PHYS 139/239: Machine Learning in Physics

Lecture 15: Knowledge distillation

Javier Duarte - February 28, 2023

Recap: Codesign

- Codesign: intrinsic development loop between algorithm design, training, and implementation
- Compression
- Maintain high performance while removing redundant operations
- Quantization
- Reduce precision from 32-bit floating point to 16-bit, 8-bit, ...
- Parallelization
- Balance parallelization (how fast) with resources needed (how costly)

Recap: Quantization types

- Quantization: using reduced precision for parameters and operations
- Fixed-point precision
- Affine integer quantization

Affine integer quantization

An affine mapping of integers to real numbers $r=S(q-Z)$

Post-training quantization vs. quantization-aware training

$\left.\begin{array}{c|c}\text { PTQ } & \text { QAT } \\ \text { Usually fast } & \text { Slow } \\ \hline \text { No re-training of the model } & \text { Model needs to be trained/finetuned } \\ \hline \text { Plug and play of quantization } \\ \text { schemes }\end{array} \quad \begin{array}{c}\text { Plug and play of quantization } \\ \text { schemes (requires re-training) }\end{array}\right]$

Post-training quantization

- General strategy: avoid overflows in integer bit then scan the decimal bit until reaching optimal performance

Quantization-aware training: how does it work?

- Fake quantization: using 32-bit floating-point math under the hood
- Straight-through estimator: during backpropagation, ignore quantization operation (treat as identity)

Activation Layer Activation Layer

- Backward pass

Binary

Quantization-aware training

- Full performance with 6 bits instead of 14 bits
- Much smaller fraction of resources
- Area \& power scale quadratically with bit width

Xilinx VU9P

Pruning + quantization-aware training

- Quantization-aware pruning (QAP): iterative pruning can further reduce the hardware computational complexity of a quantized model
- After QAP, the 6-bit, 80\% pruned model achieves a factor of 50 reduction in BOPs compared to the 32-bit, unpruned model

- Study using Brevitas

Hessian-aware quantization (HAWQ)

- Hessian of loss can provide additional guidance about quantization!
- Flat loss landscape: Lower bit width
- Sharp loss landscape: Higher bit width

Recap: Pruning and quantization

- Pruning and quantization can be used post-training to compress models
- They can also be used more effectively during training to achieve even higher levels of compression
- But so far we haven't touch the model architecture?
- Are there compression schemes that do that?
- Yes, knowledge distillation!

Challenge: tiny models are hard to train

Tiny models underfit large datasets

Knowledge distillation

Distilling the Knowledge in a Neural Network

Geoffrey Hinton* ${ }^{\dagger}$
Google Inc.
Mountain View
geoffhinton@google.com

Oriol Vinyals ${ }^{\dagger}$
Google Inc.
Mountain View
vinyals@google.com

Jeff Dean
Google Inc.
Mountain View
jeff@google.com

Abstract

A very simple way to improve the performance of almost any machine learning algorithm is to train many different models on the same data and then to average their predictions [3]. Unfortunately, making predictions using a whole ensemble of models is cumbersome and may be too computationally expensive to allow deployment to a large number of users, especially if the individual models are large neural nets. Caruana and his collaborators [1] have shown that it is possible to compress the knowledge in an ensemble into a single model which is much easier to deploy and we develop this approach further using a different compression technique. We achieve some surprising results on MNIST and we show that we can significantly improve the acoustic model of a heavily used commercial system by distilling the knowledge in an ensemble of models into a single model. We also introduce a new type of ensemble composed of one or more full models and many specialist models which learn to distinguish fine-grained classes that the full models confuse. Unlike a mixture of experts, these specialist models can be trained rapidly and in parallel.

Illustration of KD

Illustration of KD

Matching prediction probabilities between teacher and student

Illustration of KD

Matching prediction probabilities between teacher and student

Illustration of KD

Concept of temperature

A larger temperature smooths the output probability distribution.

Formal definition of KD

- Neural networks typically use a softmax function to generate the logits z_{i} to class probabilities $p\left(z_{i}, T\right)=\frac{\exp \left(z_{i} / T\right)}{\sum_{j} \exp \left(z_{j} / T\right)}$. Here, $i, j=0,1,2, \ldots, C-1$, where C is the number of classes. T is the temperature, which is normally set to 1 .
- The goal of knowledge distillation is to align the class probability distributions from teacher and student networks.

KD summary

- Knowledge distillation: training a small student network to emulate a larger teacher model or ensemble of networks

$$
\mathcal{L}_{s}:=\alpha \mathcal{L}_{\mathrm{NLL}}+(1-\alpha) \mathcal{L}_{\mathrm{KD}}
$$

$\mathcal{L}_{\mathrm{NLL}}\left(\mathbf{z}_{s}, \mathbf{y}\right):=-\sum_{j=1}^{c} y_{j} \log \sigma_{j}\left(\mathbf{z}_{s}\right), \quad \underset{\substack{\text { KD } \\ \text { (} \\ \mathrm{L}}}{ }\left(\mathbf{z}_{s}, \mathbf{z}_{t}\right):=-\tau^{2} \sum_{j=1}^{c} \sigma_{j}\left(\frac{\mathbf{z}_{t}}{\tau}\right) \log \sigma_{j}\left(\frac{\mathbf{z}_{s}}{\tau}\right)$

Next time

- Guest lecture!

