
Javier Duarte — February 28, 2023

PHYS 139/239:  
Machine Learning in Physics
Lecture 15:  
Knowledge distillation

1

Recap: Codesign

• Codesign: intrinsic development
loop between algorithm design,
training, and implementation

• Compression

• Maintain high performance while

removing redundant operations

• Quantization

• Reduce precision from 32-bit

floating point to 16-bit, 8-bit, …

• Parallelization

• Balance parallelization (how fast)

with resources needed (how
costly)

2

https://arxiv.org/abs/1804.06913

Recap: Quantization types

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

 = -3

127-128

 = 40 1

17

(a) Affine quantization

-

127-127

 = 4

0

10

32

(b) Scale quantization

Figure 1: Quantization mapping of real values to int8

3 Quantization Fundamentals

We focus on uniform integer quantization as it enables computing matrix multiplications and convolutions in the integer
domain, allowing the use of high throughput integer math pipelines. Uniform quantization can be divided in to two
steps. First, choose the range of the real numbers to be quantized, clamping the values outside this range. Second, map
the real values to integers representable by the bit-width of the quantized representation (round each mapped real value
to the closest integer value).

In this Section we will consider higher precision floating-point formats like fp16 and fp32 to be real numbers for
the purpose of discussion. Enabling integer operations in a pre-trained floating-point neural network requires two
fundamental operations:

Quantize: convert a real number to a quantized integer representation (e.g. from fp32 to int8).

Dequantize: convert a number from quantized integer representation to a real number (e.g. from int32 to fp16).

We will first define the quantize and dequantize operations in Section 3.1 and discuss their implications in neural
network quantization in Sections 3.2 and 3.3. Then we will discuss how the real ranges are chosen in Section 3.4.

3.1 Range Mapping

Let [�,↵] be the range of representable real values chosen for quantization and b be the bit-width of the signed integer
representation. Uniform quantization transforms the input value x 2 [�,↵] to lie within [�2b�1, 2b�1 � 1], where
inputs outside the range are clipped to the nearest bound. Since we are considering only uniform transformations,
there are only two choices for the transformation function: f(x) = s · x+ z and its special case f(x) = s · x, where
x, s, z 2 R. In this paper we refer to these two choices as affine and scale, respectively.

3.1.1 Affine Quantization

Affine quantization maps a real value x 2 R to a b-bit signed integer xq 2 {�2b�1,�2b�1 + 1, . . . , 2b�1 � 1}.
Equations 1 and 2 define affine transformation function, f(x) = s · x+ z:

s =
2b � 1

↵� �
(1)

z = � round(� · s)� 2b�1 (2)

where s is the scale factor and z is the zero-point - the integer value to which the real value zero is mapped. In the 8-bit
case, s = 255

↵�� and z = �round(� · s)� 128. Note that z is rounded to an integer value so that the real value of zero
is exactly representable. This will result in a slight adjustment to the real representable range [�,↵] [20].

3

arXiv:2004.09602

• Quantization: using reduced precision for parameters and operations

• Fixed-point precision

• Affine integer quantization

3

https://arxiv.org/pdf/2004.09602.pdf

Affine integer quantization arXiv:2004.09602

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Linear Quantization
An affine mapping of integers to real numbers r = S(q − Z)

46
Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

r
rmin

q

rmax

Z

0

× S

qmin qmax

Floating-point

Integer

Floating-point Scale

Zero point

Floating-point range

Bit Width qmin qmax

2 -2 1
3 -4 3
4 -8 7
N -2N-1 2N-1-1

4

https://arxiv.org/pdf/2004.09602.pdf

Post-training quantization vs. quantization-aware training

© Amir Gholami, UCB
Berkeley EE290, 2021Post Training Quantization (PTQ)

vs Quantization Aware Training (QAT)

21Slide from D. Peri, J. Patel, J.Park, Deploying Quantization-Aware Trained Networks Using TensorRT, 2020. 5

Post-training quantization

• General strategy: avoid overflows in integer bit then scan the decimal bit until
reaching optimal performance

Full performance
with 8 fractional bits

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Quantization

 29

0101.1011101010
width

fractionalinteger

Full performance
at 6 integer bits

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Full performance
at 8 fractional bits

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

ap_fixed<width,integer> • Quantify the performance of the classifier with the AUC

• Expected AUC = AUC achieved by 32-bit floating point
inference of the neural network

FP
G

A
AU

C
 /

Ex
pe

ct
ed

 A
U

C

Scan integer bits Scan fractional bits

Full performance
with 6 integer bits

6

Quantization-aware training: how does it work?

© Amir Gholami, UCB
Berkeley EE290, 2021Fake Quantization!

26

Fake Quantization:

Integer-only
Quantization

INT4

INT4

Weights

X

FP32
Multiply Accumulate

+ INT4

FP32 -> INT4
Requantization

Activations

ai4 = Int(
afp32

Sa
)

<latexit sha1_base64="c0GUhsgkmBlVAM3gHV6Rcgx4VpY=">AAACUnicZVLBThsxEHVCW2igJcCxF6tRJVpV0S4EwQWBoIdyqEpVAkhsiGad2WDh9a7sWURk7efwNVzpob9S9YA3rNQCI1l6fs+jeX52nCtpKQh+N5ozL16+mp173ZpfePN2sb20fGyzwgjsi0xl5jQGi0pq7JMkhae5QUhjhSfx5X6ln1yhsTLTRzTJcZDCWMtECiBPDds7cO4iknrCZa/k2/xA02qUGBAOziPCa6rVaDrKGRyVSb6+Vpbu5xDKj61huxN0g2nx5yCsQYfVdThs/41GmShS1CQUWHsWBjkNHBiSQmHZigqLOYhLGOOZhxpStAM3nV7yD54Z8SQzfmniU/b/DgeptZM09idToAv7VKvIf9oX9A4MfvO77zkaoMx8chGYcQrXpXc0jj5XqPXYEyVbAyd1XhBq8WApKRSnjFf58pE0KEhNPABhpL8VFxfgAyX/ClVc4dNwnoPjtW7Y62786HV29+rg5tg79p6tspBtsl32lR2yPhPsht2yO/arcdf40/S/5OFos1H3rLBH1Vy4B7dYtK8=</latexit>

W fp32 = (Sw,W
i4)fp32

<latexit sha1_base64="XZA5CnSR3Z7dtFJUGdSs50CYYqo=">AAACZ3icZVHRTtswFHWzMVg3RrdJE9JevFVIgFCVQKftZRIaPOxlGtMoRSKlunFvioXjRPbNRhXlx/gT3vYK38ADTlppFK7k6Pjec+zjkyhT0pLvXzW8J08Xni0uPW++eLn8aqX1+s2RTXMjsCdSlZrjCCwqqbFHkhQeZwYhiRT2o/O9at7/g8bKVB/SJMNBAmMtYymAXGvYOuyfFiHhBbmv1JOwPrEwOCp5nO1sl+XX9d/Dv1u8pjkCl91yY07C72mmkuaw1fY7fl38MQhmoM1mdTBs3YajVOQJahIKrD0J/IwGBRiSQmHZDHOLGYhzGOOJgxoStIOivrfka64z4nFq3NLE6+59RQGJtZMkcswE6Mw+nFXN/7N9dA4M/nC7nxkaoNRsFiGYcQIXpXM0Drcq1Jz3RPGXQSF1lhNqMbUU54pTyqvQ+UgaFKQmDoAw0r2KizMwIMj9miqu4GE4j8HRdifodj796rZ3v82CW2Lv2Ue2zgL2me2y7+yA9Zhgl+wfu2Y3jWtvxXvnrU6pXmOmecvmyvtwB3Y5vQ0=</latexit>

hfp32 = (Sh, h
i4)fp32

<latexit sha1_base64="L99LNuigFq4N4KCaIV+UiPl+xAw=">AAACZ3icZVHRbtMwFHUz2EYZWxkSQuLFW4U0UFUlo9N4QaqAB14Qm1i3SUupbtyb1prjRPYNahXlx/gT3ngd38ADTlqJdbuSo+N7z7GPT6JMSUu+/6vhrT14uL6x+aj5eOvJ9k7r6e65TXMjcCBSlZrLCCwqqXFAkhReZgYhiRReRNcfq/nFDzRWpvqM5hkOE5hoGUsB5Fqj1tn0exESzsh9pZ6H9YmFwXHJ4+ztYVm+P/g2mnZ4TXMELnvl6xUJv6VZSJqjVtvv+nXx+yBYgjZb1smo9TccpyJPUJNQYO1V4Gc0LMCQFArLZphbzEBcwwSvHNSQoB0W9b0lf+U6Yx6nxi1NvO7eVhSQWDtPIsdMgKb27qxq/p99QufA4Be3+5qhAUrNmyIEM0lgVjpHk7BToeaqJ4rfDQups5xQi4WlOFecUl6FzsfSoCA1dwCEke5VXEzBgCD3a6q4grvh3Afnh92g1z067bX7H5bBbbKXbJ8dsIAdsz77zE7YgAn2k/1mN+xP48bb8Z57LxZUr7HUPGMr5e39A5vRvSA=</latexit>

afp32 = W fp32hfp32

<latexit sha1_base64="pl1wSmrzwQ3x9LoM/SV9bzwyjIg=">AAACdXichVFNTxsxEHW2pYX0K4UjQrKaFqGqCrtpEFyQEHDopWoqNQSJTaNZZzax8HpX9mxFtNr/x1/gT3Clhx7wJpHKx4GRbD2/N2M/z0SZkpZ8/6rmPXu+9OLl8kr91es3b9813q+e2DQ3AnsiVak5jcCikhp7JEnhaWYQkkhhPzo/qvT+HzRWpvoXTTMcJDDWMpYCyFHDRgS/i5Dwgtwu9TSc3VgYHJU8zr62y3K//0TC5Am9Pmw0/ZY/C/4YBAvQZIvoDhv/wlEq8gQ1CQXWngV+RoMCDEmhsKyHucUMxDmM8cxBDQnaQTF7uOSfHDPicWrc0sRn7N2KAhJrp0nkMhOgiX2oVeR/7RidA4Pf3elHhgYoNZ+LEMw4gYvSORqHXypUv++J4r1BIXWWE2oxtxTnilPKqxHwkTQoSE0dAGGk+xUXEzAgyA2qalfwsDmPwUm7FXRaOz87zYPDReOW2Tr7wLZYwHbZAfvGuqzHBLtk1+yG/a3deBveR29znurVFjVr7F5427erQsSq</latexit>

<latexit sha1_base64="h7BWYpGPkj4tjJQqDyLE1x4cGbY=">AAACOnicZVBNSxxBEO1Ro+sm6kaPXhqXkCCyzIiSkJOoBy+JCq4KzrrU9Nasjd0zQ3eN7DLMT/DXeNUf4tVbyDXHHOxZF/yqpuHVe1Xw6kWZkpZ8/96bmJz6MD1Tm61//DQ3v9D4vHhs09wIbItUpeY0AotKJtgmSQpPM4OgI4Un0eVOpZ9cobEyTY5omGFHQz+RsRRAjuo2voaEAyp2h9CTgv/OdYTmZ8nD6sUGRAFlsX4eld1G02/5o+LvQTAGTTaug27jf9hLRa4xIaHA2rPAz6hTgCEpFJb1MLeYgbiEPp45mIBG2ylGB5X8i2N6PE6N+wnxEftyowBt7VBHblIDXdi3WkU+a7voHBj85br9DA1QalaLEExfw6B0jvrhWoXqrz1R/KNTyCTLCRPxZCnOFaeUVznynjQoSA0dAGGku4qLC3CJkUu77uIK3obzHhyvt4LNln+40dzaHgdXY8tshX1jAfvOttgeO2BtJtg1u2G37M679R68P97fp9EJb7yzxF6V9+8RcAitog==</latexit>

Dyadic Number:
a

2b

D Goldberg · 1991

INT4

INT4

Weights

X

INT32
Multiply Accumulate

+ INT4

INT32 -> INT4
Dyadic Rescaling

Activations

(Sw,W
i4)

<latexit sha1_base64="Zu3W1eSNbsDDuCL0AqlXpdPA5Bk=">AAACSHicZVDLTttAFB2nLYWUR0K7axejRkiAUGRXqcoStV2wqQBBCBIO0fXkJowYj62Z65TUyr+whU/hD/oX3VXdMU4s0cCRRjpz7kPnnihV0pLv//YqL16+Wni9uFR9s7yyularr5/aJDMC2yJRiTmLwKKSGtskSeFZahDiSGEnuvpW1DsjNFYm+oTGKXZjGGo5kALISb3au83j3s8d3rnIQ5J6zGVrslXt1Rp+05+CPydBSRqsxGGv7n0I+4nIYtQkFFh7HvgpdXMwJIXCSTXMLKYgrmCI545qiNF286n9Cd9wSp8PEuOeJj5V/5/IIbZ2HEeuMwa6tE9rhfhY+47OgcEf7neQogFKzHYeghnGcD1xjobhTsGq855osNvNpU4zQi1mlgaZ4pTwIjXelwYFqbEjIIx0V3FxCQYEuWznNvVHMrXlfdezA4s8g6fpPSenn5pBq/n5qNXY+1omu8jes49skwXsC9tj++yQtZlgv9gNu2V33r33x/vr/Zu1Vrxy5i2bQ6XyAIwCsI0=</latexit>

(Sh, h
i4)

<latexit sha1_base64="mO0NE74aGtaK7dJt0zUlyAgyG7w=">AAACSHicZVBdSxtBFJ1NWz/SqrH1zT4MDQUrEnYl0j5K9cEXUWmjgpuGu5ObZMjs7DJzV0yX/Je+6k/xH/gvfBPfnE0WbPTAwJlzPzj3RKmSlnz/zqu8eftubn5hsfr+w9LySm3146lNMiOwJRKVmPMILCqpsUWSFJ6nBiGOFJ5Fw72ifnaJxspE/6ZRiu0Y+lr2pAByUqe2tvGrM9jigz95SFKPuGyOv1U7tbrf8Cfgr0lQkjorcdxZ9T6H3URkMWoSCqy9CPyU2jkYkkLhuBpmFlMQQ+jjhaMaYrTtfGJ/zL86pct7iXFPE5+o/0/kEFs7iiPXGQMN7MtaIT7X9tE5MHjofkcpGqDEbOYhmH4MV2PnqB9uFaw664l6P9q51GlGqMXUUi9TnBJepMa70qAgNXIEhJHuKi4GYECQy3ZmU/dSpra872p6YJFn8DK91+R0uxE0GzsnzfruzzLZBbbOvrANFrDvbJcdsGPWYoL9Zf/YNbvxbr1778F7nLZWvHLmE5tBpfIEj42wjw==</latexit>

ai4 = Int(
SwSh

Sa
ai32)

<latexit sha1_base64="iAcfzp8AOe6T/If5JT6v/EJOgNA=">AAACgHicZVFtb9MwEHbDy7by1sFH+GBRIRWESrJ1GkJCmgbiRQIxNLpNWrro4l5aa44T2ZfRKsqf4tfAR/glOG0k6HaS5cfP3dnPPY5zJS35/q+Wd+36jZtr6xvtW7fv3L3X2bx/ZLPCCByKTGXmJAaLSmockiSFJ7lBSGOFx/H5mzp/fIHGykx/o3mOoxQmWiZSADkq6nyCszIkqedcDir+mn/U1AsTA6I8jL4fRtPK7VDBWUg4o6YyXDxbvssMWnpvEHUlt7eqp+2o0/X7/iL4VRA0oMuaOIg2W4/CcSaKFDUJBdaeBn5OoxIMSaGwaoeFxRzEOUzw1EENKdpRuXi/4k8cM+ZJZtzSxBfs/x0lpNbO09hVpkBTezlXk/9yb9EpMPjZnb7kaIAy86wMwUxSmFVO0SR8XqP2qiZKXo5KqfOCUIulpKRQnDJeu83H0qAgNXcAhJFuKi6m4Owl9ycrN40vZG6b+WbLAWs/g8vuXQVHW/1g0N/5Ouju7TfOrrOH7DHrsYDtsj32gR2wIRPsB/vJfrM/nuf1vBdesCz1Wk3PA7YS3qu/W8bE+Q==</latexit>

ai32 = W i4hi4

<latexit sha1_base64="A0NMURXpD+ccBqqulzOJxdT36jk=">AAACqXicjVHfb9MwEHbCr5EB68YjPFhUSAhQlYwi9oI0AQJeEJtE14qlVBf32lpz7Mi+TK2i/KGIfwanjQTdHuAkW5+/++58P7JCSUdx/DMIb9y8dfvOzt1o9979B3ud/YMzZ0orcCCMMnaUgUMlNQ5IksJRYRHyTOEwu3jf+IeXaJ00+hutChznMNdyJgWQpyadEn5UKeGS/C31Kl1nrD4ai44+WURdc/nqsK7fDv+t69f14r9U0aTTjXvx2vh1kLSgy1o7mewHj9OpEWWOmoQC586TuKBxBZakUFhHaemwAHEBczz3UEOOblyt/6/5U89M+cxYfzTxNft3RAW5c6s888ocaOGu+hryj+8D+gosfvGvrwVaIGOfVynYeQ7L2lc0T182KNquiWZH40rqoiTUYlPSrFScDG/WwqfSoiC18gCElb4rLhZgQZBf3lam6aUsXNvfctNgM8/k6vSug7PDXtLvvT7td4/ftZPdYY/YE/aMJewNO2af2QkbMMF+BUEQBbvhi/A0HIXfN9IwaGMesi0LxW/ibtYF</latexit>

SwSh

Sa
=

↵

2�

<latexit sha1_base64="uOOhnlUQA2GKMwyJfOyhqLxvla4=">AAACYHicZVBNT9tAEN2YfqTpB0l7oxxWjZCqCkU2ooJLJVQ49FJBRQNIOLXGm3GyYm2vdsdAZPlP8Gt6bf9Fr/wS1oklGhhptW/fzKzee7FW0pLv/2t5K0+ePnveftF5+er1m9Vu7+2JzQsjcChylZuzGCwqmeGQJCk80wYhjRWexhf7df/0Eo2VefaTZhpHKUwymUgB5KiouxkmBkR5HF0dR9PK3VDxL3xBhqD0FKpy61cYI0HVibp9f+DPiz8GQQP6rKmjqNdaD8e5KFLMSCiw9jzwNY1KMCSFwqoTFhY1iAuY4LmDGaRoR+XcVsU3HDPmSW7cyYjP2f83SkitnaWxm0yBpvZhrybvewfoFBj87l6HGg1Qbj45i2aSwnXlFE3CzRp1ljVRsjsqZaYLwkwsJCWF4pTzOk0+lgYFqZkDIIx0rriYgguPXOZLP40vpbaNv+uFwTrP4GF6j8HJ1iDYHnz+sd3f+9ok22bv2Qf2kQVsh+2xb+yIDZlgN+w3+8P+tm69trfq9RajXqvZeceWylu7A1pVuL0=</latexit>

Z. Yao*, Z. Dong*, Z. Zheng*, A. Gholami*, E. Tan, J. Li, L. Yuan, Q. Huang, Y. Wang, M. W. Mahoney, K. Keutzer,
HAWQ-V3: Dyadic Neural Network Quantization in Mixed Precision, arxiv:2011.10680, 2020.

• Fake quantization: using 32-bit floating-point math under the hood

• Straight-through estimator: during backpropagation, ignore quantization

operation (treat as identity)

7

Quantization-aware training
• Full performance with 6 bits

instead of 14 bits

• Much smaller fraction of

resources

• Area & power scale

quadratically with bit width

arXiv:2006.10159
Xilinx VU9P

ric cannot comprehensively reflect the performance of deep
learning (DL) accelerators. They investigate the impact of
various frequently-used hardware optimizations on a typi-
cal DL accelerator and quantify their effects on accuracy
and throughout under-representative DL inference workloads.
Their major conclusion is that high hardware throughput is
not necessarily highly correlated with the end-to-end high
inference throughput of data feeding between host CPUs and
AI accelerators. Finally, Baskin et al. [3] propose to gener-
alize FLOPS and OPS by taking into account the bitwidth
of each operand as well as the operation type. The resulting
metric, named BOPS (binary operations), allows area estima-
tion of quantized neural networks including cases of mixed
quantization.

The aforementioned metrics do not provide any insight on
the amount of silicon resources needed to implement them.
Our work, accordingly, functions as a bridge between the
CNN workload complexity and the real power/area estima-
tion.

3. COMPLEXITY METRIC
In this section, we describe our hardware-aware complexity

metric (HCM), which takes into account the CNN topology,
and define the design rules of efficient implementation of
quantized neural networks. The HCM metric assesses two
elements: the computation complexity, which quantifies the
hardware resources needed to implement the CNN on silicon,
and the communication complexity, which defines the mem-
ory access pattern and bandwidth. We describe the changes
resulting from switching from a floating-point representation
to a fixed-point one, and then present our computation and
communication complexity metrics. All results for the fixed-
point multiplication presented in this section are based on the
Synopsys standard library multiplier using TSMC’s 28nm
process.

3.1 The impact of quantization on hardware
implementation

Currently, the most common representation of weights and
activations for training and inference of CNNs is either 32-
bit or 16-bit floating-point numbers. The fixed-point MAC
operation, however, requires significantly fewer hardware
resources, even for the same input bitwidth. To illustrate this
fact, we generated two multipliers: one for 32-bit floating-
point1 and the other for 32-bit fixed-point operands. The
results in Table 1 show that a fixed-point multiplier uses ap-
proximately eight time less area, gates, and power than the
floating-point counterpart. Next, we generated a convolution
with a k ⇥ k kernel, a basic operation in CNNs consisting of
k2 MAC operations per output value. After switching from
floating-point to fixed-point, we explored the area of a single
processing engine (PE) with variable bitwidth. Note that ac-
cumulator size depends on the network architecture: the maxi-
mal bitwidth of the output value is bwba+ log2(k2)+ log2(n),
where n is number of input features. Since the extreme values
are very rare, however, it is often possible to reduce the accu-
mulator width without harming the accuracy of the network
[6].

1FPU100 from https://opencores.org/projects/fpu100

0 2 4 6 8 10 12 14 16
Bitwidth

0

1000

2000

3000

4000

A
re

a

Quadratic fit

PE area

Figure 2: Area (A) vs. bitwidth (b) for a 3 ⇥ 3 PE with a
single input and output channel. All weights and activations
use the same bitwidth and the accumulator width is 4 bit
larger, which is enough to store the result. The quadratic fit
is A = 12.39b2 + 86.07b � 14.02 with goodness of fit R2 =
0.9999877.

Fig. 2 shows the silicon area of the PE as a function of
the bitwidth. We performed a polynomial regression and ob-
served a quadratic dependence of the PE area on the bitwidth,
with the coefficient of determination R2 = 0.9999877. This
nonlinear dependency demonstrates that quantization impact
a network hardware resources is quadratic: reducing bitwidth
of the operands by half reduces area and, by proxy, power ap-
proximately by a factor of four (contrary to what is assumed
by, e.g., Mishra et al. [20]).

3.2 Computation
We now present the BOPS metric defined in Baskin et al.

[3] as our computation complexity metric. In particular, we
show that BOPS can be used as an estimator for the area
of the accelerator. The area, in turn, is found to be linearly
related to the power in case of the PEs.

The computation complexity metric describes the amount
of arithmetic “work” needed to calculate the entire network
or a single layer. BOPS is defined as the number of bit opera-
tions required to perform the calculation: the multiplication
of n-bit number by m-bit number requires n ·m bit operations,
while addition requires max(n,m) bit operations. In partic-
ular, Baskin et al. [3] show that a k ⇥ k convolutional layer
with ba-bit activations and bw-bit weights requires

BOPS = mnk2�babw +ba +bw + log2(nk2)
�

(1)

bit operations, where n and m are, respectively, the number
of input and output features of the layer. The formula takes
into account the width of the accumulator required to accom-
modate the intermediate calculations, which depends on n.
The BOPS of an entire network is calculated as a sum of
the BOPS of the individual layers. Creating larger accelera-
tors that can process more layers in parallel involves simply
replicating the same individual PE design.

In Fig. 3, we calculated BOPS values for the PEs from
Fig. 2 and plotted them against the area. We conclude that
for a single PE with variable bitwidth, BOPS can be used to
predict the PE area with high accuracy.

3

arXiv:2004.08906
8

https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2004.08906

Pruning + quantization-aware training

• Quantization-aware pruning (QAP):
iterative pruning can further reduce the
hardware computational complexity of a
quantized model

• After QAP, the 6-bit, 80% pruned model
achieves a factor of 50 reduction in
BOPs compared to the 32-bit, unpruned
model 

• Study using Brevitas
Bit operations (BOPs) definition:

arXiv:1804.10969

arXiv:2102.11289

9

https://github.com/Xilinx/brevitas
https://arxiv.org/abs/1804.10969
https://arxiv.org/abs/2102.11289

Hessian-aware quantization (HAWQ)
• Hessian of loss can provide additional guidance about quantization!

• Flat loss landscape: Lower bit width

• Sharp loss landscape: Higher bit width© Amir Gholami, UCB

Berkeley EE290, 2021Flat Loss Landscape à Low Bit Precision

31

• Uniform quantization is a linear mapping from floating point values to quantized integer values

Floating Point values

4-bit Quantization
0 1 14 15

Flat Loss Landscape

…

© Amir Gholami, UCB
Berkeley EE290, 2021Sharp Loss Landscape à High Bit Precision Needed

32

• Uniform quantization is a linear mapping from floating point values to quantized integer values

Floating Point values

8-bit Quantization

Sharp Loss Landscape

0 1 254 255

…

arXiv:2011.10680

10

https://arxiv.org/abs/2011.10680

Recap: Pruning and quantization
• Pruning and quantization can be used post-training to compress models

• They can also be used more effectively during training to achieve even higher

levels of compression 
 
 
 

• But so far we haven’t touch the model architecture?

• Are there compression schemes that do that?

• Yes, knowledge distillation!

11

Challenge: tiny models are hard to train

12MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Tiny models are hard to train
Tiny models underfit large datasets

6
Network Augmentation for Tiny Deep Learning [Cai et al., ICLR 2022]

70

73

76

79

82

50 60 70 80 90 100

Train. Acc. Val. Acc.

42

44

46

48

50

52

100 110 120 130 140 150

Train. Acc. Val. Acc.

Question: Can we help the training of tiny models with large models?

Training curve for ResNet50 Training curve for MobileNetV2-Tiny

Knowledge distillation

13

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Knowledge Distillation

7
Distilling the Knowledge in a Neural Network [Hinton et al., NeurIPS Workshops 2014]

ar
X

iv
:1

50
3.

02
53

1v
1

 [s
ta

t.M
L]

 9
 M

ar
 2

01
5
Distilling the Knowledge in a Neural Network

Geoffrey Hinton∗†
Google Inc.

Mountain View
geoffhinton@google.com

Oriol Vinyals†
Google Inc.

Mountain View
vinyals@google.com

Jeff Dean
Google Inc.

Mountain View
jeff@google.com

Abstract

A very simple way to improve the performance of almost any machine learning
algorithm is to train many different models on the same data and then to average
their predictions [3]. Unfortunately, making predictions using a whole ensemble
of models is cumbersome and may be too computationally expensive to allow de-
ployment to a large number of users, especially if the individual models are large
neural nets. Caruana and his collaborators [1] have shown that it is possible to
compress the knowledge in an ensemble into a single model which is much eas-
ier to deploy and we develop this approach further using a different compression
technique. We achieve some surprising results on MNIST and we show that we
can significantly improve the acoustic model of a heavily used commercial system
by distilling the knowledge in an ensemble of models into a single model. We also
introduce a new type of ensemble composed of one or more full models and many
specialist models which learn to distinguish fine-grained classes that the full mod-
els confuse. Unlike a mixture of experts, these specialist models can be trained
rapidly and in parallel.

1 Introduction

Many insects have a larval form that is optimized for extracting energy and nutrients from the envi-
ronment and a completely different adult form that is optimized for the very different requirements
of traveling and reproduction. In large-scale machine learning, we typically use very similar models
for the training stage and the deployment stage despite their very different requirements: For tasks
like speech and object recognition, training must extract structure from very large, highly redundant
datasets but it does not need to operate in real time and it can use a huge amount of computation.
Deployment to a large number of users, however, has much more stringent requirements on latency
and computational resources. The analogy with insects suggests that we should be willing to train
very cumbersome models if that makes it easier to extract structure from the data. The cumbersome
model could be an ensemble of separately trained models or a single very large model trained with
a very strong regularizer such as dropout [9]. Once the cumbersome model has been trained, we
can then use a different kind of training, which we call “distillation” to transfer the knowledge from
the cumbersome model to a small model that is more suitable for deployment. A version of this
strategy has already been pioneered by Rich Caruana and his collaborators [1]. In their important
paper they demonstrate convincingly that the knowledge acquired by a large ensemble of models
can be transferred to a single small model.

A conceptual block that may have prevented more investigation of this very promising approach is
that we tend to identify the knowledge in a trained model with the learned parameter values and this
makes it hard to see how we can change the form of the model but keep the same knowledge. A more
abstract view of the knowledge, that frees it from any particular instantiation, is that it is a learned

∗Also affiliated with the University of Toronto and the Canadian Institute for Advanced Research.
†Equal contribution.

1

arXiv:2006.05525

https://arxiv.org/abs/2006.05525

Illustration of KD

14

arXiv:2006.05525

MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Illustration of knowledge distillation

8
Knowledge Distillation: A Survey [Gou et al., IJCV 2020]

Input

Logits

Logits

Distillation
Loss

Classification
Loss

pruning
neurons

pruning
synapses

after pruningbefore pruning

Teacher Network

Student Network

pruning
neurons

pruning
synapses

after pruningbefore pruning

https://arxiv.org/abs/2006.05525

Illustration of KD

15MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Intuition of knowledge distillation
Matching prediction probabilities between teacher and student

9

pruning
neurons

pruning
synapses

after pruningbefore pruning

Logits Probabilities

Cat 5 0.982

Dog 1 0.017

Logits Probabilities

Cat 3 0.731

Dog 2 0.269

exp(5)
exp(5) + exp(1)

exp(1)
exp(5) + exp(1)

The student
model is less

confident

Teacher Network

Student Network

pruning
neurons

pruning
synapses

after pruningbefore pruning

Illustration of KD

16MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Intuition of knowledge distillation
Matching prediction probabilities between teacher and student

10

pruning
neurons

pruning
synapses

after pruningbefore pruning

Logits Probabilities

Cat 5 0.982

Dog 1 0.017

Logits Probabilities

Cat 3 0.731

Dog 2 0.269

Teacher Network

Student Network

pruning
neurons

pruning
synapses

after pruningbefore pruning

Illustration of KD

17MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Intuition of knowledge distillation
Concept of temperature

11

pruning
neurons

pruning
synapses

after pruningbefore pruning

Logits Probabilities

(T=1)

Probabilities

(T=10)

Cat 5 0.982 0.599

Dog 1 0.017 0.401
Teacher Network

exp(5/1)
exp(5/1) + exp(1/1)

exp(5/10)
exp(5/10) + exp(1/10)

A larger temperature smooths the output probability distribution.

Formal definition of KD

18MIT 6.S965: TinyML and Efficient Deep Learning Computing https://efficientml.ai

Formal Definition of KD

• Neural networks typically use a softmax function to generate the logits to class probabilities

. Here, , where is the number of classes. is the

temperature, which is normally set to 1.

• The goal of knowledge distillation is to align the class probability distributions from teacher
and student networks.

zi

p(zi, T) = exp(zi/T)
∑j exp(zj /T) i, j = 0,1,2,...,C − 1 C T

12
Distilling the Knowledge in a Neural Network [Hinton et al., NeurIPS Workshops 2014]

KD summary2 Jianping Gou1 et al.

Data

Teacher Model

Student Model

K
n
o
w
led
g
e

K
n
o
w
led
g
e

Distill Transfer

Knowledge Transfer

Fig. 1 The generic teacher-student framework for knowledge distillation.

2) model compression and acceleration techniques, in
the following categories (Cheng et al., 2018).

• Parameter pruning and sharing: These methods fo-
cus on removing inessential parameters from deep
neural networks without any significant effect on the
performance. This category is further divided into
model quantization (Wu et al., 2016), model bina-
rization (Courbariaux et al., 2015), structural matri-
ces (Sindhwani et al., 2015) and parameter sharing
(Han et al., 2015; Wang et al., 2019f).

• Low-rank factorization: These methods identify re-
dundant parameters of deep neural networks by em-
ploying the matrix and tensor decomposition (Yu et al.,
2017; Denton et al., 2014).

• Transferred compact convolutional filters: These meth-
ods remove inessential parameters by transferring
or compressing the convolutional filters (Zhai et al.,
2016).

• Knowledge distillation (KD): These methods distill
the knowledge from a larger deep neural network into
a small network (Hinton et al., 2015).

A comprehensive review on model compression and
acceleration is outside the scope of this paper. The
focus of this paper is knowledge distillation, which
has received increasing attention from the research
community in recent years. Large deep neural networks
have achieved remarkable success with good perfor-
mance, especially in the real-world scenarios with large-
scale data, because the over parameterization improves
the generalization performance when new data is con-
sidered (Zhang et al., 2018; Brutzkus and Globerson,
2019; Allen-Zhu et al., 2019; Arora et al., 2018; Tu et al.,
2020). However, the deployment of deep models in mo-
bile devices and embedded systems is a great challenge,

due to the limited computational capacity and memory
of the devices. To address this issue, Bucilua et al.
(2006) first proposed model compression to transfer
the information from a large model or an ensem-
ble of models into training a small model without a
significant drop in accuracy. The knowledge transfer
between a fully-supervised teacher model and a stu-
dent model using the unlabeled data is also intro-
duced for semi-supervised learning (Urner et al., 2011).
The learning of a small model from a large model
is later formally popularized as knowledge distilla-
tion (Hinton et al., 2015). In knowledge distillation, a
small student model is generally supervised by a large
teacher model (Bucilua et al., 2006; Ba and Caruana,
2014; Hinton et al., 2015; Urban et al., 2017). The main
idea is that the student model mimics the teacher model
in order to obtain a competitive or even a superior
performance. The key problem is how to transfer the
knowledge from a large teacher model to a small student
model. Basically, a knowledge distillation system is
composed of three key components: knowledge, dis-
tillation algorithm, and teacher-student architecture.
A general teacher-student framework for knowledge
distillation is shown in Fig. 1.

Although the great success in practice, there are not
too many works on either the theoretical or empirical
understanding of knowledge distillation (Urner et al.,
2011; Cheng et al., 2020; Phuong and Lampert, 2019a;
Cho and Hariharan, 2019). Specifically, Urner et al. (2011)
proved that the knowledge transfer from a teacher
model to a student model using unlabeled data is
PAC learnable. To understand the working mecha-
nisms of knowledge distillation, Phuong & Lampert
obtained a theoretical justification for a generalization

arXiv:2006.05525

teacher is an m-component ensemble, the component logits (z1, . . . , zm), where zi = fi(x, ✓i), are
combined to form the teacher logits: zt = log (

Pm
i=1 �(zi)/m). These combined logits correspond

to the predictive distribution of the ensemble model average. The experiments in the main text
consider m 2 {1, 3, 5}, and we include results up to m = 12 in Appendix B.2.1

3.1 Knowledge Distillation

Hinton et al. [22] proposed a simple approach to knowledge distillation. The student minimizes a
weighted combination of two objectives, Ls := ↵LNLL+(1�↵)LKD, where ↵ 2 [0, 1). Specifically,

LNLL(zs,y) := �
cX

j=1

yj log �j(zs), LKD(zs, zt) := �⌧2
cX

j=1

�j

⇣zt
⌧

⌘
log �j

⇣zs
⌧

⌘
. (1)

LNLL is the usual supervised cross-entropy between the student logits zs and the one-hot labels y.
Recalling that KL(p||q) =

P
j pj(log qj � log pj), we see that LNLL is equivalent (up to a constant)

to the KL from the empirical data distribution to the student predictive distribution (p̂s). LKD is
the added knowledge distillation term that encourages the student to match the teacher. It is the
cross-entropy between the teacher and student predictive distributions p̂t = �(zt) and p̂s = �(zs),
both scaled by a temperature hyperparameter ⌧ > 0. If ⌧ = 1 then LKD is similarly equivalent to the
KL from the teacher to the student, KL(p̂t||p̂s). Since we focus on distillation fidelity, we choose
↵ = 0 for all experiments in the main text to avoid any confounding from true labels, but we also
include a limited ablation of ↵ in Figure 14 in Appendix C.5 for the curious reader.

As ⌧ ! +1, rzsLKD(zs, zt) ⇡ zt � zs, and thus in the limit rzsLKD is approximately equivalent
to rzs ||zt � zs||22/2, assigning equal significance to every class logit, regardless of its contribution
to the predictive distribution. In other words ⌧ determines the “softness” of the teacher labels, which
in turn determines the allocation of student capacity. If the student is much smaller than the teacher,
the student capacity can be focused on matching the teacher’s top-k predictions, rather than matching
the full teacher distribution by choosing a moderate value (e.g. ⌧ = 4). In Appendix B.1 we include
further discussion on the interplay of teacher ensemble size, teacher network capacity, and distillation
temperature on the student labels.

The teacher and student often share at least some training data. It is also common to enlarge the
student training data in some way (e.g. incorporating unlabeled examples as in Ba and Caruana [2]).
When there is a possibility of confusion, we will refer to the student’s training data as the distillation
data to distinguish it from the teacher’s training data.

3.2 Metrics and Evaluation

To measure generalization, we report top-1 accuracy, negative log-likelihood (NLL) and expected
calibration error (ECE) [16]. To measure fidelity, we report the following:

Average Top-1 Agreement :=
1

n

nX

i=1

1{argmax
j

�j(zt,i) = argmax
j

�j(zs,i)}, (2)

Average Predictive KL :=
1

n

nX

i=1

KL (p̂t(y|xi) || p̂s(y|xi)) , (3)

Eqn. (2) is the average agreement between the student and teacher’s top-1 label. Eqn. (3) is the
average KL divergence from the predictive distribution of the teacher to that of the student, a measure
of fidelity sensitive to all of the labels.

While improvements in generalization metrics are relatively easy to understand, interpreting fidelity
metrics requires some care. For example, suppose we have three independent models: f1, f2, and f3
that respectively achieve 55%, 75%, and 95% test accuracy. f1 and f3 can agree on at most 60% of
points, whereas f2 and f3 agree on at least 70%, but it would obviously be incorrect to make any
claim about f2 being a better distillation of f3 since each model was trained completely independently.
To account for such confounding when evaluating the distillation of a student s from a teacher t, we
also evaluate another student s0 distilled through an identical procedure from an independent teacher.

1Code for all experiments can be found here: https://github.com/samuelstanton/gnosis.

3

teacher is an m-component ensemble, the component logits (z1, . . . , zm), where zi = fi(x, ✓i), are
combined to form the teacher logits: zt = log (

Pm
i=1 �(zi)/m). These combined logits correspond

to the predictive distribution of the ensemble model average. The experiments in the main text
consider m 2 {1, 3, 5}, and we include results up to m = 12 in Appendix B.2.1

3.1 Knowledge Distillation

Hinton et al. [22] proposed a simple approach to knowledge distillation. The student minimizes a
weighted combination of two objectives, Ls := ↵LNLL+(1�↵)LKD, where ↵ 2 [0, 1). Specifically,

LNLL(zs,y) := �
cX

j=1

yj log �j(zs), LKD(zs, zt) := �⌧2
cX

j=1

�j

⇣zt
⌧

⌘
log �j

⇣zs
⌧

⌘
. (1)

LNLL is the usual supervised cross-entropy between the student logits zs and the one-hot labels y.
Recalling that KL(p||q) =

P
j pj(log qj � log pj), we see that LNLL is equivalent (up to a constant)

to the KL from the empirical data distribution to the student predictive distribution (p̂s). LKD is
the added knowledge distillation term that encourages the student to match the teacher. It is the
cross-entropy between the teacher and student predictive distributions p̂t = �(zt) and p̂s = �(zs),
both scaled by a temperature hyperparameter ⌧ > 0. If ⌧ = 1 then LKD is similarly equivalent to the
KL from the teacher to the student, KL(p̂t||p̂s). Since we focus on distillation fidelity, we choose
↵ = 0 for all experiments in the main text to avoid any confounding from true labels, but we also
include a limited ablation of ↵ in Figure 14 in Appendix C.5 for the curious reader.

As ⌧ ! +1, rzsLKD(zs, zt) ⇡ zt � zs, and thus in the limit rzsLKD is approximately equivalent
to rzs ||zt � zs||22/2, assigning equal significance to every class logit, regardless of its contribution
to the predictive distribution. In other words ⌧ determines the “softness” of the teacher labels, which
in turn determines the allocation of student capacity. If the student is much smaller than the teacher,
the student capacity can be focused on matching the teacher’s top-k predictions, rather than matching
the full teacher distribution by choosing a moderate value (e.g. ⌧ = 4). In Appendix B.1 we include
further discussion on the interplay of teacher ensemble size, teacher network capacity, and distillation
temperature on the student labels.

The teacher and student often share at least some training data. It is also common to enlarge the
student training data in some way (e.g. incorporating unlabeled examples as in Ba and Caruana [2]).
When there is a possibility of confusion, we will refer to the student’s training data as the distillation
data to distinguish it from the teacher’s training data.

3.2 Metrics and Evaluation

To measure generalization, we report top-1 accuracy, negative log-likelihood (NLL) and expected
calibration error (ECE) [16]. To measure fidelity, we report the following:

Average Top-1 Agreement :=
1

n

nX

i=1

1{argmax
j

�j(zt,i) = argmax
j

�j(zs,i)}, (2)

Average Predictive KL :=
1

n

nX

i=1

KL (p̂t(y|xi) || p̂s(y|xi)) , (3)

Eqn. (2) is the average agreement between the student and teacher’s top-1 label. Eqn. (3) is the
average KL divergence from the predictive distribution of the teacher to that of the student, a measure
of fidelity sensitive to all of the labels.

While improvements in generalization metrics are relatively easy to understand, interpreting fidelity
metrics requires some care. For example, suppose we have three independent models: f1, f2, and f3
that respectively achieve 55%, 75%, and 95% test accuracy. f1 and f3 can agree on at most 60% of
points, whereas f2 and f3 agree on at least 70%, but it would obviously be incorrect to make any
claim about f2 being a better distillation of f3 since each model was trained completely independently.
To account for such confounding when evaluating the distillation of a student s from a teacher t, we
also evaluate another student s0 distilled through an identical procedure from an independent teacher.

1Code for all experiments can be found here: https://github.com/samuelstanton/gnosis.

3

• Knowledge distillation: training a small student network to emulate a larger
teacher model or ensemble of networks

19

https://arxiv.org/abs/2006.05525

Next time

• Guest lecture!

20

