PHYS 139/239:
Machine Learni

Lecture 9:
Time-series data ¢

Time-series data tasks

 Population behaviors

 Characterize, categorize,
classify

e Qutliers
e Extreme sources
* Physical models

 Predictions

1.10
1.05F
1.00f
0.95
0.90

Normalized Flux

Periodic ' '

B

-

.

2060 2070 2080 2090 2100 2110 2120 2130 214
Time [BJD-2454833]

—

-

—

-

Quasi-periodic symmetric

Normalized Flux

2060 2070 2080 2090 2100 2110 2120 2130 2140
Time [B)D-2454833]

Aperiodic dipper

12060 2070 2080 2090 2100 2110 2120 2130 2140
Time [B)D-2454833]

Normalized Flux
| B 1
1 1

5
0
-
0
5
0

OCOM=KNN

1

Stochastic

Normalized Flux

2060 2070 2080 2090 2100 2110 2120 2130 2140
Time [BJD-2454833]

>
=
(1
©
Q
N
©
£
—
O
02

Normalized Flux Normalized Flux

Normalized Flux

1.03
1.02
1.01
1.00
0.99
0.98 -

2060 2070 2080 2090 2100 2110 2120 2130 2140
Time [BJD-2454833]

T T T T T -

Mu|tiperio'dic ')

T 1. 1.1

Burster

NN
ownowm

0.

2060 2070 2080 2090 2100 2110 2120 2130 2140
Time [BJD-2454833]

Quasi-periodic dipper

4
2
.0
.8
.6
4

O OO M=

2060 2070 2080 2090 2100 2110 2120 2130 2140
Time [B)D-2454833]

I 1 | 1

*] 1
timescale

| I 1 ' I
1 L 1 L 1

COF =
OWON

2060 2070 2080 2090 2100 2110 2120 2130 2140
Time [B)D-2454833]

Time-series datasets

* Palomar-Quest Synoptic Sky
Survey

. SDSS (Stripe 82)

e (Catalina Real-time Transient
Survey

 Palomar Transient Factory
o Zwicky Transient Factory
 KEPLER

 GAIA

* LIGO

Time-series definition

» A time series is a set of time-tagged measurements: { X.(%;) } possibly with
observation errors o;

* Not i.i.d.

 Data is sequential (i.e. next point depends on previous point)
« Homoskedasticity

* All errors drawn from same process
* Ergodicity

* The time average for one sequence is the same as the ensemble average:

n—-oo N

n—1
) = tim —) f(T)
k=0

Stationarity

* [he generating process is time independent:
» Joint probability distribution is translationally invariant (strong)

 Mean, variance, autocorrelation are constant (weak)

Stationarity

* Transformations to achieve stationarity (constant location and scale)
» Difference the data: Z;, = X. — X._,
 Detrend the data: Z(t) = X(¢) — f(?)

e Stabilize the variance:

7(t) = /X + A or log(X(£) + A)

* Test with autocorrelation function (ACF):

Pk

(should be time-independent if stationary)

B var(X,)var(X, ;)

cov(X,, X, ;)

6

tseries

diff1

tseries

20 60 100

0 10

-20

2000

2005

2010

Time

2015

2020

2025

Sampling

» Even or regular sampling: y(f) = x(f, + nAt) wheren = 0,1,...,m

» Uneven or irregular sampling: y() = x(¢y), ..., x(Z,)

* Regularization/resampling . wk -
* Bin data onto regular grid: A A O N S S B
Zl Wl'xl O a I nn o u
YW(t) = ———fort, € [t,1]
Zl Wl ® & o o o o o o o o

*eome

* |nterpolate: linear, spline, Gaussian process

* Continuous time process:

 Observations are a random sample drawn from a continuous process described
by some differential equation

Autoregressive models

* Autoregressive models use observations from
previous time steps as input to predict the value
at the next time step

* Purely random:

= 0

 Random walk (Brownian motion): :
Xy =X 1 T % ARG

€0

i)

» (General autoregressive:
X, = X1+ OrX,_»+ =+ + 2,

80-= 0 ¢0=10
60 =10 ¢0=10

AR(2

Neural networks for sequential data

* Not all problems can be handled with fixed-length inputs and outputs

* Speech recognition or time-series prediction require a system to store and
use context information

 Example: Output YES if the number of 1s is even, else NO
e 1000010101 — YES, 100011 — NO, ...
 Hard/impossible to choose a fixed context window

* There can always be a new sample longer than anything seen

Feed-forward NN

X =T —> <

Time-distributed NN

Y3
Yo :
Yi T 'T‘3
1 " b
3
& ! f=3
| "2
X, =2
t=1

 “Time-distributed” NN shares parameters across time steps

 Equivalent to 1D CNN with a filter size of 1

11

Recurrent neural network

& —> 5 __>;o<

~
1
@N)

=
5 —> 3 _>§

>
S
~
1
NO

X1

t=1

 Recurrent NN considers current input and previous hidden state

Recurrent neural network

 Recurrent neural networks (RNNs) take the previous output or hidden states
as inputs

 The composite input at time 7 has some historical information about the
happenings at time 1' < ¢

* RNNSs are useful as their intermediate values (state) can store information
about past inputs for a time that is not fixed a priori

 Parameters are shared over time steps

* Copies of the RNN cell are made over time (unrolling/unfolding), with different
inputs at different time steps

13

Simple RNN Cell

ht — f(xta ht—l)
— tanh(Wxxt‘l‘ Whht—l + bh)
y,=0o(Wh,+b,)

Input-output scenarios

Single - Single Feed-forward Network

Single - Multiple —> > —> Image Captioning
Multiple - Single —> @ —> —> Sentiment Classification

Multiple - Multiple —> S > > > Translation

15

e Method used to train RNNs

» Unfolded network is treated as one big feed-forward network

* This unfolded network accepts the whole time series as input

(h)
D -
&

i_,

(hy
l

i_,

®
l

Backpropagation through time

®
l

®
l

Simple RNN forward

™M
O € €& <€&— I«

O € > <
<— '€

O € X<
€<— = €

Simple RNN backward

h, = tanh(W x+W, h,_; + b))
C, C, yt — G(Wyht T by)
Ct — LOSS(yﬂ yt)

oC, [dC, ayt)
h h h oh, \ oy,)\ on,

. . ' oC.\ (dy,\ [oh oh,
- T - _ (9% [N i)
= = < dy,) \on,) \ on,_, oh,

18

<— < <« .0

Vanishing/exploding gradients

» In the same way a product of k real numbers can shrink to zero or explode to
infinity, so can a product of matrices

- It is sufficient for A, < 1/y, where 4, is the largest singular value of W, for the
vanishing gradients problem to occur and it is necessary for exploding

gradients that A; > 1/y, where y = 1 for tanh and y = 1/4 for sigmoid
nonlinearity

 Exploding gradients are often controlled with gradient element-wise or norm
clipping

19

Identity relationship

* Recall
oC, oC, dy,
o= () G)
B oC, dy, oh, oh,
-(5) G G) - (G)
 Suppose we had an identity relationship between hidden states

oh,
— 1] Similar to ResNets
oh,_

 (Gradient does not decay as error is propagated all the way back (“constant
error flow”)

ht — ht—l +f(xt) —

20

Problem of long-term dependencies

(hy (hy) (hy)

i_,

|_,

—L A

A A A A A
 For small gaps, simple RNNs can learn to use past information, e.g.
predicting the last word in “the clouds are in the sky”

Problem of long-term dependencies

* As the gap grows, RNNs become unable to learn to connect the information
In practice

Long short-term memory (LSTM)

* Developed to cope with the issue of long-term dependencies [10.1162/
neco.1997.9.8.1735]

 LSTM uses this idea of “constant error flow” to ensure that gradients don’t
decay

* Key components are
e an internal memory (“cell state”)

e gates that control the cell state actively

23

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Simple RNN vs. LSTM

Cell state

» Cell state is like a conveyer belt: runs straight down the entire
chain, with only some minor linear interactions

®
» (Gates optionally let information through: sigmoid outputs ?
numbers between 0 and 1, describing how much should be let
throuah (|7

25

Forget gate layer

* Forget gate layer controls how much information to throw away
from the cell state

-fl‘ — G(VVth -+ Ufhl‘—l —+ bf)

26

Input gate layer

* Input gate layer controls whether a new candidate value C’t flows into the cell
state

C,=tanh(W.x, + Uh,_, +b,)

27

Cell state update

* Cell state is updated using forget and input gates

~J

Ct:ft' C_1+1i-C

28

Output gate layer

* Finally, the output gate layer controls how the updated cell value contributes
to the hidden state

Ol‘ — G(Woxt —+ Uoht—l + bO)
h, = o, - tanh(C)

1o

29

Simple RNN vs. LSTM

@ @ f, = o(Wyx, + Ush,_, + by)
i, =oc(Wx,+Uh,_, + b))
C,=tanh(W.x,+ Uh,_, +b,)
o,=oc(Wx,+Uh,_,+ b))

h, = tanh(Wex, + Uch,_; + by) h, = o, - tanh(C))

30

LSTM Variants

 Many variants of LSTM spurred by questions of the architecture
* Does it need to be this complicated? Can it be simplified?
 Should forget and input gates be related somehow??

 What is the point of having separate cell and hidden states?

31

Gated recurrent unit

* Gated recurrent unit (GRU) [arXiv:1406.1078]

 Combines forget and input gates into a single “update gate”

 Merges cell and hidden state

F, = G(W,,xt + Urhl‘—l + br)
$p = U(szt + Uzht—l + bZ)

h, = tanh(W,x, + U,(r, - h,_,) + b

~/

h=(1-2z)-h_,+z-h,

32

http://arxiv.org/abs/1406.1078

Next time

e More on recurrent neural networks
 Applications

e Hands-on

33

