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PHYS 139/239:  
Machine Learning in Physics
Lecture 9:  
Time-series data and recurrent neural networks
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Time-series data tasks
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• Population behaviors


• Characterize, categorize, 
classify


• Outliers


• Extreme sources


• Physical models


• Predictions



Time-series datasets
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• Palomar-Quest Synoptic Sky 
Survey


• SDSS (Stripe 82)


• Catalina Real-time Transient 
Survey


• Palomar Transient Factory


• Zwicky Transient Factory


• KEPLER


• GAIA


• LIGO


• …



Time-series definition
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• A time series is a set of time-tagged measurements:  possibly with 
observation errors 


• Not i.i.d.


• Data is sequential (i.e. next point depends on previous point)


• Homoskedasticity


• All errors drawn from same process


• Ergodicity


• The time average for one sequence is the same as the ensemble average: 
 

{Xi(ti)}
σi

̂f(x) = lim
n→∞

1
n

n−1

∑
k=0

f(Tkx)



Stationarity
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• The generating process is time independent:


• Joint probability distribution is translationally invariant (strong)


• Mean, variance, autocorrelation are constant (weak)



Stationarity
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• Transformations to achieve stationarity (constant location and scale)


• Difference the data: 


• Detrend the data: 


• Stabilize the variance:  
 

 or 


• Test with autocorrelation function (ACF):  
 

 

 
(should be time-independent if stationary)

Zi = Xi − Xi−1

Z(t) = X(t) − f(t)

Z(t) = X(t) + A log(X(t) + A)

ρk =
cov(Xt, Xt+k)

var(Xt)var(Xt+k)



Sampling
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• Even or regular sampling:  where 


• Uneven or irregular sampling: 


• Regularization/resampling


• Bin data onto regular grid: 
  

 for 


• Interpolate: linear, spline, Gaussian process


• Continuous time process:


• Observations are a random sample drawn from a continuous process described 
by some differential equation

y(t) = x(t0 + nΔt) n = 0,1,…, m

y(t) = x(t0), …, x(tm)

y(t) =
∑i wixi

∑i wi
ti ∈ [ta, tb]



Autoregressive models
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• Autoregressive models use observations from 
previous time steps as input to predict the value 
at the next time step


• Purely random: 
 where  are i.i.d.


• Random walk (Brownian motion):  



• General autoregressive:  

xt = zt {zt}

xt = xt−1 + zt

xt = α1xt−1 + α2xt−2 + ⋯ + zt



Neural networks for sequential data
• Not all problems can be handled with fixed-length inputs and outputs


• Speech recognition or time-series prediction require a system to store and 
use context information


• Example: Output YES if the number of 1s is even, else NO


• 1000010101 — YES, 100011 — NO, …


• Hard/impossible to choose a fixed context window


• There can always be a new sample longer than anything seen
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Feed-forward NN
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Sample Feed-forward Network!

5"

h1!

y1!

x1!
t = 1!



Sample RNN!
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x3!
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t = 3!

Time-distributed NN
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Sample RNN!
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Sample Feed-forward Network!

5"

h1!

y1!

x1!
t = 1!

• “Time-distributed” NN shares parameters across time steps


• Equivalent to 1D CNN with a filter size of 1



Sample RNN!
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h0!

Recurrent neural network

12

• Recurrent NN considers current input and previous hidden state



Recurrent neural network
• Recurrent neural networks (RNNs) take the previous output or hidden states 

as inputs


• The composite input at time  has some historical information about the 
happenings at time 


• RNNs are useful as their intermediate values (state) can store information 
about past inputs for a time that is not fixed a priori


• Parameters are shared over time steps


• Copies of the RNN cell are made over time (unrolling/unfolding), with different 
inputs at different time steps

t
T < t
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Simple RNN Cell
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ht = f(xt, ht−1)
= tanh(Wxxt+Whht−1 + bh)

tanh
yt = σ(Wyht + by)



Input-output scenarios
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Input – Output Scenarios!

Single - Single!

Single - Multiple!

Multiple - Single!

Multiple - Multiple!

Feed-forward Network !

Image Captioning!

Sentiment Classification!

Translation!

Image Captioning!



Backpropagation through time
• Method used to train RNNs


• Unfolded network is treated as one big feed-forward network


• This unfolded network accepts the whole time series as input 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Simple RNN forward
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The Unfolded Vanilla RNN Forward!
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Simple RNN backward
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The Unfolded Vanilla RNN Backward!ht = tanh(Wxxt+Whht−1 + bh)
yt = σ(Wyht + by)
Ct = Loss(ȳt, yt)

∂Ct

∂h1
= (∂Ct

∂yt )( ∂yt

∂h1 )
= (∂Ct

∂yt )( ∂yt

∂ht )( ∂ht

∂ht−1 )⋯( ∂h2

∂h1 )



Vanishing/exploding gradients
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• In the same way a product of  real numbers can shrink to zero or explode to 
infinity, so can a product of matrices


• It is sufficient for  , where  is the largest singular value of , for the 
vanishing gradients problem to occur and it is necessary for exploding 
gradients that  , where  for tanh and  for sigmoid 
nonlinearity


• Exploding gradients are often controlled with gradient element-wise or norm 
clipping 

k

λ1 < 1/γ λ1 W

λ1 > 1/γ γ = 1 γ = 1/4



Identity relationship
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• Recall 
 

 


• Suppose we had an identity relationship between hidden states 
 




• Gradient does not decay as error is propagated all the way back (“constant 
error flow”)

∂Ct

∂h1
= (∂Ct

∂yt )( ∂yt

∂h1 )
= (∂Ct

∂yt )( ∂yt

∂ht )( ∂ht

∂ht−1 )⋯( ∂h2

∂h1 )

ht = ht−1 + f(xt) ⟹
∂ht

∂ht−1
= 1 Similar to ResNets



Problem of long-term dependencies
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• For small gaps, simple RNNs can learn to use past information, e.g. 
predicting the last word in “the clouds are in the sky”



Problem of long-term dependencies
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• As the gap grows, RNNs become unable to learn to connect the information 
in practice



Long short-term memory (LSTM) 
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• Developed to cope with the issue of long-term dependencies [10.1162/
neco.1997.9.8.1735]


• LSTM uses this idea of “constant error flow” to ensure that gradients don’t 
decay


• Key components are  


• an internal memory (“cell state”)


• gates that control the cell state actively

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735


Simple RNN vs. LSTM
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• Cell state is like a conveyer belt: runs straight down the entire 
chain, with only some minor linear interactions


• Gates optionally let information through: sigmoid outputs 
numbers between 0 and 1, describing how much should be let 
through

Cell state
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• Forget gate layer controls how much information to throw away 
from the cell state 
 
ft = σ(Wf xt + Ufht−1 + bf)

Forget gate layer
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• Input gate layer controls whether a new candidate value  flows into the cell 
state 
 

C̃t

it = σ(Wixt + Uiht−1 + bi)
C̃t = tanh(Wcxt + Ucht−1 + bc)

Input gate layer
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• Cell state is updated using forget and input gates 
 
Ct = ft ⋅ Ct−1 + it ⋅ C̃t

Cell state update
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• Finally, the output gate layer controls how the updated cell value contributes 
to the hidden state 
 
ot = σ(Woxt + Uoht−1 + bo)
ht = ot ⋅ tanh(Ct)

Output gate layer
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Simple RNN vs. LSTM
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ht = tanh(Wf xt + Ufht−1 + bf)

ft = σ(Wf xt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)

C̃t = tanh(Wcxt + Ucht−1 + bc)
ot = σ(Woxt + Uoht−1 + bo)
ht = ot ⋅ tanh(Ct)



LSTM Variants
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• Many variants of LSTM spurred by questions of the architecture


• Does it need to be this complicated? Can it be simplified?


• Should forget and input gates be related somehow?


• What is the point of having separate cell and hidden states?



Gated recurrent unit
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• Gated recurrent unit (GRU) [arXiv:1406.1078]


• Combines forget and input gates into a single “update gate”


• Merges cell and hidden state

rt = σ(Wrxt + Urht−1 + br)
zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(Wzxt + Uh(rt ⋅ ht−1) + bh)

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t

http://arxiv.org/abs/1406.1078


Next time

• More on recurrent neural networks


• Applications


• Hands-on
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