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Science use-cases for real-time AI
• Collider on-detector readout and  

“trigger” at 40 MHz


• Accelerator control


• Neutrino physics


• Multi-messenger astronomy


• Electron & X-ray  
microscopy

And more…
!17
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Discussed similar problems with other fields as well!

And more…
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Neutrinos
!15

Real-time filtering at the sub-millisecond 
scale required for next generation neutrino 

detectors to identify neutrinos from 
supernovae, P ~ (25 years)-1

40 MHz

O(Pb/s)

ASICs

CMS detector

L1 trigger:  

FPGA  

filter stack
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Scientific ML challenges 3
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AI model sizes 4

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Today’s AI is too BIG!

4

0

36

72

108

144

180

2017 2018 2020 2021

NLP model size is increasing exponentially

GPT 
0.11B

MegatronLM 
8.3B

T-NLG 
17BGPT-2 

1.5B

M
od

el
 S

iz
e 

(#
P

ar
am

s 
in

 B
ill

io
n)

Year

BERT 
0.34BTransformer 

0.05B

GPT-3 
170B

4



Codesign

• Codesign: intrinsic development 
loop between algorithm design, 
training, and implementation 


• Compression

• Maintain high performance while 

removing redundant operations

• Quantization

• Reduce precision from 32-bit 

floating point to 16-bit, 8-bit, …

• Parallelization

• Balance parallelization (how fast) 

with resources needed (how 
costly)
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What is pruning?

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

5
Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

pruning

synapses

before pruning after pruning

pruning

neurons

Optimal Brain Damage [LeCun et al., NeurIPS 1989]
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Pruning research

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Neural Network Pruning
Make neural network smaller by removing synapses and neurons

6
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Optimal Brain Damage 

Yann Le Cun, John S. Denker and Sara A. Sol1a 
AT&T Bell Laboratories, Holmdel, N. J. 07733 

ABSTRACT 
We have used information-theoretic ideas to derive a class of prac-
tical and nearly optimal schemes for adapting the size of a neural 
network. By removing unimportant weights from a network, sev-
eral improvements can be expected: better generalization, fewer 
training examples required, and improved speed of learning and/or 
classification. The basic idea is to use second-derivative informa-
tion to make a tradeoff between network complexity and training 
set error. Experiments confirm the usefulness of the methods on a 
real-world application. 

1 INTRODUCTION 
Most successful applications of neural network learning to real-world problems have 
been achieved using highly structured networks of rather large size [for example 
(Waibel, 1989; Le Cun et al., 1990a)]. As applications become more complex, the 
networks will presumably become even larger and more structured. Design tools 
and techniques for comparing different architectures and minimizing the network 
size will be needed. More importantly, as the number of parameters in the systems 
increases, overfitting problems may arise, with devastating effects on the general-
ization performance. We introduce a new technique called Optimal Brain Damage 
(OBD) for reducing the size of a learning network by selectively deleting weights. 
We show that OBD can be used both as an automatic network minimization pro-
cedure and as an interactive tool to suggest better architectures. 
The basic idea of OBD is that it is possible to take a perfectly reasonable network, 
delete half (or more) of the weights and wind up with a network that works just as 
well, or better. It can be applied in situations where a complicated problem must 
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Abstract

Neural networks are both computationally intensive and memory intensive, making
them difficult to deploy on embedded systems. Also, conventional networks fix
the architecture before training starts; as a result, training cannot improve the
architecture. To address these limitations, we describe a method to reduce the
storage and computation required by neural networks by an order of magnitude
without affecting their accuracy by learning only the important connections. Our
method prunes redundant connections using a three-step method. First, we train
the network to learn which connections are important. Next, we prune the unim-
portant connections. Finally, we retrain the network to fine tune the weights of the
remaining connections. On the ImageNet dataset, our method reduced the number
of parameters of AlexNet by a factor of 9⇥, from 61 million to 6.7 million, without
incurring accuracy loss. Similar experiments with VGG-16 found that the total
number of parameters can be reduced by 13⇥, from 138 million to 10.3 million,
again with no loss of accuracy.

1 Introduction

Neural networks have become ubiquitous in applications ranging from computer vision [1] to speech
recognition [2] and natural language processing [3]. We consider convolutional neural networks used
for computer vision tasks which have grown over time. In 1998 Lecun et al. designed a CNN model
LeNet-5 with less than 1M parameters to classify handwritten digits [4], while in 2012, Krizhevsky
et al. [1] won the ImageNet competition with 60M parameters. Deepface classified human faces with
120M parameters [5], and Coates et al. [6] scaled up a network to 10B parameters.

While these large neural networks are very powerful, their size consumes considerable storage,
memory bandwidth, and computational resources. For embedded mobile applications, these resource
demands become prohibitive. Figure 1 shows the energy cost of basic arithmetic and memory
operations in a 45nm CMOS process. From this data we see the energy per connection is dominated
by memory access and ranges from 5pJ for 32 bit coefficients in on-chip SRAM to 640pJ for 32bit
coefficients in off-chip DRAM [7]. Large networks do not fit in on-chip storage and hence require
the more costly DRAM accesses. Running a 1 billion connection neural network, for example, at
20Hz would require (20Hz)(1G)(640pJ) = 12.8W just for DRAM access - well beyond the power
envelope of a typical mobile device. Our goal in pruning networks is to reduce the energy required to
run such large networks so they can run in real time on mobile devices. The model size reduction
from pruning also facilitates storage and transmission of mobile applications incorporating DNNs.

1
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Pruning formalism

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Neural Network Pruning
• In general, we could formulate the pruning as 

follows:




subject to




•  represents the objective function for neural 
network training;


•  is input,  is original weights,  is pruned 
weights;


•  calculates the #nonzeros in , and  is 
the target #nonzeros.

arg min
WP

L(x; WP)

∥Wp∥0 < N

L

x W WP

∥Wp∥0 WP N
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x x

arg min
W

L(x; W) arg min
WP

L(x; WP)

s . t .∥WP∥0 ≤ N
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Structured vs. unstructured pruning
• Unstructured pruning: removing some connections regardless of placement

• Can potentially achieve higher performance for smaller size


• Structured pruning: removing all input/output connections of particular nodes

• More regular structure easier to support in hardware architectures

9



Benchmark: Jet tagging MLP

16 inputs

64 nodes

32 nodes

32 nodes

5 outputs

Small NN benchmark correctly identifies particle “jets” 70-80% of the time
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Iterative magnitude-based pruning

70% REDUCTION OF 
WEIGHTS WITH NO 

LOSS IN PERF.

• Train with  regularization (down-weights unimportant synapses) 

• Remove smallest weights 


• Iterate

L1

Lλ(w) = L(w) + λ∥w∥1 ∥w∥1 = ∑i |wi |

arXiv:1804.06913
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Pruning

Retrain 
with L1 Prune

…

Train 
with L1 Prune

1st iteration

2nd iteration

Retrain 
with L1 Prune

7th iteration

……
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Pruning APIs
• TensorFlow API: https://www.tensorflow.org/model_optimization/guide/

pruning


• Sparsity schedule for gradual pruning


• Similar API for PyTorch: https://pytorch.org/tutorials/intermediate/
pruning_tutorial.html

(a) (b)

Figure 2: (a) The gradual sparsity function and exponentially decaying learning rate used for training
sparse-InceptionV3 models. (b) Evolution of the model’s accuracy during the training process

Table 1: Model size and accuracy tradeoff for sparse-InceptionV3
Sparsity NNZ params Top-1 acc. Top-5 acc.

0% 27.1M 78.1% 94.3%
50% 13.6M 78.0% 94.2%
75% 6.8M 76.1% 93.2%

87.5% 3.3M 74.6% 92.5%

is to prune the network rapidly in the initial phase when the redundant connections are abundant and
gradually reduce the number of weights being pruned each time as there are fewer and fewer weights
remaining in the network, as illustrated in Figure 1. In the experimental results presented in this paper,
pruning is initiated after the model has been trained for a few epochs or from a pre-trained model.
This determines the value for the hyperparameter t0. A suitable choice for n is largely dependent on
the learning rate schedule. Stochastic gradient descent (and its many variants) typically decay the
learning rate during training, and we have observed that pruning in the presence of an exceedingly
small learning rate makes it difficult for the subsequent training steps to recover from the loss in
accuracy caused by forcing the weights to zero. At the same time, pruning with too high of a learning
rate may mean pruning weights when the weights have not yet converged to a good solution, so it is
important to choose the pruning schedule closely with the learning rate schedule.

Figure 2a shows the learning rate and the pruning schedule used for training sparse-InceptionV3
(Szegedy et al., 2016) models. All the convolutional layers in this model are pruned using the same
sparsity function, and pruning occurs in the regime where the learning rate is still reasonably high
to allow the network to heal from the pruning-induced damage. Figure 2b offers more insight into
how this pruning scheme interacts with the training procedure. For the 87.5% sparse model, with
the gradual increase in sparsity, there comes a point when the model suffers a near-catastrophic
degradation, but recovers nearly just as quickly with continued training. This behavior is more
pronounced in the models trained to have higher sparsity. Table 1 compares the performance of
sparse-InceptionV3 models pruned to varying extents. As expected, there is a gradual degradation in
the model quality as the sparsity increases. However, a 50% sparse model performs just as well as the
baseline (0% sparsity), and there is only a 2% decrease in top-5 classification accuracy for the 87.5%
sparse model which offers an 8x reduction in number of nonzero (NNZ) model parameters. Also note
that since the weights are initialized randomly, the sparsity in the weight tensors does not exhibit any
specific structure. Furthermore, the pruning method described here does not depend on any specific
property of the network or the constituent layers, and can be extended directly to a wide-range of
neural network architectures.

4
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Motivation

90% accuracy 90% accuracy

Randomly 
initialize 
weights and 
train

Prune

60% accuracy

Randomly 
initialize 
weights and 
train

😟

The Lottery Ticket Hypothesis

90% accuracy 90% accuracy

Randomly 
initialize 
weights and 
train

Prune

90% accuracy

Use same 
weight 
initialization 
and train

😊

Aside: Lottery Ticket Hypothesis
• A randomly-initialized, dense neural network contains a subnetwork that is 

initialized such that—when trained in isolation—it can match the test 
accuracy of the original network after training for at most the same number of 
iterations

arXiv:1803.03635
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Numeric data types: integer

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Integer
• Unsigned Integer

• n-bit Range: 


• Signed Integer

• Sign-Magnitude Representation

• n-bit Range: 

• Both 000…00 and 100…00 represent 0


• Two’s Complement Representation

• n-bit Range: 

• 000…00 represents 0

• 100…00 represents 

[0, 2n − 1]

[−2n−1 − 1, 2n−1 − 1]

[−2n−1, 2n−1 − 1]

−2n−1

11

0 0 1 1 0 0 0 1

27 26 25 24 23 22 21 20 = 49
× × × × × × × ×

+ + + + + + +

1 0 1 1 0 0 0 1

- 26 25 24 23 22 21 20 = -49
× × × × × × ×

+ + + + + +

Sign Bit

1 1 0 0 1 1 1 1

-27 26 25 24 23 22 21 20 = -49
× × × × × × × ×

+ + + + + + +
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Numeric data types: fixed-point number

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Fixed-Point Number

12

Integer Fraction.

+ + + + + + +

0 0 1 1 0 0 0 1

-23 22 21 20 2-1 2-2 2-3 2-4 = 3.0625
× × × × × × × ×

(using 2’s complement representation)

+ + + + + + +

0 0 1 1 0 0 0 1

-27 26 25 24 23 22 21 20 ) × 2-4 = 49 × 0.0625 = 3.0625
× × × × × × × ×

(

“Decimal” Point
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Numeric data types: floating-point number

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Floating-Point Number
Example: 32-bit floating-point number in IEEE 754 

13

Sign 8 bit Exponent 23 bit Fraction

(-1)sign × (1 + Fraction) × 2Exponent-127 Exponent Bias = 127 = 28-1-1

(significant / mantissa)

0.265625 = 1.0625 × 2-2 = (1 + 0.0625) × 2125-127

0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

125 0.0625
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What is quantization?

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

What is Quantization?

9
Wikipedia: Quantization

Quantization is the process of constraining an input from a continuous or 
otherwise large set of values to a discrete set.

Images are in the public domain.

Original Image 16-Color ImageContinuous Signal Quantized Signal

time

Signal
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Quantization types

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29
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(b) Scale quantization

Figure 1: Quantization mapping of real values to int8

3 Quantization Fundamentals

We focus on uniform integer quantization as it enables computing matrix multiplications and convolutions in the integer
domain, allowing the use of high throughput integer math pipelines. Uniform quantization can be divided in to two
steps. First, choose the range of the real numbers to be quantized, clamping the values outside this range. Second, map
the real values to integers representable by the bit-width of the quantized representation (round each mapped real value
to the closest integer value).

In this Section we will consider higher precision floating-point formats like fp16 and fp32 to be real numbers for
the purpose of discussion. Enabling integer operations in a pre-trained floating-point neural network requires two
fundamental operations:

Quantize: convert a real number to a quantized integer representation (e.g. from fp32 to int8).

Dequantize: convert a number from quantized integer representation to a real number (e.g. from int32 to fp16).

We will first define the quantize and dequantize operations in Section 3.1 and discuss their implications in neural
network quantization in Sections 3.2 and 3.3. Then we will discuss how the real ranges are chosen in Section 3.4.

3.1 Range Mapping

Let [�,↵] be the range of representable real values chosen for quantization and b be the bit-width of the signed integer
representation. Uniform quantization transforms the input value x 2 [�,↵] to lie within [�2b�1, 2b�1 � 1], where
inputs outside the range are clipped to the nearest bound. Since we are considering only uniform transformations,
there are only two choices for the transformation function: f(x) = s · x+ z and its special case f(x) = s · x, where
x, s, z 2 R. In this paper we refer to these two choices as affine and scale, respectively.

3.1.1 Affine Quantization

Affine quantization maps a real value x 2 R to a b-bit signed integer xq 2 {�2b�1,�2b�1 + 1, . . . , 2b�1 � 1}.
Equations 1 and 2 define affine transformation function, f(x) = s · x+ z:

s =
2b � 1

↵� �
(1)

z = � round(� · s)� 2b�1 (2)

where s is the scale factor and z is the zero-point - the integer value to which the real value zero is mapped. In the 8-bit
case, s = 255

↵�� and z = �round(� · s)� 128. Note that z is rounded to an integer value so that the real value of zero
is exactly representable. This will result in a slight adjustment to the real representable range [�,↵] [20].

3

arXiv:2004.09602

• Quantization: using reduced precision for parameters and operations

• Fixed-point precision


• Affine integer quantization

20
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Affine integer quantization arXiv:2004.09602

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Linear Quantization
An affine mapping of integers to real numbers r = S(q − Z)

46
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference  [Jacob et al., CVPR 2018]

r
rmin

q

rmax

Z

0

× S

qmin qmax

Floating-point

Integer

Floating-point Scale

Zero point

Floating-point range

Bit Width qmin qmax

2 -2 1
3 -4 3
4 -8 7
N -2N-1 2N-1-1
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Post-training quantization vs. quantization-aware training

© Amir Gholami, UCB
Berkeley  EE290, 2021Post Training Quantization (PTQ)

vs Quantization Aware Training (QAT)

21Slide from D. Peri, J. Patel, J.Park, Deploying Quantization-Aware Trained Networks Using TensorRT, 2020. 22



Post-training quantization

• General strategy: avoid overflows in integer bit then scan the decimal bit until 
reaching optimal performance

Full performance  
with 8 fractional bits

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization
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Quantization-aware training: how does it work?

© Amir Gholami, UCB
Berkeley  EE290, 2021Fake Quantization!

26

Fake Quantization:

Integer-only 
Quantization

INT4

INT4

Weights

X

FP32 
Multiply Accumulate

+ INT4

FP32 -> INT4
Requantization

Activations

ai4 = Int(
afp32

Sa
)

<latexit sha1_base64="c0GUhsgkmBlVAM3gHV6Rcgx4VpY=">AAACUnicZVLBThsxEHVCW2igJcCxF6tRJVpV0S4EwQWBoIdyqEpVAkhsiGad2WDh9a7sWURk7efwNVzpob9S9YA3rNQCI1l6fs+jeX52nCtpKQh+N5ozL16+mp173ZpfePN2sb20fGyzwgjsi0xl5jQGi0pq7JMkhae5QUhjhSfx5X6ln1yhsTLTRzTJcZDCWMtECiBPDds7cO4iknrCZa/k2/xA02qUGBAOziPCa6rVaDrKGRyVSb6+Vpbu5xDKj61huxN0g2nx5yCsQYfVdThs/41GmShS1CQUWHsWBjkNHBiSQmHZigqLOYhLGOOZhxpStAM3nV7yD54Z8SQzfmniU/b/DgeptZM09idToAv7VKvIf9oX9A4MfvO77zkaoMx8chGYcQrXpXc0jj5XqPXYEyVbAyd1XhBq8WApKRSnjFf58pE0KEhNPABhpL8VFxfgAyX/ClVc4dNwnoPjtW7Y62786HV29+rg5tg79p6tspBtsl32lR2yPhPsht2yO/arcdf40/S/5OFos1H3rLBH1Vy4B7dYtK8=</latexit>

W fp32 = (Sw,W
i4)fp32
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hfp32 = (Sh, h
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Z. Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer, 
HAWQ-V3: Dyadic Neural Network Quantization in Mixed Precision, arxiv:2011.10680, 2020. 

• Fake quantization: using 32-bit floating-point math under the hood

• Straight-through estimator: during backpropagation, ignore quantization 

operation (treat as identity)

24



Quantization-aware training
• Full performance with 6 bits 

instead of 14 bits 

• Much smaller fraction of 

resources

• Area & power scale 

quadratically with bit width

arXiv:2006.10159
Xilinx VU9P

ric cannot comprehensively reflect the performance of deep
learning (DL) accelerators. They investigate the impact of
various frequently-used hardware optimizations on a typi-
cal DL accelerator and quantify their effects on accuracy
and throughout under-representative DL inference workloads.
Their major conclusion is that high hardware throughput is
not necessarily highly correlated with the end-to-end high
inference throughput of data feeding between host CPUs and
AI accelerators. Finally, Baskin et al. [3] propose to gener-
alize FLOPS and OPS by taking into account the bitwidth
of each operand as well as the operation type. The resulting
metric, named BOPS (binary operations), allows area estima-
tion of quantized neural networks including cases of mixed
quantization.

The aforementioned metrics do not provide any insight on
the amount of silicon resources needed to implement them.
Our work, accordingly, functions as a bridge between the
CNN workload complexity and the real power/area estima-
tion.

3. COMPLEXITY METRIC
In this section, we describe our hardware-aware complexity

metric (HCM), which takes into account the CNN topology,
and define the design rules of efficient implementation of
quantized neural networks. The HCM metric assesses two
elements: the computation complexity, which quantifies the
hardware resources needed to implement the CNN on silicon,
and the communication complexity, which defines the mem-
ory access pattern and bandwidth. We describe the changes
resulting from switching from a floating-point representation
to a fixed-point one, and then present our computation and
communication complexity metrics. All results for the fixed-
point multiplication presented in this section are based on the
Synopsys standard library multiplier using TSMC’s 28nm
process.

3.1 The impact of quantization on hardware
implementation

Currently, the most common representation of weights and
activations for training and inference of CNNs is either 32-
bit or 16-bit floating-point numbers. The fixed-point MAC
operation, however, requires significantly fewer hardware
resources, even for the same input bitwidth. To illustrate this
fact, we generated two multipliers: one for 32-bit floating-
point1 and the other for 32-bit fixed-point operands. The
results in Table 1 show that a fixed-point multiplier uses ap-
proximately eight time less area, gates, and power than the
floating-point counterpart. Next, we generated a convolution
with a k ⇥ k kernel, a basic operation in CNNs consisting of
k2 MAC operations per output value. After switching from
floating-point to fixed-point, we explored the area of a single
processing engine (PE) with variable bitwidth. Note that ac-
cumulator size depends on the network architecture: the maxi-
mal bitwidth of the output value is bwba+ log2(k2)+ log2(n),
where n is number of input features. Since the extreme values
are very rare, however, it is often possible to reduce the accu-
mulator width without harming the accuracy of the network
[6].

1FPU100 from https://opencores.org/projects/fpu100
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Figure 2: Area (A) vs. bitwidth (b) for a 3 ⇥ 3 PE with a
single input and output channel. All weights and activations
use the same bitwidth and the accumulator width is 4 bit
larger, which is enough to store the result. The quadratic fit
is A = 12.39b2 + 86.07b � 14.02 with goodness of fit R2 =
0.9999877.

Fig. 2 shows the silicon area of the PE as a function of
the bitwidth. We performed a polynomial regression and ob-
served a quadratic dependence of the PE area on the bitwidth,
with the coefficient of determination R2 = 0.9999877. This
nonlinear dependency demonstrates that quantization impact
a network hardware resources is quadratic: reducing bitwidth
of the operands by half reduces area and, by proxy, power ap-
proximately by a factor of four (contrary to what is assumed
by, e.g., Mishra et al. [20]).

3.2 Computation
We now present the BOPS metric defined in Baskin et al.

[3] as our computation complexity metric. In particular, we
show that BOPS can be used as an estimator for the area
of the accelerator. The area, in turn, is found to be linearly
related to the power in case of the PEs.

The computation complexity metric describes the amount
of arithmetic “work” needed to calculate the entire network
or a single layer. BOPS is defined as the number of bit opera-
tions required to perform the calculation: the multiplication
of n-bit number by m-bit number requires n ·m bit operations,
while addition requires max(n,m) bit operations. In partic-
ular, Baskin et al. [3] show that a k ⇥ k convolutional layer
with ba-bit activations and bw-bit weights requires

BOPS = mnk2�babw +ba +bw + log2(nk2)
�

(1)

bit operations, where n and m are, respectively, the number
of input and output features of the layer. The formula takes
into account the width of the accumulator required to accom-
modate the intermediate calculations, which depends on n.
The BOPS of an entire network is calculated as a sum of
the BOPS of the individual layers. Creating larger accelera-
tors that can process more layers in parallel involves simply
replicating the same individual PE design.

In Fig. 3, we calculated BOPS values for the PEs from
Fig. 2 and plotted them against the area. We conclude that
for a single PE with variable bitwidth, BOPS can be used to
predict the PE area with high accuracy.
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Pruning + quantization-aware training

• Quantization-aware pruning (QAP): 
iterative pruning can further reduce the 
hardware computational complexity of a 
quantized model


• After QAP, the 6-bit, 80% pruned model 
achieves a factor of 50 reduction in 
BOPs compared to the 32-bit, unpruned 
model 

• Study using Brevitas
Bit operations (BOPs) definition:  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Hessian-aware quantization (HAWQ)
• Hessian of loss can provide additional guidance about quantization!

• Flat loss landscape: Lower bit width

• Sharp loss landscape: Higher bit width© Amir Gholami, UCB

Berkeley  EE290, 2021Flat Loss Landscape à Low Bit Precision
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• Uniform quantization is a linear mapping from floating point values to quantized integer values
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© Amir Gholami, UCB
Berkeley  EE290, 2021Sharp Loss Landscape à High Bit Precision Needed
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• Uniform quantization is a linear mapping from floating point values to quantized integer values
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COMPUTING HARDWARE ALTERNATIVES
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LHC event processing

1 ns 1 μs 1 s1 ms

Compute

Latency

FPGAs CPUs CPUs

High-Level 
Trigger
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1 MB/evt
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L1 Trigger
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Offline

Challenges:  
Each collision produces O(103) particles 
The detectors have O(108) sensors  
Extreme data rates of O(100 TB/s)
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Exabyte-scale 
datasets
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APPLICATION: MEASURE MUONS AT 40 MHZ 30

98 Chapter 3. Trigger algorithms
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Figure 3.33: Left: endcap trigger rate comparison of the Phase-1 EMTF and the Phase-2
EMTF++ algorithms as a function of pT threshold for events with 200 average pileup. Right:
Trigger rate comparison as a function of PU for a pT > 20 GeV threshold.

The same 6 h zones are retained for a total of 54 patterns per 0.5-degree in f, as for the prompt
muon patterns. Figure 3.31 (right) shows these patterns.

The TP information in the stations from stubs that satisfy a displaced pattern are input to a NN
that in this case has been trained to perform a regression that returns simultaneously values for
1/pT and d0 of displaced muons. The NN configuration used is the same as that for prompt
muons, using 3 hidden layers with 30/25/20 nodes each. Batch normalization is inserted after
each layer, including the input layer. A total of 23 inputs are used in the NN, these are:

• 6 Df quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 6 Dq quantities between stations: S1-S2, S1-S3, S1-S4, S2-S3, S2-S4, S3-S4
• 4 bend angles: set to zero if no CSC stub is found and only RPC stub is used
• For ME1 only: 1 bit for front or back chambers and 1 bit for inner or outer h ring
• 1 track q taken from stub coordinate in ME2, ME3, ME4 (in this priority)
• 4 RPC bits indicating if ME or RE stub was used in each station (S1, S2, S3, S4)

At the time of this writing, information from the new Phase-2 detectors (GE1/1, GE2/1, ME0,
iRPC) has not been incorporated into the study, and neither has the more precise CSC bend
information described above. As such, this study is geared towards possible implementation of
this algorithm during Run-3. An update to incorporate new Phase-2 detector information is in
progress. The already positive conclusions on triggering on standalone displaced muons in the
endcap with only the Phase-1 detectors, as shown below, is expected to improve significantly
when all Phase-2 information is included.

Figure 3.34 shows, for events with single muons and no pileup, the q/pT and the d0 resolutions
as determined by the NN estimate of these quantities. The pT resolution is about 60%, which
is large compared to the 20% resolution obtained from EMTF++ for prompt muons. A bias
towards underestimating the pT can be observed. However, the d0 resolution is very good,
⇠ 5 cm. Figure 3.35 shows the trigger rates of the displaced muon algorithm for PU 200 events.
In order to keep the rates at approximately the same 10 kHz level as those from prompt muons,
reasonable L1 thresholds of, for example, pT > 20 GeV and |d0| > 20 cm can be applied.

�1

Dense Network 
23 ➜ 30 ➜ 25 ➜ 20  

➜ momentum & classifier

Inference time: 280 ns 
Throughput: 104 Gb/s

AI circuit for ultrafast inference on FPGA

240 ns

▸ NN measures muon momentum

▸ 3× reduction in the trigger rate for NN!


▸ Fits within L1 trigger latency (240 ns!) and 
FPGA resource requirements (less then 30%)

CMS-TDR-021

https://cds.cern.ch/record/2714892


Next time

• Knowledge distillation

31


