
Javier Duarte — February 9, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 10:  
More on RNNs

1

Final groups projects!

2

• Groups have been formed for final projects!

• Encourage you to create a (public) channel in Slack for communication and
meet (frequently) to decide on a project and collaborate

• Final project should be an attempt at replicating (or extending) a (portion of) a
published paper on ML in physics

• Syllabus contains some candidates for papers to choose from with
accessible datasets

• If code exists, you can look at it as a reference (and if so cite it!), but your
group should implement it yourself

Advice on proposal

3

• Proposal due Friday 2/24 5pm

• Recommend using Google Docs or Overleaf to collaborate on writing

• Approximately 2 pages containing

• Background, motivation, and dataset

• Main task/challenge/problem

• Method(s) to be used/explore (e.g. RNNs, GNNs, …)

• Expected outcomes/deliverables (e.g. jet tagging AUC > X)

• Weekly/daily schedule (with person power assigned), e.g.

• Week 8: create GitHub (A), preprocess data (B), exploratory data analysis (C+D)

• Week 9: define metrics (A), create simple benchmark (B), train, and evaluate (C+D)

• Week 10: create more advanced model (A+B), train, and compare performance to simple benchmark
(C+D)

• Finals Week: clean up code (C+D), write presentation and final 4-page report (A+B+C+D)

Code + GitHub

4

• Cookiecutter data science is a nice project structure: https://
drivendata.github.io/cookiecutter-data-science/

• Find out more here: https://github.com/afraenkel/DSC180A-DS-
Methodology/blob/master/week04/Lecture%2003.pdf

• GitHub tutorial: https://docs.github.com/en/get-started/quickstart/hello-world

https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://drivendata.github.io/cookiecutter-data-science/
https://github.com/afraenkel/DSC180A-DS-Methodology/blob/master/week04/Lecture%2003.pdf
https://github.com/afraenkel/DSC180A-DS-Methodology/blob/master/week04/Lecture%2003.pdf
https://github.com/afraenkel/DSC180A-DS-Methodology/blob/master/week04/Lecture%2003.pdf
https://docs.github.com/en/get-started/quickstart/hello-world

Homeworks 3 + 4

5

• Will both be very short (to give you time to focus on projects)

• Definitely prioritize projects

Sample RNN!

7"

h1!

y1!

x1!
t = 1!

h2!

y2!

x2!

h3!

y3!

x3!

t = 2!

t = 3!
h0!

Recap: Recurrent neural network

6

• Recurrent NN considers current input and previous hidden state

• Trained using backpropagation through time (unfolding network)

7

• Developed to cope with the issue of long-term dependencies [10.1162/
neco.1997.9.8.1735]

• LSTM uses this idea of “constant error flow” to ensure that gradients don’t
decay

• Key components are

• an internal memory (“cell state”)

• gates that control the cell state actively

• Variant of LSTM simplify operations while maintaining key pieces

Recap: Long short-term memory (LSTM)

https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735

Recap: Simple RNN vs. LSTM vs. GRU

8

rt = σ(Wrxt + Urht−1 + br)
zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(Wzxt + Uh(rt ⋅ ht−1) + bh)

ht = (1 − zt) ⋅ ht−1 + zt ⋅ h̃t

ft = σ(Wf xt + Ufht−1 + bf)
it = σ(Wixt + Uiht−1 + bi)

C̃t = tanh(Wcxt + Ucht−1 + bc)
Ct = ft ⋅ Ct−1 + it ⋅ C̃t

ot = σ(Woxt + Uoht−1 + bo)
ht = ot ⋅ tanh(Ct)

ht = tanh(Wf xt + Ufht−1 + bf)

• A typical state in an RNN (simple RNN, GRU, or LSTM) relies on the past and
the present events

• However, there can be situations where a prediction depends on the past,
present, and future events

• Bidirectional RNN (BRNN) is  
a combination of two RNNs— 
one RNN moves forward,  
beginning from the start of the  
data sequence, and the other,  
moves backward, beginning  
from the end of the data  
sequence

• Note: not be appropriate for  
forecasting!

Bidirectional RNNs

9

ht = tanh(Wf xt + Ufht−1 + bf)
h′ t = tanh(W′ f xt + U′ f ht+1 + b′ f)

Hands-on: Classify cosmic ray radio signals

10

• Auger Engineering Radio Array (AERA) is a system of radio antennas installed
at the Pierre Auger Observatory [42], measuring pulses of a few nanoseconds
in length emitted by cosmic ray air showers with energies above 1017 eV

• Goal is to identify radio signals emitted by ultra-high energy cosmic rays
(UHECRs) that initiate extensive particle showers in the  
atmosphere

• UHECRs are likely protons and nuclei with energies  
extending from 1018 eV to above 1020 eV

arXiv:1901.04079

https://arxiv.org/abs/1901.04079

Hands-on: Classify cosmic ray radio signals

11

• Characterize strength of a signal in a noisy trace using signal-to-noise (SNR) ratio 
 

• Simulated data produced with SNR 
values between 0.5 and 5.0

• SNR = 1.5 shown

• Preprocessing applied: normalize  
each generated time trace by  
dividing each bin by the standard  
deviation of the whole trace

• Note: more advanced “signal recovery” task can be performed as well, but we will
focus on simpler classification task

SNR =
max signal
RMSnoise

=
AS

max

1
N ∑N

i=1 A2
i

Figure 1. Simulated trace with an air shower signal (orange) and the sum of the signal and noise (blue). The
signal-to-noise ratio is 1.5 in this case. The time trace and spectrum are shown in the top and bottom figure,
respectively.

On the other hand, SNR values for pure noise have a mean hSNRi = 2.7 and standard deviation of
�SNR = 0.5, if we use the maximum noise amplitude in a random signal time window for AS

max in
Eq. 2.1.

– 5 –

Next time

• Graphs!

12

