PHYS 139/239:
Machine Learni

Lecture 9:
Time-series data ¢




Time-series data tasks

 Population behaviors

 Characterize, categorize,
classify

e Qutliers
e Extreme sources
* Physical models

 Predictions
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Time-series datasets

* Palomar-Quest Synoptic Sky
Survey

. SDSS (Stripe 82)

e (Catalina Real-time Transient
Survey

 Palomar Transient Factory
o Zwicky Transient Factory
 KEPLER

 GAIA

* LIGO




Time-series definition

» A time series is a set of time-tagged measurements: { X.(%;) } possibly with
observation errors o;

* Not i.i.d.

 Data is sequential (i.e. next point depends on previous point)
« Homoskedasticity

* All errors drawn from same process
* Ergodicity

* The time average for one sequence is the same as the ensemble average:

n—-oo N

n—1
) = tim — ) f(T )
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Stationarity

* [he generating process is time independent:
» Joint probability distribution is translationally invariant (strong)

 Mean, variance, autocorrelation are constant (weak)



Stationarity

* Transformations to achieve stationarity (constant location and scale)
» Difference the data: Z;, = X. — X._,
 Detrend the data: Z(t) = X(¢) — f(?)

e Stabilize the variance:

7(t) = /X + A or log(X(£) + A)

* Test with autocorrelation function (ACF):

Pk

(should be time-independent if stationary)

B var(X,)var(X, ;)

cov(X,, X, ;)
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Sampling

» Even or regular sampling: y(f) = x(f, + nAt) wheren = 0,1,...,m

» Uneven or irregular sampling: y() = x(¢y), ..., x(Z,)

* Regularization/resampling . wk -
* Bin data onto regular grid: A A O N S S B
Zl Wl'xl O a I nn o u
YW(t) = ———fort, € [t,1]
Zl Wl ® & o o o o o o o o

*eome

* |nterpolate: linear, spline, Gaussian process

* Continuous time process:

 Observations are a random sample drawn from a continuous process described
by some differential equation



Autoregressive models

* Autoregressive models use observations from
previous time steps as input to predict the value
at the next time step

* Purely random:

= 0

 Random walk (Brownian motion): :
Xy =X 1 T % ARG

€0

i)

» (General autoregressive:
X, = X1+ OrX,_»+ =+ + 2,

80-= 0 ¢0=10
60 =10 ¢0=10

AR(2



Neural networks for sequential data

* Not all problems can be handled with fixed-length inputs and outputs

* Speech recognition or time-series prediction require a system to store and
use context information

 Example: Output YES if the number of 1s is even, else NO
e 1000010101 — YES, 100011 — NO, ...
 Hard/impossible to choose a fixed context window

* There can always be a new sample longer than anything seen



Feed-forward NN

X =T —> <



Time-distributed NN
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 “Time-distributed” NN shares parameters across time steps

 Equivalent to 1D CNN with a filter size of 1
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Recurrent neural network
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 Recurrent NN considers current input and previous hidden state



Recurrent neural network

 Recurrent neural networks (RNNs) take the previous output or hidden states
as inputs

 The composite input at time 7 has some historical information about the
happenings at time 1' < ¢

* RNNSs are useful as their intermediate values (state) can store information
about past inputs for a time that is not fixed a priori

 Parameters are shared over time steps

* Copies of the RNN cell are made over time (unrolling/unfolding), with different
inputs at different time steps
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Simple RNN Cell

ht — f(xta ht—l)
— tanh(Wxxt‘l‘ Whht—l + bh)
y,=0o(Wh,+b,)




Input-output scenarios

Single - Single Feed-forward Network

Single - Multiple —> > —> Image Captioning
Multiple - Single —> @ —> —> Sentiment Classification

Multiple - Multiple —> S > > > Translation
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e Method used to train RNNs

» Unfolded network is treated as one big feed-forward network

* This unfolded network accepts the whole time series as input
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Simple RNN forward
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Simple RNN backward

h, = tanh(W x+W, h,_; + b))
C, C, yt — G(Wyht T by)
Ct — LOSS(yﬂ yt)

oC, [ dC, ayt)
h h h oh,  \ oy, )\ on,

. . ' oC.\ ( dy,\ [ oh oh,
- T - _ (9% [ N i)
= = < dy, ) \on, ) \ on,_, oh,
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Vanishing/exploding gradients

» In the same way a product of k real numbers can shrink to zero or explode to
infinity, so can a product of matrices

- It is sufficient for A, < 1/y, where 4, is the largest singular value of W, for the
vanishing gradients problem to occur and it is necessary for exploding

gradients that A; > 1/y, where y = 1 for tanh and y = 1/4 for sigmoid
nonlinearity

 Exploding gradients are often controlled with gradient element-wise or norm
clipping
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Identity relationship

* Recall
oC, oC, dy,
o= () G )
B oC, dy, oh, oh,
-(5) G G ) - (G)
 Suppose we had an identity relationship between hidden states

oh,
— 1] Similar to ResNets
oh,_

 (Gradient does not decay as error is propagated all the way back (“constant
error flow”)

ht — ht—l +f(xt) —
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Problem of long-term dependencies

(hy (hy) (hy)

i_,
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 For small gaps, simple RNNs can learn to use past information, e.g.
predicting the last word in “the clouds are in the sky”



Problem of long-term dependencies

* As the gap grows, RNNs become unable to learn to connect the information
In practice




Long short-term memory (LSTM)

* Developed to cope with the issue of long-term dependencies [10.1162/
neco.1997.9.8.1735]

 LSTM uses this idea of “constant error flow” to ensure that gradients don’t
decay

* Key components are
e an internal memory (“cell state”)

e gates that control the cell state actively
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https://doi.org/10.1162/neco.1997.9.8.1735
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Simple RNN vs. LSTM




Cell state

» Cell state is like a conveyer belt: runs straight down the entire
chain, with only some minor linear interactions

_®_
» (Gates optionally let information through: sigmoid outputs ?
numbers between 0 and 1, describing how much should be let
throuah (|7
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Forget gate layer

* Forget gate layer controls how much information to throw away
from the cell state

-fl‘ — G(VVth -+ Ufhl‘—l —+ bf)
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Input gate layer

* Input gate layer controls whether a new candidate value C’t flows into the cell
state

C,=tanh(W.x, + Uh,_, +b,)
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Cell state update

* Cell state is updated using forget and input gates

~J

Ct:ft' C_1+1i-C
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Output gate layer

* Finally, the output gate layer controls how the updated cell value contributes
to the hidden state

Ol‘ — G(Woxt —+ Uoht—l + bO)
h, = o, - tanh(C)

1o
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Simple RNN vs. LSTM

@ @ f, = o(Wyx, + Ush,_, + by)
i, =oc(Wx,+Uh,_, + b))
C,=tanh(W.x,+ Uh,_, +b,)
o,=oc(Wx,+Uh,_,+ b))

h, = tanh(Wex, + Uch,_; + by) h, = o, - tanh(C))
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LSTM Variants

 Many variants of LSTM spurred by questions of the architecture
* Does it need to be this complicated? Can it be simplified?
 Should forget and input gates be related somehow??

 What is the point of having separate cell and hidden states?
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Gated recurrent unit

* Gated recurrent unit (GRU) [arXiv:1406.1078]

 Combines forget and input gates into a single “update gate”

 Merges cell and hidden state

F, = G(W,,xt + Urhl‘—l + br)
$p = U(szt + Uzht—l + bZ)

h, = tanh(W,x, + U,(r, - h,_,) + b

~/

h=(1-2z)-h_,+z-h,
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http://arxiv.org/abs/1406.1078

Next time

e More on recurrent neural networks
 Applications

e Hands-on
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