PHYS 139/239: Machine Learning in Physics

Lecture 11:
Graph neural networks

Javier Duarte — February 14, 2023

- In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to groundbreaking performance
 - CNNs for images

• RNNs for language processing

What about physics data like jets?

Physics data

- Properties
 - Measurements distributed in space (and time) irregularly
 - Sparse (most detector channels are empty), but pockets of density
 - Complex interdependencies between measurements
 - Physics "objects" composed of multiple measurements
 - Inherent symmetries (Lorentz boosts, rotational)

 Graph (or point cloud) embedding of the data can handle these properties

Node, edge, graph features (e.g. jet)

- Edge features e_k : pseudoangular distance between particles
- Graph (global) features **u**: jet mass

$$m = \sqrt{\sum_{i \in \text{jet}} E_i^2 - p_{x,i}^2 - p_{y,i}^2 - p_{z,i}^2}$$

Formalizing a graph

- Features: triplet of global features, node features, and edge features: (\mathbf{u}, V, E)
- Graph connectivity: adjacency matrix $A = \{a_{ij} = 1 \text{ if } i \text{ is connected to } j\}$
 - Sparse representation:
 "receiver" indices *r* and "sender" indices *s* e.g. kth edge connects node sk to node rk

Graph connectivity

- Different methods for constructing the graph include:
 - connecting all pairs of nodes
 - connecting neighboring nodes in a predefined feature space
 - connecting neighboring nodes in a latent feature space

Inductive biases

Component	Entities	Relations	Rel. inductive bias	Invariance
Fully connected	Units	All-to-all	Weak	-
Convolutional	Grid elements	Local	Locality	Spatial translation
Recurrent	Timesteps	Sequential	Sequentiality	Time translation
Graph network	Nodes	Edges	Arbitrary	Node, edge permutations

- An inductive bias expresses assumptions about the data-generating process or the space of solutions, allowing a learning algorithm to prioritize one solution over another
- Inductive biases can improve the search for solutions and find solutions that generalize; however, mismatched inductive biases can also lead to suboptimal performance by introducing constraints that are too strong
- Relational inductive bias: explicit representations of entities and relations

GNN's main ingredient: message passing

"message passing"

- Node-level tasks
 - Identify "pileup" particles

- Graph-level tasks
 - Jet tagging

Identify good track candidates

Properties of GNNs

Must have:

- Graph-to-graph mappings valid for variable-size graphs $(\mathbf{u},V,E) o (\mathbf{u}',V',E')$
- Graph-level outputs should be *invariant* under permutations of the nodes (node ordering should not matter) f(V) = f(PV)
- Node- or edge-level outputs should be equivariant under permutations of the nodes (outputs should be permuted if inputs are permuted)
- $f(PV, PAP^T) = Pf(V, A)$
- Learning uses "locality" (outputs of nodes in the same neighborhood should be more similar)

$$g(\mathbf{v}_i) \sim g(\mathbf{v}_j) \text{ if } \mathcal{N}_i \sim \mathcal{N}_j$$

Nice to have:

- Account for nodes of different types ("heterogeneous graphs")
- Generalizes to smaller/larger graphs than those seen in training
- Computationally efficient

Recipe for GNNs: permutation invariance

- The nodes of a graph are not assumed to be in any order, i.e. we want the same result for two isomorphic graphs
- First property we want is permutation invariance
- One generic form is deep sets [arXiv:1703.06114] (a.k.a. particle/energy flow networks in HEP [arXiv:1810.05165]), where ϕ^v and ϕ^u are MLPs
 - Aggregation function $\rho^{v \to u}$ (other possible choices: e.g. min, max, or avg)
 - Limitation: ϕ^{ν} function considers each node in isolation

$$f(V) = f(PV)$$

$$f(V) = \phi^{u} \left(\sum_{i \in V} \phi^{v}(\mathbf{v}_{i}) \right)$$

Recipe for GNNs: permutation equivariance

- What if the algorithm output is not "global" but node-wise (e.g. we want to classify each particle in a collision)
- Instead, we want functions that don't change the node order $f\left(\begin{bmatrix} p_{T2} & \eta_2 & \phi_2 \\ p_{T3} & \eta_3 & \phi_3 \end{bmatrix}\right) = \begin{bmatrix} x_2 \\ x_3 \end{bmatrix}$ (i.e. if we permute the nodes, the outputs are also permuted)
 - Then we need permutation equivariance f(PV) = Pf(V)
- But a graph is not just a set... The local connectivity is encoded in the adjacency matrix A,

$$a_{ij} = \begin{cases} 1 & \text{if } i \text{ is connected to } j \\ 0 & \text{otherwise} \end{cases}$$

• So full permutation equivariance condition is

$$f(PV, PAP^T) = Pf(V, A)$$

Full graph neural networks*

- GNNs are graph-to-graph mapping (in this case holding structure fixed)
- Inference divided into three parts:
 edge block, node block, global block

 \mathbf{e}_k' : message computed for edge k connecting nodes r_k , s_k

 \mathbf{v}_i' : node feature update based on aggregated messages and previous features

u': global feature update based on aggregated, updated node and edge features

$$\mathbf{e}'_{k} = \boldsymbol{\phi}^{e}(\mathbf{e}_{k}, \mathbf{v}_{r_{k}}, \mathbf{v}_{s_{k}}, \mathbf{u}) \qquad \bar{\mathbf{e}}'_{i} = \rho^{e \to v}(E'_{i})$$

$$\mathbf{v}'_{i} = \boldsymbol{\phi}^{v}\left(\bar{\mathbf{e}}'_{i}, \mathbf{v}_{i}, \mathbf{u}\right) \qquad \bar{\mathbf{e}}' = \rho^{e \to u}(E')$$

$$\mathbf{u}' = \boldsymbol{\phi}^{u}(\bar{\mathbf{e}}', \bar{\mathbf{v}}', \mathbf{u}) \qquad \bar{\mathbf{v}}' = \rho^{v \to u}(V')$$

Other GNN examples

 Edge convolution from DGCNN [arXiv:1801.07829] is a variant of the edge block step (basis of ParticleNet [arXiv:1902.08570])

 Deep sets [<u>arXiv:1703.06114</u>] does not consider edge features (basis of energy flow network [<u>arXiv:1810.05165</u>])

Interaction network [<u>arXiv:1612.00222</u>]
ignores global features
(basis of jet taggers [<u>arXiv:1908.05318</u>,
 <u>arXiv:1909.12285</u>], and edge-classifying GNNs
for tracking [<u>arXiv:2003.11603</u>])

GNN taxonomy

- Convolutional: sender node features are multiplied with a constant
- Attentional: multiplier is implicitly computed via an attention mechanism of the receiver over the sender
- Message-passing: vector-based messages are computed based on both the sender and receiver

Graph pooling

- Graph pooling layers "downsample" graphs to
 - discover important communities in the graph
 - imbue this knowledge in the learned representations
 - reduce the computational costs of message passing in large scale structures
- Two broad classes: adaptive and topological
- Adaptive: parametric, trainable pooling mechanism
 - Differentiable pooling
 - Top-k pooling
 - Self-attention graph (SAG)
 - Edge pooling

- Topological: not required to be differentiable, leverage the structure of the graph itself
 - GRACLUS
 - Nonnegative matrix factorization pooling

Receptive field in GNNs

- Red, orange, and yellow boundaries represent the enlarging neighborhood of nodes that may communicate with the red node after one, two, and three iterations of message passing, respectively
- Nodes outside of the yellow boundary do not influence the red node after three iterations

Particle tracking (connecting the dots)

- Particle tracking is a classic reconstruction task
- From a set of hits sampled sparsely in 3D, reconstruct the helical trajectories of particles
- Traditional algorithms scale badly with the number of hits
- GNNs may be able to do better [arXiv:1810.06111, arXiv:2003.11603, arXiv:2007.00149]

Predicting orbital mechanics

 Interaction network model can simultaneously learn the rules governing interactions and free parameters (i.e. masses)

$$\mathbf{F} = -\frac{GMm}{r^2}\hat{r}$$

https://astroautomata.com/paper/rediscovering-gravity/ https://drive.google.com/file/d/1PqMQKsHYeDgEQhP9darVqs5UXiaoyPzx/view

Next time

- More on GNNs
- If time, transformers
- Hands-on: GNNs