PHYS 139/239:
Machine Learni

Lecture 15:
Knowledge distille

Javier Duarte — February 28, 2023
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https://arxiv.org/abs/1804.06913

Recap: Quantization types

* Quantization: using reduced precision for parameters and operations

* Fixed-point precision

» Affine integer quantization
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https://arxiv.org/pdf/2004.09602.pdf

Affine integer quantization

An affine mapping of integers to real numbers r = S(g — 7)
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arXiv:2004.092602
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Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
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https://arxiv.org/pdf/2004.09602.pdf

Post-training quantization vs. quantization-aware training

Usually fast Slow
No re-training of the model Model needs to be trained/finetuned
Plug and play of quantization Plug and play of quantization
schemes schemes (requires re-training)

More control over final accuracy
since g-params are learned during
training.

Less control over final accuracy of
the model




Post-training quantization
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Quantization-aware training: how does it work?

 Fake quantization: using 32-bit floating-point math under the hood

o Straight-through estimator: during backpropagation, ignore quantization
operation (treat as identity)

Activation Layer Activation Layer

Forward pass ——

fp32
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o Weights FP32 FP32 -> INT4
Fake Quantization: Multiply Accumulate Requantization
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Area

Quantization-aware training

e Full performance with 6 bits

iInstead of 14 bits

* Much smaller fraction of
resources

 Area & power scale

quadratically with bit width
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https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2004.08906

Pruning + quantization-aware training
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https://github.com/Xilinx/brevitas
https://arxiv.org/abs/1804.10969
https://arxiv.org/abs/2102.11289

Hessian-aware quantization (HAWQ) =ov2011.10650

 Hessian of loss can provide additional guidance about quantization!
* Flat loss landscape: Lower bit width

» Sharp loss landscape: Higher bit width

Flat Loss Landscape M Sharp Loss Landscape

Floating Point values Floating Point values
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https://arxiv.org/abs/2011.10680

Recap: Pruning and quantization

* Pruning and quantization can be used post-training to compress models

 They can also be used more effectively during training to achieve even higher
levels of compression

« But so far we haven’t touch the model architecture?
* Are there compression schemes that do that?

* Yes, knowledge distillation!
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Challenge: tiny models are hard to train

Tiny models underfit large datasets

Training curve for ResNet50 Training curve for MobileNetV2-Tiny
Train. Acc. Val. Acc. @ Train. Acc. Val. Acc.
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Question: Can we help the training of tiny models with large models?
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Knowledge distillation

Distilling the Knowledge in a Neural Network

Geoffrey Hinton* Oriol Vinyals' Jeff Dean
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
geoffhintonl@google.com vinyals@google.com jeff@google.com
Abstract

A very simple way to improve the performance of almost any machine learning
algorithm 1s to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it 1s possible to
compress the knowledge in an ensemble into a single model which is much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel.
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https://arxiv.org/abs/2006.05525

arXiv:2006.05525
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https://arxiv.org/abs/2006.05525

lllustration of KD

Matching prediction probabilities between teacher and student

Student Network

Logits Probabillities
Cat 5
Dog 1

Logits Probabilities
Cat 3 0.731
Dog 2 0.269
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exp(d)

exp(S) + exp(1)
exp(1)

exp(d) + exp(1)

The student
model is less
confident



lllustration of KD

Matching prediction probabilities between teacher and student

Student Network

Logits Probabillities
Cat 5 0.982
Dog 1 0.017
Logits Probabilities
Cat 3
Dog 2
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lllustration of KD

Concept of temperature

exp(S3/1)

exp(S/1) + exp(1/1)

Logits

Probabilities
(T=1)

Probabilities
(T=10)

Cat

0.982

0.599

Dog

Teacher Network

0.017

0.401

exp(5/10)

exp(3/10) + exp(1/10)

A larger temperature smooths the output probability distribution.
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Formal definition of KD

» Neural networks typically use a softmax function to generate the logits z; to class probabilities
exp(z/T)
p(Zia T) — :

Zj exp(z;/T)

temperature, which is normally set to 1.

.Here,i,j = 0,1,2,...,C — 1, where C is the number of classes. T is the

* The goal of knowledge distillation is to align the class probability distributions from teacher
and student networks.
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KD summary arXiv:2006.05525

Teacher Model

Student Model

Knowledge Transfer
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 Knowledge distillation: training a small student network to emulate a larger
teacher model or ensemble of networks
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https://arxiv.org/abs/2006.05525

Next time

e (Guest lecture!



