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arXiv:2007.13681

Data representations rXiv-2012 01249

* |In deep learning, tailoring algorithms to the structure (and symmetries) of the data has led to
groundbreaking performance

 CNNs for images

* RNNSs for language processing

 What about physics data like jets?


https://miro.medium.com/max/700/1*n-IgHZM5baBUjq0T7RYDBw.gif
https://miro.medium.com/max/700/1*Fw-ehcNBR9byHtho-Rxbtw.gif
https://arxiv.org/abs/2007.13681
https://arxiv.org/abs/2012.01249

Physics data

* Properties
 Measurements distributed in space (and time) irregularly

e Sparse (most detector channels are empty), but pockets of
density

« Complex interdependencies between measurements

* Physics “objects” composed of multiple measurements

* |Inherent symmetries (Lorentz boosts, rotational)

* Graph (or point cloud) embedding of the data can handle these
properties



Node, edge, graph features (e.g. jet)
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» Node features v : particle 4-momentum
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» Edge features €,: pseudoangular distance oy
between particles
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e Graph (global) features u: jet mass m

p — [Eapxapyapz] = [pTa 7]9 ¢9 m]



FOrmaI iZing a g raph https://distill.pub/2021/gnn-intro/

* Features: triplet of global features, node features,
and edge features: (u, V, E)

* Graph connectivity: adjacency matrix
A = {a; = 1l ifiis connected to j}

e Sparse representation:

“recelver”’ Indices r and “sender” indices §

e.g. kth edge connects node sk to node rk Attributes

Adjacency List

+ [[1, 0], [2, 01, [4, 31, [6, 21,
(7, 31, (7, 41, [7, 511

Global



https://distill.pub/2021/gnn-intro/

arxXiv:2012.01249

Graph connectivity

» Different methods for constructing the
graph include:

e connecting all pairs of nodes

e connecting neighboring nodes in a
predefined feature space

e connecting neighboring nodes in a
latent feature space
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https://arxiv.org/abs/2012.01249

Inductive biases

arXiv:1806.01261

Component Entities Relations Rel. inductive bias Invariance

Fully connected Units All-to-all Weak

Convolutional Grid elements Local Locality Spatial translation
Recurrent Timesteps Sequential Sequentiality Time translation
Graph network Nodes Edges Arbitrary Node, edge permutations

* An Iinductive bias expresses assumptions about the data-generating process or the
space of solutions, allowing a learning algorithm to prioritize one solution over another

* |nductive biases can improve the search for
solutions and find solutions that generalize;
however, mismatched inductive biases
can also lead to suboptimal
performance by introducing
constraints that are too strong

<X

e Relational inductive bias:
explicit representations of entities
and relations

(a) Fully connected
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P

/

(b) Convolutional

-t

/ Sharing in time \

5

(c¢) Recurrent


https://arxiv.org/abs/1806.01261

GNN’s main ingredient: message passing

: ¢(‘Xi9 X]) @/O : GNN » : : y ) y
| O/ (4} v\O e a ey : message passing
““““ Inputs ~ Latents

(X, A) (H, A)



G N N taS kS Source: https://youtu.be/uF53xsT7mijc

* Node-level tasks  (Graph-level tasks

* |dentify "pileup” particles * Jet tagging

Node classification

Z; z; = f(h;)

Graph classification

g = f (@iey hi)

— — m— — em— m— m— e— m— em— e— em— em— e— — — o— w— — — w— w— m— m— em— e— em— m— m— m— w— —

Latents

(X, A) (H, A)

* Edge-level tasks Link prediction

Zijj = f(hiahjaeij)
* |dentify good track candidates

9


https://youtu.be/uF53xsT7mjc

Properties of GNNs

 Must have:
* (Graph-to-graph mappings valid for variable-size graphs

* Graph-level outputs should be invariant under permutations
of the nodes (node ordering should not matter)

 Node- or edge-level outputs should be equivariant
under permutations of the nodes (outputs should be
permuted if inputs are permuted)

* Learning uses “locality” (outputs of nodes in the same
neighborhood should be more similar)

* Nice to have:
* Account for nodes of different types (“heterogeneous graphs”)
* (Generalizes to smaller/larger graphs than those seen in training

* Computationally efficient 10



Recipe for GNNs: permutation invariance

 The nodes of a graph are not assumed to be in any

order, I.e. we want the same result for two isomorphic
graphs

* First property we want is permutation invariance

* One generic form is deep sets | ]
(a.k.a. particle/energy flow networks in HEP

[ ]), where @" and @" are MLPs

 Aggregation function p"~" (other possible
choices: e.g. min, max, or avg)

» Limitation: ¢ function considers each node in
Isolation

11

Edge block Node block Global block


https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1810.05165

Recipe for GNNs: permutation equivariance

 What if the algorithm output is not “global” but node-wise

(e.g. we want to classify each particle in a collision)
P hm M

* |nstead, we want functions that don’t change the node order 1 M P2
(l.e. if we permute the nodes, the outputs are also permuted) Pry M O

 Then we need permutation equivariance

 But a graph is not just a set... The local connectivity is
encoded in the adjacency matrix A,

a;: =

{ 1 ifiis connected to
J

0 otherwise

e So full permutation equivariance condition is

12



Full graph neural networks* o e Xv1806.01261

 GNNSs are graph-to-graph mapping (in this
case holding structure fixed)

* |Inference divided into three parts:
edge block, node block, global block

e;: message computed for edge k connecting
nodes 1y, S

v:: node feature update based on aggregated
messages and previous features

u’”: global feature update based on aggregated,
updated node and edge features

el,c — ¢e(ek’ Vrk’ Vska u) él, = p e_)V(EiI)
peHE)
u' = ¢ e,v,u) vV =p""HV) Edge block  Node block Global block

/) VvV [ =/ — /
V.= ¢ (ei, Vl-,ll) e


https://arxiv.org/abs/1806.01261

Other GNN exampleaf

) P(x;, xp — X;)
Edge convolution

_—————">

 Edge convolution from @
DGCNN [arXiv:1801.07829]
IS a variant of the edge block step

(basis of ParticleNet
|arXiv:1902.08570])

Edge
neural ¢
network

e Deep sets [arXiv:1703.067114] does
not consider edge features

(basis of energy flow network
[arXiv:1810.05165])

Edge block Node block Global block

* |nteraction network [arXiv:1612.00227]
ignores global features
(basis of jet taggers [arXiv:1908.05318,
arXiv:1909.12285], and edge-classifying GNNs
for tracking [arXiv:2003.11603])

14 Edge block  Node block Global block


https://arxiv.org/abs/1801.07829
https://arxiv.org/abs/1902.08570
https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1612.00222
https://arxiv.org/abs/1908.05318
https://arxiv.org/abs/1909.12285
https://arxiv.org/abs/2003.11603
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Convolutional Attentional Message-passing

 Convolutional: sender node features are multiplied with a constant

o Attentional: multiplier is implicitly computed via an attention mechanism of the
receiver over the sender

» Message-passing: vector-based messages are computed based on both the
sender and receiver

15


https://arxiv.org/abs/2104.13478

Graph pooling

Graph pooling layers “downsample” graphs to

* discover important communities in the graph

* imbue this knowledge in the learned representations

* reduce the computational costs of message passing in large scale structures

Two broad classes: adaptive and topological
Adaptive: parametric, trainable pooling mechanism
* Differentiable pooling
* Top-k pooling
e Self-attention graph (SAG)

* Edge pooling

Pooling layer\

Topological: not required to be differentiable, leverage the structure of the graph itself

* GRACLUS

* Nonnegative matrix factorization pooling

16



Receptive field in GNNs

 Red, orange, and yellow boundaries
represent the enlarging neighborhood
of nodes that may communicate with
the red node after one, two, and three

iterations of message passing,
respectively

* Nodes outside of the yellow boundary
do not influence the red node after

three iterations

17



Particle tracking (connecting the dots)

Particle tracking Is a classic
reconstruction task

From a set of hits sampled
sparsely in 3D, reconstruct the
helical trajectories of particles

Traditional algorithms scale badly
with the number of hits

GNNs may be able to do better
[arXiv:1810.06111,
arXiv:2003.11603,
arXiv:2007.00149}
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https://arxiv.org/abs/1810.06111
https://arxiv.org/abs/2003.11603
https://arxiv.org/abs/2007.00149

Predicting orbital mechanics

https://astroautomata.com/paper/rediscovering-gravity/
https://drive.google.com/file/d/1PgMQKsHYeDgEQhP9darVqgs5UXiaoyPzx/view

* |nteraction network model can
simultaneously learn the rules
governing interactions and free
parameters (i.e. masses)

19


https://astroautomata.com/paper/rediscovering-gravity/
https://drive.google.com/file/d/1PqMQKsHYeDgEQhP9darVqs5UXiaoyPzx/view

Next time

e More on GNNSs
e |f time, transformers

e Hands-on: GNNs
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