
Javier Duarte — February 7, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 9:  
Time-series data and recurrent neural networks

1

Time-series data tasks

2

• Population behaviors

• Characterize, categorize,
classify

• Outliers

• Extreme sources

• Physical models

• Predictions

Time-series datasets

3

• Palomar-Quest Synoptic Sky
Survey

• SDSS (Stripe 82)

• Catalina Real-time Transient
Survey

• Palomar Transient Factory

• Zwicky Transient Factory

• KEPLER

• GAIA

• LIGO

• …

Time-series definition

4

• A time series is a set of time-tagged measurements: possibly with
observation errors

• Not i.i.d.

• Data is sequential (i.e. next point depends on previous point)

• Homoskedasticity

• All errors drawn from same process

• Ergodicity

• The time average for one sequence is the same as the ensemble average: 
 

{Xi(ti)}
σi

̂f(x) = lim
n→∞

1
n

n−1

∑
k=0

f(Tkx)

Stationarity

5

• The generating process is time independent:

• Joint probability distribution is translationally invariant (strong)

• Mean, variance, autocorrelation are constant (weak)

Stationarity

6

• Transformations to achieve stationarity (constant location and scale)

• Difference the data:

• Detrend the data:

• Stabilize the variance:  
 

 or

• Test with autocorrelation function (ACF):  
 

 

 
(should be time-independent if stationary)

Zi = Xi − Xi−1

Z(t) = X(t) − f(t)

Z(t) = X(t) + A log(X(t) + A)

ρk =
cov(Xt, Xt+k)

var(Xt)var(Xt+k)

Sampling

7

• Even or regular sampling: where

• Uneven or irregular sampling:

• Regularization/resampling

• Bin data onto regular grid: 
  

 for

• Interpolate: linear, spline, Gaussian process

• Continuous time process:

• Observations are a random sample drawn from a continuous process described
by some differential equation

y(t) = x(t0 + nΔt) n = 0,1,…, m

y(t) = x(t0), …, x(tm)

y(t) =
∑i wixi

∑i wi
ti ∈ [ta, tb]

Autoregressive models

8

• Autoregressive models use observations from
previous time steps as input to predict the value
at the next time step

• Purely random: 
 where are i.i.d.

• Random walk (Brownian motion):  

• General autoregressive:  

xt = zt {zt}

xt = xt−1 + zt

xt = α1xt−1 + α2xt−2 + ⋯ + zt

Neural networks for sequential data
• Not all problems can be handled with fixed-length inputs and outputs

• Speech recognition or time-series prediction require a system to store and
use context information

• Example: Output YES if the number of 1s is even, else NO

• 1000010101 — YES, 100011 — NO, …

• Hard/impossible to choose a fixed context window

• There can always be a new sample longer than anything seen

9

Feed-forward NN

10

Sample Feed-forward Network!

5"

h1!

y1!

x1!
t = 1!

Sample RNN!

6"

h1!

y1!

x1!
t = 1!

h2!

y2!

x2!

h3!

y3!

x3!

t = 2!

t = 3!

Time-distributed NN

11

Sample RNN!

6"

h1!

y1!

x1!
t = 1!

h2!

y2!

x2!

h3!

y3!

x3!

t = 2!

t = 3!

Sample Feed-forward Network!

5"

h1!

y1!

x1!
t = 1!

• “Time-distributed” NN shares parameters across time steps

• Equivalent to 1D CNN with a filter size of 1

Sample RNN!

7"

h1!

y1!

x1!
t = 1!

h2!

y2!

x2!

h3!

y3!

x3!

t = 2!

t = 3!
h0!

Recurrent neural network

12

• Recurrent NN considers current input and previous hidden state

Recurrent neural network
• Recurrent neural networks (RNNs) take the previous output or hidden states

as inputs

• The composite input at time has some historical information about the
happenings at time

• RNNs are useful as their intermediate values (state) can store information
about past inputs for a time that is not fixed a priori

• Parameters are shared over time steps

• Copies of the RNN cell are made over time (unrolling/unfolding), with different
inputs at different time steps

t
T < t

13

Simple RNN Cell

14

ht = f(xt, ht−1)
= tanh(Wxxt+Whht−1 + bh)

tanh
yt = σ(Wyht + by)

Input-output scenarios

15

Input – Output Scenarios!

Single - Single!

Single - Multiple!

Multiple - Single!

Multiple - Multiple!

Feed-forward Network !

Image Captioning!

Sentiment Classification!

Translation!

Image Captioning!

Backpropagation through time
• Method used to train RNNs

• Unfolded network is treated as one big feed-forward network

• This unfolded network accepts the whole time series as input 

16

Simple RNN forward

17

The Unfolded Vanilla RNN Forward!

39"

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2 !

h3!

 x3 h2!
!

C3!

y3!

Simple RNN backward

18 40"

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2 !

h3!

 x3 h2!
!

C3!

y3!

The Unfolded Vanilla RNN Backward!ht = tanh(Wxxt+Whht−1 + bh)
yt = σ(Wyht + by)
Ct = Loss(ȳt, yt)

∂Ct

∂h1
= (∂Ct

∂yt)(∂yt

∂h1)
= (∂Ct

∂yt)(∂yt

∂ht)(∂ht

∂ht−1)⋯(∂h2

∂h1)

Vanishing/exploding gradients

19

• In the same way a product of real numbers can shrink to zero or explode to
infinity, so can a product of matrices

• It is sufficient for , where is the largest singular value of , for the
vanishing gradients problem to occur and it is necessary for exploding
gradients that , where for tanh and for sigmoid
nonlinearity

• Exploding gradients are often controlled with gradient element-wise or norm
clipping

k

λ1 < 1/γ λ1 W

λ1 > 1/γ γ = 1 γ = 1/4

Identity relationship

20

• Recall 
 

• Suppose we had an identity relationship between hidden states 
 

• Gradient does not decay as error is propagated all the way back (“constant
error flow”)

∂Ct

∂h1
= (∂Ct

∂yt)(∂yt

∂h1)
= (∂Ct

∂yt)(∂yt

∂ht)(∂ht

∂ht−1)⋯(∂h2

∂h1)

ht = ht−1 + f(xt) ⟹
∂ht

∂ht−1
= 1 Similar to ResNets

Problem of long-term dependencies

21

• For small gaps, simple RNNs can learn to use past information, e.g.
predicting the last word in “the clouds are in the sky”

Problem of long-term dependencies

22

• As the gap grows, RNNs become unable to learn to connect the information
in practice

Long short-term memory (LSTM)

23

• Developed to cope with the issue of long-term dependencies [10.1162/
neco.1997.9.8.1735]

• LSTM uses this idea of “constant error flow” to ensure that gradients don’t
decay

• Key components are

• an internal memory (“cell state”)

• gates that control the cell state actively

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Simple RNN vs. LSTM

24

• Cell state is like a conveyer belt: runs straight down the entire
chain, with only some minor linear interactions

• Gates optionally let information through: sigmoid outputs
numbers between 0 and 1, describing how much should be let
through

Cell state

25

• Forget gate layer controls how much information to throw away
from the cell state 
 
ft = σ(Wf xt + Ufht−1 + bf)

Forget gate layer

26

• Input gate layer controls whether a new candidate value flows into the cell
state 
 

C̃t

it = σ(Wixt + Uiht−1 + bi)
C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate layer

27

• Cell state is updated using forget and input gates 
 
Ct = ft ⋅ Ct−1 + it ⋅ C̃t

Cell state update

28

• Finally, the output gate layer controls how the updated cell value contributes
to the hidden state 
 
ot = σ(Woxt + Uoht−1 + bo)
ht = ot ⋅ tanh(Ct)

Output gate layer

29

Simple RNN vs. LSTM

30
ht = tanh(Wf xt + Ufht−1 + bf)

ft = σ(Wf xt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)

C̃t = tanh(Wcxt + Ucht−1 + bc)
ot = σ(Woxt + Uoht−1 + bo)
ht = ot ⋅ tanh(Ct)

LSTM Variants

31

• Many variants of LSTM spurred by questions of the architecture

• Does it need to be this complicated? Can it be simplified?

• Should forget and input gates be related somehow?

• What is the point of having separate cell and hidden states?

Gated recurrent unit

32

• Gated recurrent unit (GRU) [arXiv:1406.1078]

• Combines forget and input gates into a single “update gate”

• Merges cell and hidden state

rt = σ(Wrxt + Urht−1 + br)
zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(Wzxt + Uh(rt ⋅ ht−1) + bh)

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t

http://arxiv.org/abs/1406.1078

Next time

• More on recurrent neural networks

• Applications

• Hands-on

33

