PHYS 139/239: Machine Learning in Physics Lecture 15: Knowledge distillation

Javier Duarte – February 28, 2023

Recap: Codesign

- Codesign: intrinsic development loop between algorithm design, training, and implementation
- Compression
 - Maintain high performance while removing redundant operations
- Quantization
 - Reduce precision from 32-bit floating point to 16-bit, 8-bit, ...
- Parallelization
 - Balance parallelization (how fast) with resources needed (how costly)

Recap: Quantization types

- Quantization: using reduced precision for parameters and operations
- Fixed-point precision

Affine integer quantization

ap_fixed<width,integer> 0101.1011101010

Affine integer quantization

An affine mapping of integers to real numbers r = S(q - Z)

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

arXiv:2004.09602

Post-training quantization vs. quantization-aware training

Usually fast

No re-training of the model

Plug and play of quantization schemes

Less control over final accuracy of the model

QAT
Slow
Model needs to be trained/finetuned
Plug and play of quantization schemes (requires re-training)
More control over final accuracy since <i>q-params</i> are learned during training.

Post-training quantization

 General strategy: avoid overflows in reaching optimal performance

General strategy: avoid overflows in integer bit then scan the decimal bit until

- operation (treat as identity)

Quantization-aware training

- Full performance with 6 bits instead of 14 bits
- Much smaller fraction of resources
- Area & power scale quadratically with bit width

<u>arXiv:2006.10159</u>

Xilinx VU9P

Pruning + quantization-aware training arXiv:2102.11289

- Quantization-aware pruning (QAP): iterative pruning can further reduce the hardware computational complexity of a quantized model
- After QAP, the 6-bit, 80% pruned model achieves a factor of 50 reduction in BOPs compared to the 32-bit, unpruned model
 - Study using **Brevitas**

Bit operations (BOPs) definition: arXiv:1804.10969

Hessian-aware quantization (HAWQ)

- Hessian of loss can provide additional guidance about quantization!
- Flat loss landscape: Lower bit width
- Sharp loss landscape: Higher bit width

Flat Loss Landscape

Floating Point values

4-bit Quantization

Recap: Pruning and quantization

- Pruning and quantization can be used post-training to compress models
- levels of compression

- But so far we haven't touch the model architecture?
 - Are there compression schemes that do that?
 - Yes, knowledge distillation!

They can also be used more effectively during training to achieve even higher

Challenge: tiny models are hard to train

Tiny models underfit large datasets

Training curve for ResNet50

MIT 6.S965: TinyML and Efficient Deep Learning Computing

Knowledge distillation

Distilling the Knowledge in a Neural Network

Geoffrey Hinton*[†] Google Inc. Mountain View geoffhinton@google.com

> A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions [3]. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators [1] have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel.

arXiv:2006.05525

Oriol Vinyals[†] Google Inc. Mountain View vinyals@google.com Jeff Dean

Google Inc. Mountain View jeff@google.com

Abstract

MIT 6.S965: TinyML and Efficient Deep Learning Computing

arXiv:2006.05525

https://efficientml.ai

Matching prediction probabilities between teacher and student

Student Network

MIT 6.S965: TinyML and Efficient Deep Learning Computing

	Logits	Probabilities	
Cat	5	0.982	$\frac{\exp(5)}{\exp(5) + e}$
Dog	1	0.017	$\frac{\exp(1)}{\exp(5) + e}$

	Logits	Probabilities
Cat	3	0.731
Dog	2	0.269

The student model is less confident

Matching prediction probabilities between teacher and student

Student Network

MIT 6.S965: TinyML and Efficient Deep Learning Computing

	Logits	Probabilities
Cat	5	0.982
Dog	1	0.017

	Logits	Probabilities
Cat	3	0.731
Dog	2	0.269

Concept of temperature

(11)

Teacher Network

MIT 6.S965: TinyML and Efficient Deep Learning Computing

A larger temperature smooths the output probability distribution.

Formal definition of KD

lacksquare $p(z_i, T) = \frac{\exp(z_i/T)}{\sum_i \exp(z_j/T)}$. Here, i, j = 0, 1, 2, ..., C - 1, where *C* is the number of classes. *T* is the

temperature, which is normally set to 1.

 \bullet and student networks.

MIT 6.S965: TinyML and Efficient Deep Learning Computing

Neural networks typically use a softmax function to generate the **logits** z_i to class **probabilities**

The goal of knowledge distillation is to align the class probability distributions from teacher

KD summary

teacher model or ensemble of networks

$$\mathcal{L}_{s} := \alpha \mathcal{L}_{\mathrm{NLL}} + (1 - \alpha) \mathcal{L}_{\mathrm{KD}}$$
$$\mathcal{L}_{\mathrm{NLL}}(\mathbf{z}_{s}, \mathbf{y}) := -\sum_{j=1}^{c} y_{j} \log \sigma_{j}(\mathbf{z}_{s}), \quad \mathcal{L}_{\mathrm{KD}}(\mathbf{z}_{s}, \mathbf{z}_{t}) := -\tau^{2} \sum_{j=1}^{c} \sigma_{j}\left(\frac{\mathbf{z}_{t}}{\tau}\right) \log \sigma_{j}\left(\frac{\mathbf{z}_{t}}{\tau}\right)$$

arXiv:2006.05525

Knowledge distillation: training a small student network to emulate a larger

Next time

• Guest lecture!