
Javier Duarte — February 23, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 14:  
More Autoencoders

1

Recap: Types of learning

• Supervised learning: labels known for each data sample

• Unsupervised learning: only features known; no labels!

• Weakly supervised learning: features paired with noisy labels

• Semi-supervised learning: features paired with partial (incomplete) labels

• …

2

Classification witout labels (CWoLA)

3

B

S

S

S

S

S

S

S

S

B

S

S

B

S

B

S

S

B

S

B

S

S

S

S

S

����� ������ �

S

B

S

B

B

S

B

B

S

B

B

B

B

B

B

B

S

B

B

S

B

B

B

S

B

����� ������ �

0 1

���������

Figure 1. An illustration of the CWoLa framework. Rather than being trained to directly classify
signal (S) from background (B), the classifier is trained by standard techniques to distinguish data as
coming either from the first or second mixed sample, labeled as 0 and 1 respectively. No information
about the signal/background labels or class proportions in the mixed samples is used during training.

Theorem 1. Given mixed samples M1 and M2 defined in terms of pure samples S and B

using Eqs. (2.3) and (2.4) with signal fractions f1 > f2, an optimal classifier trained to

distinguish M1 from M2 is also optimal for distinguishing S from B.

Proof. The optimal classifier to distinguish examples drawn from pM1 and pM2 is the likelihood

ratio LM1/M2
(~x) = pM1(~x)/pM2(~x). Similarly, the optimal classifier to distinguish examples

drawn from pS and pB is the likelihood ratio LS/B(~x) = pS(~x)/pB(~x). Where pB has support,

we can relate these two likelihood ratios algebraically:

LM1/M2
=

pM1

pM2

=
f1 pS + (1� f1) pB
f2 pS + (1� f2) pB

=
f1 LS/B + (1� f1)

f2 LS/B + (1� f2)
, (2.6)

which is a monotonically increasing rescaling of the likelihood LS/B as long as f1 > f2, since

@LS/B
LM1/M2

= (f1 � f2)/(f2LS/B � f2 + 1)2 > 0. If f1 < f2, then one obtains the reversed

classifier. Therefore, LS/B and LM1/M2
define the same classifier.

An important feature of CWoLa is that, unlike the LLP-style weak supervision in Sec. 2.2,

the label proportions f1 and f2 are not required for training. Of course, this proof only

guarantees that the optimal classifier from CWoLa is the same as the optimal classifier from

fully-supervised learning. We explore the practical performance of CWoLa in Secs. 3 and 4.

The problem of learning from unknown mixed samples can be shown to be mathematically

equivalent to the problem of learning with asymmetric random label noise, where there have

been recent advances [32, 40]. The equivalence of these frameworks follows from the fact that

– 5 –

• Classification without labels (CWoLA): https://
arxiv.org/abs/1708.02949

• Example of a weakly supervised framework

• Useful when you know you can isolate two
samples with different fractions of signal and
background

• Quite robust: works even if you don’t exactly
know the fractions!

• Limitation: performs drops off rapidly near

• i.e. when the two samples don’t actually
have different fractions!

f1 = f2 = 0.5

)
2

 (= 1 - f
1

f

0 0.2 0.4 0.6 0.8 1

A
U

C

0.5

0.6

0.7

0.8

0.9

1

 = 100
train

N

 = 5
B

σ = 5,
S

σ = 10,
B
µ = 5,

S
µ),

B
σ,

B
µ), B ~ N(

S
σ,

S
µS ~ N(

 signal fractions, respectively
2

, f
1

 have f
2

, M
1

Mixed samples M

Full Supervision LLP CWoLa

(a)

)
2

 (= 1 - f
1

f

0 0.2 0.4 0.6 0.8 1

A
U

C

0.5

0.6

0.7

0.8

0.9

1

 = 1000
train

N

 = 5
B

σ = 5,
S

σ = 10,
B
µ = 5,

S
µ),

B
σ,

B
µ), B ~ N(

S
σ,

S
µS ~ N(

 signal fractions, respectively
2

, f
1

 have f
2

, M
1

Mixed samples M

Full Supervision LLP CWoLa

(b)

)
2

 (= 1 - f
1

f

0 0.2 0.4 0.6 0.8 1

A
U

C

0.5

0.6

0.7

0.8

0.9

1

 = 10000
train

N

 = 5
B

σ = 5,
S

σ = 10,
B
µ = 5,

S
µ),

B
σ,

B
µ), B ~ N(

S
σ,

S
µS ~ N(

 signal fractions, respectively
2

, f
1

 have f
2

, M
1

Mixed samples M

Full Supervision LLP CWoLa

(c)

Figure 2. The AUC for the LLP and CWoLa methods as a function of the signal fraction f1, for
training sizes Ntrain of (a) 100 events, (b) 1k events, and (c) 10k events. Here, the complementary
signal fraction is f2 = 1� f1. By construction, the AUC for full supervision is independent of f1. The
horizontal dashed line indicates the fully-supervised AUC with infinite training statistics. For Ntrain

su�ciently large and f1 su�cient far from 0.5, all three methods converge to the optimal case.

– 8 –

https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1708.02949
https://arxiv.org/abs/1708.02949

Recap: Autoencoders

4

• Feedforward neural networks with same input and output shapes

• Goal: reconstruct original input by minimizing mean-squared error loss (or
similar)

Example: fashion MNIST

5

• Autoencoder in Keras:

https://rittikghosh.com/autoencoder.html

m = Sequential()

m.add(Dense(1000, activation='relu',  
 input_shape=(784,)))

m.add(Dense(500, activation='relu'))

m.add(Dense(250, activation='relu'))

m.add(Dense(32, activation='relu'))

m.add(Dense(2, activation='linear',  
 name="bottleneck"))

m.add(Dense(32, activation='relu'))

m.add(Dense(250, activation='relu'))

m.add(Dense(500, activation='relu'))

m.add(Dense(1000, activation='relu'))

m.add(Dense(784, activation='sigmoid'))

Original

Autoencoder

PCA

https://rittikghosh.com/autoencoder.html

Example: fashion MNIST

6

• Autoencoder in Keras:

https://rittikghosh.com/autoencoder.html

m = Sequential()

m.add(Dense(1000, activation='relu',  
 input_shape=(784,)))

m.add(Dense(500, activation='relu'))

m.add(Dense(250, activation='relu'))

m.add(Dense(32, activation='relu'))

m.add(Dense(2, activation='linear',  
 name="bottleneck"))

m.add(Dense(32, activation='relu'))

m.add(Dense(250, activation='relu'))

m.add(Dense(500, activation='relu'))

m.add(Dense(1000, activation='relu'))

m.add(Dense(784, activation='sigmoid'))

Autoencoder PCA

https://rittikghosh.com/autoencoder.html

36Unsupervised

Typically, the goal of these methods is to look
for events with low p(background)

Unsupervised = no labels

M. Farina, Y. Nakai, D. Shih, 1808.08992; T. Heimel, G.
Kasieczka, T. Plehn, J. Thompson, 1808.08979; + many more

One strategy (autoencoders) is to try to compress
events and then uncompress them. When x is far from
uncompres(compress(x)), then x probably has low p(x).

Application: outlier (anomaly) detection

• Autoencoders compress data and then uncompress it

• Autoencoder is trained on background (and has good reconstruction
performance)

• If is far from , then has low

• Directly use “reconstruction loss” as an anomaly score

x AE(x) = Decoder(Encoder(x)) x pbkgd(x)

L(x, AE(x))

Credit: B. Nachman 
 https://indico.cern.ch/event/1188153/

7

https://indico.cern.ch/event/1188153/

Denoising autoencoers
• We are at risk of “overfitting” (or simply learning the as useful identity function)

when the latent space is overcomplete

• Denoising autoencoders (Vincent et al. 2008) corrupt the input by adding
noise or masking values stochastically then the model is trained to recover
the original input (not the corrupted one)

8

Variational autoencoders

9

Variational autoencoders

• Variational autoencoder or VAEs (Kingma & Welling, 2014) rooted in
variational Bayesian methods

• Instead of mapping the input into a fixed vector, we want to map it into a
distribution parameterized by

• Input data and encoding vector are related by

• Prior

• Likelihood

• Posterior

pθ θ

x z

pθ(z)

pθ(x |z)

pθ(z |x)
10

Variational autoencoders

• Given , we can generate a sample like a real data point by following

1. Sample from a prior distribution

2. Generate a value from the conditional distribution

• The optimal parameter maximizes the probability of generating real data
samples or minimizes the loss: 

 

where 
 

θ

z(i) pθ(z)

x(i) pθ(x |z = z(i))

θ*

θ* = arg min
θ (−

n

∑
i=1

log pθ(x(i)))
pθ(x(i)) = ∫ pθ(x(i) |z)pθ(z)dz

11

• Not easy to compute because of integration over all values of

• To narrow down the space, introduce approximation function to output a likely
code given an input , parametrized by

• Conditional probability defines a generative model, known as the
probabilistic decoder

• Approximation function is the probabilistic encoder

pθ(x(i)) z

x qϕ(z |x) ϕ

pθ(x |z)

qϕ(z |x)

Graphical model

12

• Estimated posterior should be close to real one

• Use Kullback-Leilbler (KL) divergence  
to quantify distance 
 
 
 
 

• Total loss: 
 

• Known as evidence lower bound (ELBO) because by minimizing the loss, we
are maximizing the lower bound of the probability of generating real data
samples

qϕ(z |x) pθ(z |x)

DKL(qϕ(z |x)∥pθ(z |x))

L = − log pθ(x) + DKL(qϕ(z |x)∥pθ(z |x))

VAE loss function: ELBO

13

DKL(qϕ(z |x)∥pθ(z |x)) = ∫ qϕ(z |x)log
qϕ(z |x)
pθ(z |x)

dz

Reparametrized form:

z = μ + σ ⊙ ϵ, where ϵ ∼ 𝒩(0,I)⇔

Reparametrization trick

14

Original form:

z ∼ qϕ(z |x(i)) = 𝒩(z; μ(i), σ2(i)I)

Variational autoencoders

15

Implementation

16

• Implementation in Keras for handwritten MNIST digits: https://keras.io/
examples/generative/vae/

• Two-dimensional (probabilistic) latent space

https://keras.io/examples/generative/vae/
https://keras.io/examples/generative/vae/
https://keras.io/examples/generative/vae/
https://keras.io/examples/generative/vae/

Next time

• Model compression

17

