**: pixel-wise classification
Reconstruction tasks

- Semantic segmentation: pixel-wise classification
- Instance segmentation: classify pixels based on “instances”
 - Panoptic segmentation: generalization to multiple classes
U-Net

- U-Net first proposed for semantic segmentation in biomedical imaging

- Also used for detection of neutrinos [arXiv:1903.05663], galaxies, RF interference [arXiv:1609.09077], …
Generalizations: Data augmentations

- One way to generalize CNNs to rotation-invariant operations:

- Use data augmentations, concatenate feature maps, and apply dense layers
Generalizations: Other symmetry groups

- By employing weight sharing across group actions, we can generalize to other symmetry groups.

Group Equivariant Convolutional Networks

Taco S. Cohen
University of Amsterdam

Max Welling
University of Amsterdam
University of California Irvine
Canadian Institute for Advanced Research

https://medium.com/swlh/geometric-deep-learning-group-equivariant-convolutional-networks-ec687c7a7b41
Generalizations: Other geometries

- Can generalize to other geometries like hexagonal data

HexCNN: A Framework for Native Hexagonal Convolutional Neural Networks

Yunxiang Zhao‡, QiuHong Ke‡, Flip Korn‡, Jianzhong Qi‡, Rui Zhang ‡
†The University of Melbourne, Australia, ‡Google Research, USA
{yunxiangz@student., qiuHong.ke@, jianzhong.qi@, rui.zhang@ }unimelb.edu.au, flip@google.com
Next time

• Time series and recurrent neural networks