PHYS 139/239: Machine Learning in Physics Lecture 9:

Javier Duarte — February 7, 2023

Time-series data and recurrent neural networks

Time-series data tasks

- Population behaviors
 - Characterize, categorize, classify
- Outliers
 - Extreme sources
- Physical models
 - Predictions

Normalized Flux 1.10 1.00 0.95 206
Normalized Flux
Normalized Flux 0000001110000000000000000000000000000
Normalized Flux 1.0 0.0 206

Time-series datasets

- Palomar-Quest Synoptic Sky Survey
- SDSS (Stripe 82)
- Catalina Real-time Transient Survey
- Palomar Transient Factory
- Zwicky Transient Factory
- KEPLER
- GAIA ullet
- LIGO

Time-series definition

- A time series is a set of time-tagged measurements: $\{X_i(t_i)\}$ possibly with observation errors σ_i
- Not i.i.d.
 - Data is sequential (i.e. next point depends on previous point)
- Homoskedasticity
 - All errors drawn from same process
- Ergodicity
 - The time average for one sequence is the same as the ensemble average:

$$\hat{f}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f(T^k x)$$

Stationarity

- The generating process is time independent:
 - Joint probability distribution is translationally invariant (strong)
 - Mean, variance, autocorrelation are constant (weak)

Stationarity

- Transformations to achieve stationarity (constant location and scale)
 - Difference the data: $Z_i = X_i X_{i-1}$
 - Detrend the data: Z(t) = X(t) f(t)
 - Stabilize the variance:

$$Z(t) = \sqrt{X(t) + A} \text{ or } \log(X(t) + A)$$

Test with autocorrelation function (ACF):

$$\rho_k = \frac{\operatorname{cov}(X_t, X_{t+k})}{\operatorname{var}(X_t)\operatorname{var}(X_{t+k})}$$

(should be time-independent if stationary)

Sampling

- Even or regular sampling: $y(t) = x(t_0 + n\Delta t)$ where n = 0, 1, ..., m
- Uneven or irregular sampling: $y(t) = x(t_0), \dots, x(t_m)$
- Regularization/resampling
 - Bin data onto regular grid:

$$y(t) = \frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} \text{ for } t_{i} \in [t_{a}, t_{b}]$$

- Interpolate: linear, spline, Gaussian process
- Continuous time process: \bullet
 - by some differential equation

Observations are a random sample drawn from a continuous process described

Autoregressive models

- Autoregressive models use observations from previous time steps as input to predict the value at the next time step
- Purely random: $x_t = z_t$ where $\{z_t\}$ are i.i.d.
- Random walk (Brownian motion): $x_t = x_{t-1} + z_t$
- General autoregressive: $x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \dots + z_t$

Neural networks for sequential data

- Not all problems can be handled with fixed-length inputs and outputs
- Speech recognition or time-series prediction require a system to store and use context information
 - Example: Output YES if the number of 1s is even, else NO
 - 1000010101 YES, 100011 NO, ...
 - Hard/impossible to choose a fixed context window
 - There can always be a new sample longer than anything seen

Feed-forward NN

Time-distributed NN

- "Time-distributed" NN shares parameters across time steps
 - Equivalent to 1D CNN with a filter size of 1

Recurrent neural network

• Recurrent NN considers current input and previous hidden state

Recurrent neural network

- as inputs
 - happenings at time T < t
- about past inputs for a time that is not fixed a priori
- Parameters are shared over time steps
- inputs at different time steps

Recurrent neural networks (RNNs) take the previous output or hidden states

• The composite input at time t has some historical information about the

RNNs are useful as their intermediate values (state) can store information

• Copies of the RNN cell are made over time (unrolling/unfolding), with different

 $= \tanh(W_x x_t + W_h h_{t-1} + b_h)$

Input-output scenarios

Single - Single

Single - Multiple

Multiple - Single

Multiple - Multiple

Feed-forward Network

Image Captioning

Sentiment Classification

Translation

Backpropagation through time

- Method used to train RNNs
- Unfolded network is treated as one big feed-forward network
- This unfolded network accepts the whole time series as input

Simple RNN forward

Simple RNN backward

 $h_{t} = \tanh(W_{x}x_{t} + W_{h}h_{t-1} + b_{h})$ $y_t = \sigma(W_y h_t + b_y)$ $C_t = \text{Loss}(\bar{y}_t, y_t)$

 $\frac{\partial C_t}{\partial h_1} = \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_1}\right)$ $\left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_t}\right) \left(\frac{\partial h_t}{\partial h_{t-1}}\right) \cdots \left(\frac{\partial h_2}{\partial h_1}\right)$

Vanishing/exploding gradients

- infinity, so can a product of matrices
- nonlinearity
- clipping

• In the same way a product of k real numbers can shrink to zero or explode to

• It is sufficient for $\lambda_1 < 1/\gamma$, where λ_1 is the largest singular value of W, for the vanishing gradients problem to occur and it is necessary for exploding gradients that $\lambda_1 > 1/\gamma$, where $\gamma = 1$ for tanh and $\gamma = 1/4$ for sigmoid

Exploding gradients are often controlled with gradient element-wise or norm

Identity relationship

Recall

$$\begin{aligned} \frac{\partial C_t}{\partial h_1} &= \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_1}\right) \\ &= \left(\frac{\partial C_t}{\partial y_t}\right) \left(\frac{\partial y_t}{\partial h_t}\right) \left(\frac{\partial h_t}{\partial h_{t-1}}\right) \cdots \left(\frac{\partial h_2}{\partial h_1}\right) \end{aligned}$$

• Suppose we had an identity relationship between hidden states

$$h_t = h_{t-1} + f(x_t) \Longrightarrow \frac{\partial h_t}{\partial h_{t-1}} = 1$$

error flow")

Similar to ResNets

Gradient does not decay as error is propagated all the way back ("constant")

Problem of long-term dependencies

• For small gaps, simple RNNs can learn to use past information, e.g. predicting the last word in "the clouds are in the sky"

Problem of long-term dependencies

 As the gap grows, RNNs become u in practice

As the gap grows, RNNs become unable to learn to connect the information

Long short-term memory (LSTM)

- Developed to cope with the issue of long-term dependencies [10.1162/ neco.1997.9.8.1735]
- decay
- Key components are
 - an internal memory ("cell state")
 - gates that control the cell state actively

• LSTM uses this idea of "constant error flow" to ensure that gradients don't

Cell state

- Cell state is like a conveyer belt: runs straight down the entire chain, with only some minor linear interactions
- Gates optionally let information through: sigmoid outputs numbers between 0 and 1, describing how much should be let through

Forget gate layer

 Forget gate layer controls how much information to throw away from the cell state

 $f_{t} = \sigma(W_{f}x_{t} + U_{f}h_{t-1} + b_{f})$

Input gate layer

 \bullet state

$$i_t = \sigma(W_i x_t + U_i h_{t-1} + b_i)$$
$$\tilde{C}_t = \tanh(W_c x_t + U_c h_{t-1} + b_c)$$

Input gate layer controls whether a new candidate value \tilde{C}_t flows into the cell

Cell state update

• Cell state is updated using forget and input gates

$$C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t$$

Output gate layer

to the hidden state

 $o_t = \sigma(W_o x_t + U_o h_{t-1} + b_o)$ $h_t = o_t \cdot \tanh(C_t)$

• Finally, the output gate layer controls how the updated cell value contributes

$$h_t = \tanh(W_f x_t + U_f h_{t-1} + b_f)$$

LSTM Variants

- Many variants of LSTM spurred by questions of the architecture
 - Does it need to be this complicated? Can it be simplified?
 - Should forget and input gates be related somehow?
 - What is the point of having separate cell and hidden states?

Gated recurrent unit

- Gated recurrent unit (GRU) [arXiv:1406.1078]
 - Combines forget and input gates into a single "update gate"
 - Merges cell and hidden state

$$r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)$$

$$z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z)$$

$$\tilde{h}_t = \tanh(W_z x_t + U_h (r_t \cdot h_{t-1}) + b_h)$$

$$h_t = (1 - z_t) \cdot h_{t-1} + z_t \cdot \tilde{h}_t$$

Next time

- More on recurrent neural networks
- Applications
- Hands-on