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Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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2Introduction: generative models

A generator is nothing other than a function 
that maps random numbers to structure.

Deep generative models: the map is a deep neural network.
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5Outline

1. Why Generative Models?  
2. Warm up: mixture density networks 
3. Next: brief overview of GANs, VAEs, NFs 
4. Statistical amplification 
5. Applications 
6. Bonus



6Why generative models?
1. Augment/replace slow physics-based simulations 
2. (Fast) Confidence Intervals / Posterior Analysis 
3. Background estimation / anomaly detection 
4. …
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Figure 3. Comparison of (a) detector-frame component mass
and (b) sky position posteriors from DINGO (colored) and
LALInference (gray) for eight GWTC-1 events. 90% credible
regions shown.

For true posteriors, the percentiles should be uniformly
distributed, so the CDF should be diagonal. Kolmogorov-
Smirnov test p-values are indicated in the legend, with
combined p-value of 0.46. This shows that DINGO is
performing properly on simulated data.

We now proceed to our main result, which is a demon-
stration of performance on real events. We perform infer-
ence on the eight GWTC-1 BBH events compatible with
our prior, using both DINGO and LALInference MCMC.
For DINGO, generation of 50,000 sample points with 30
GNPE iterations takes roughly 1 minute. Comparisons of
inferred component masses and sky position for all events
show good agreement (see Fig. 3), including multimodal-
ity for the sky position. The one exception is GW170104,
where the mass posterior is slightly flatter. Nevertheless,
90% credible intervals are in good agreement.

For quantitative comparisons, we compute the Jensen-
Shannon divergence (JSD) [49] between DINGO and
LALInference one-dimensional marginalized posteriors
(see Fig. 4). This is a symmetric divergence that mea-
sures the di↵erence between two probability distributions,
with values ranging from 0 to ln(2) ⇡ 0.69 nat. We find a
mean JSD across all events and parameters of 0.0009 nat,
which is slightly higher than the variation (0.0007 nat)
found between LALInference runs with identical settings
but di↵erent random seeds [19]. By comparing such LAL-
Inference runs, Ref. [19] also established a maximum JSD
of 0.002 nat for indistinguishability; our results are ap-
proaching this threshold, with two events below for all
parameters, and the others with one to three parame-
ters above. The slight visible disagreement between mass
posteriors for GW170104 is also reflected in larger JSDs.
For comparison, we note that PSD variations (see Supple-
mental Material) and the choice of waveform model [19]
both impact the JSD at a much higher level (0.02 nat).
Additional comparisons between samplers, including pos-
teriors for all events, are provided in the Supplemental
Material.
Conclusions.—In this Letter, we introduced DINGO

and applied it to perform extremely fast Bayesian pa-
rameter inference for gravitational waves observed by the
LIGO and Virgo detectors. We analyzed eight GWTC-1
events, and showed excellent agreement with standard
algorithms, with inference times reduced by factors of 103–
104. This was achieved by conditioning on the detector
noise characteristics and making a number of architecture
and algorithm improvements. We plan to release a public
DINGO code in the very near future.

A critical component of DINGO is a new iterative
algorithm—GNPE—to partially o↵-load the modeling of
time translations from the neural network. Although con-
vergence of GNPE may take one minute, initial samples
with slightly reduced accuracy can, however, be produced
in just a few seconds by taking fewer iterations.

Going forward, the next steps are to extend the prior
to include longer-duration binary neutron star signals [50]
(for which rapid results are especially important to iden-
tify electromagnetic counterparts) and to extend to more
physically-realistic waveform models, which include higher
multipole modes and more accurate spin-precession ef-
fects [20]. Long and complex waveforms are much more
expensive for standard algorithms, so the relative improve-
ment in performance should be even more significant. If
successful, this would also enable the routine use of the
most physically-realistic waveforms, resulting in consis-
tently reduced systematic errors. These extensions will
likely require somewhat larger networks and improved
data representation or compression.

Another natural extension would be to study signals
with real detector noise, rather than the stationary-
Gaussian idealization. For DINGO, performing infer-
ence with realistic noise is simply a matter of training

2106.12594

GW inference x104 fasterCalorimeter sim. x105 faster

1705.02355



7Warm-up: MDNs
If you know the family of functions that generated 

your data, you can’t beat fitting that function.

(I’ll be more precise later about “beat”)

A lot of physics data are nearly Gaussian, or 
combinations of a small number of Gaussians, possibly 

with a complex dependence on energy, time, etc.

Classical mixture model:  

p(x) ∝ ∑i αi exp (− 1
2 (x − μ)TΣ−1(x − μ))



8Warm-up: MDNs
If you know the family of functions that generated 

your data, you can’t beat fitting that function.

(I’ll be more precise later about “beat”)

A lot of physics data are nearly Gaussian, or 
combinations of a small number of Gaussians, possibly 

with a complex dependence on energy, time, etc.

Classical mixture model:  

p(x) ∝ ∑i αi exp (− 1
2 (x − μ)TΣ−1(x − μ))

In case you have not seen this notation…

G(x |μ, σ) = 1

2πσ2
e− 1

2σ2 (x−μ)2

In 1D, .Σ = σ2
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10Warm-up: MDNs
If you know the family of functions that generated 

your data, you can’t beat fitting that function.

(I’ll be more precise later about “beat”)

A lot of physics data are nearly Gaussian, or 
combinations of a small number of Gaussians, possibly 

with a complex dependence on energy, time, etc.

Mixture density network: 
p(x |z) ∝ ∑i αi(z) exp (− 1

2 (x − μ(z))TΣ(z)−1(x − μ(z)))

Classical mixture model:  

p(x) ∝ ∑i αi exp (− 1
2 (x − μ)TΣ−1(x − μ))



11MDNs: details

The “parameters”  are deep neural networks.α(z), μ(z), Σ(z)

Since  is symmetric and positive semi-definite, 
need to take care when designing its architecture.

Σ

Train an MDN by minimizing .−log(p(x |z))

When  is 1D, there is only one component, and  
is fixed, then this reduces to mean squared error!

x Σ

Mixture density network: 
p(x |z) ∝ ∑i αi(z) exp (− 1

2 (x − μ(z))TΣ(z)−1(x − μ(z)))



12MDNs: code
from tensorflow import keras
import tensorflow_probability as tfp

tfd = tfp.distributions
tfpl = tfp.layers
tfk = tf.keras
tfkl = tf.keras.layers

n = len(X[:,0:])
z = np.zeros(n)
x = X[:,0:]

# Model the distribution of y given x with a Mixture Density Network.
event_shape = np.shape(X)
num_components = 5
params_size = 
tfpl.MixtureSameFamily.params_size(num_components,component_params_size=tfpl.MultivariateNormalTriL.params_size(event_shape[0]))
model = tfk.Sequential([
  tfkl.Dense(32, activation='relu'),
  tfkl.Dense(64, activation='relu'),
  tfkl.Dense(64, activation='relu'),
  tfkl.Dense(params_size, activation=None),
  tfpl.MixtureSameFamily(num_components, tfpl.MultivariateNormalTriL(event_shape[0]))
])

# Fit.
batch_size = 100
model.compile(optimizer='adam',
              loss=lambda x, model: -model.log_prob(x))
myhistory = model.fit(z, x,
          batch_size=batch_size,
          epochs=50,
          steps_per_epoch=n // batch_size)

(equivalently simple in PyTorch) 



13MDNs in action

Results

➔ Both DNN and MDN have a 
similar shape, where both 
have a much smaller Response 
IQR at higher energies

➔ The DNN and MDN perform 
similarly at lower energies

14

Work in Progress

Simultaneously learn 
confidence interval 

(“resolution”) and point estimate

Example: energy 
regression for hadrons 

in the ATLAS calorimeter

(figures without citations are links)

https://indico.cern.ch/event/1034469/contributions/4434651/attachments/2280696/3875081/ML4Pions%20MDN%20Energy%20Regression.pdf


14MDNs: overview
Pros:

Cons:

Up next: deep generative models with more flexibility

• Access to the density  
• Fast to sample 
• Easy to specify 
• Easy to train

• Do not scale well to high dimensions 
• Not good when the data are not nearly Gaussian(s)
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16Introduction: GANs
Generative Adversarial Networks (GANs):  
A two-network game where one maps noise to structure 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator or data



17Introduction: GANs

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator or data

Vanilla GAN loss: 
 − ∑

X∼data
log(D(x)) − ∑

Z∼noise
log(1 − D(G(z))



18Introduction: GANs
Vanilla GAN loss: 

 − ∑
X∼data

log(D(x)) − ∑
Z∼noise

log(1 − D(G(z))

*see e.g. https://github.com/hindupuravinash/the-gan-zoo

Figure 2: Optimal discriminator and critic when learning to di↵erentiate two Gaussians.

As we can see, the discriminator of a minimax GAN saturates and results in vanishing

gradients. Our WGAN critic provides very clean gradients on all parts of the space.

4 Empirical Results

We run experiments on image generation using our Wasserstein-GAN algorithm and
show that there are significant practical benefits to using it over the formulation
used in standard GANs.

We claim two main benefits:

• a meaningful loss metric that correlates with the generator’s convergence and
sample quality

• improved stability of the optimization process

4.1 Experimental Procedure

We run experiments on image generation. The target distribution to learn is the
LSUN-Bedrooms dataset [24] – a collection of natural images of indoor bedrooms.
Our baseline comparison is DCGAN [18], a GAN with a convolutional architecture
trained with the standard GAN procedure using the � logD trick [4]. The generated
samples are 3-channel images of 64x64 pixels in size. We use the hyper-parameters
specified in Algorithm 1 for all of our experiments.

9

There are many variations on this theme*.   
One important variation is called the Wasserstein or WGAN. 

Schematically, the idea of 
WGAN is to replace the 

discriminator with a notion of 
distance (‘earth moving’) 

between the real and fake data

https://arxiv.org/pdf/1701.07875.pdf?ref=paperspace-blog


19GANs: overview
Pros:

Cons:

• Fast to sample 
• Easy to specify (no restrictions on G) 
• Easy to make high dimensional

• No access to density 
• (Very) Hard to train (minimax) 
• Mode collapse
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Autoencoders (AEs):  
A pair of networks that embed the data into a latent space 
and decode back to the data space.

Introduction: AEs

Physics-based 
simulator or data

DE

latent space

Probabilistic 
encoder

Probabilistic 
decoder
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Variational Autoencoders (VAEs):  
A pair of networks that embed the data into a latent space 
with a given prior and decode back to the data space.

Introduction: VAEs

Physics-based 
simulator or data

DE

latent space

p(z|x) p(x|z)

Probabilistic 
encoder

Probabilistic 
decoder



22Introduction: VAEs

Physics-based 
simulator or data

DE

latent space

p(z|x) p(x|z)

Probabilistic 
encoder

Probabilistic 
decoder

Vanilla VAE loss: 
  ∑

Z∼p(z|x)

(x − D(z))2 + KL(p(z |x) | |p0(z))

“reconstruction” “regularization”

prior
KL-

divergence

Why “variational”?  Another way of looking at this is the Evidence Lower Bound (ELBO) and p(z|x) is the variational posterior.



23VAEs: overview
Pros:

Cons:

• Fast to sample 
• Easy to specify (no restrictions on G) 
• Easy to make high dimensional 
• Easy to train

• No access to density 
• Tends to over-smooth the density



24ex. AE variations: -VAE, PAEβ

Published in Transactions on Machine Learning Research (09/2022)

Figure 1: Schematic diagram of the PAE (left panel) and an illustration of the sampling procedure from
the PAE (right panel). The autoencoder networks are depicted as gray trapezia, the normalizing flow is
represented by black arrows and the latent spaces of the autoencoder and normalizing flow are shown in red
and blue, respectively.

data or a diagonal Gaussian distribution for continuous data. The ELBO is guaranteed to bound the true
evidence p(x) from below. During the VAE training equation 12 is evaluated stochastically on samples from
the approximate posterior. Equation 12 shows that the VAE objective balances the average reconstruction
error (the likelihood term or distortion) with the sample quality (the KL term or rate). If the former
dominates the loss during training, the encoded distribution and prior do not match well. If this is the case,
samples from the prior can land outside of the encoded domain resulting in low sample quality. If the KL
term dominates, some latent dimensions will solely be used to satisfy the second term and not encode any
information about the input data, a problem known as posterior collapse (Alemi et al., 2018). Balancing the
two terms can be controlled by an additional parameters —,

L—≠VAE = ≠ Ep(x)
#
Eq„(z|x) [ln p◊(x|z)] ≠ — DKL [q„(z|x)||p(z)]

$
. (13)

This and related modification are known as —-VAEs (Bowman et al., 2016; Alemi et al., 2017; Higgins et al.,
2017; Makhzani et al., 2015). Training on equation 13 usually involves a grid search in order to find an
optimal value for — and annealing schedules.

The PAE optimizes the reconstruction and sample quality individually. Training of stage 1 reaches an
optimal reconstruction error. The latter is then left unchanged in the training of stage 2, which can focus
entirely on matching the latent space distribution. We test in our experiments whether this procedure results
in an advantage in reconstruction error and sample quality. A practical advantage of this procedure is that
it facilitates the hyper-parameter search over model architecture and training schedule. Instead of having to
iterate over encoder/decoder and flow architecture and the balance between rate and distortion term, each
step can be optimized individually and towards a single objective.

For our comparisons between VAE and PAE to be fair, we allow the VAE prior, which is typically a standard
normal distribution, to be more flexible. In analogy to the PAE, we model it with a normalizing flow,

Lflow≠VAE = ≠ Ep(x)
#
Eq„(z|x) [ln p◊(x|z)] ≠ DKL [q„(z|x)||p“(z)]

$
. (14)

4 Downstream Tasks

In our experiments, we test the PAE performance not only in terms of sample and reconstruction quality, but
also in terms of anomaly detection, a highly relevant downstream task of generative models. In appendix E,
we further show how the PAE can be used for posterior-based probabilistic image inputation.

4.1 Anomaly detection

One application of generative models is anomaly or out-of-distribution (OoD) detection. This is often based
on the assumption that a density estimator should return smaller probability densities for out-of-distribution

5

2006.05479

Probabilistic AE

Figure 1: Reconstruction of an SM event as a function of log10 �. Red points: Example test event.
Blue points: MLE reconstruction of the same test event. Each point represents a particle in the event,
with area proportional to the particle’s pT. The number of active latent dimensions (defined as those
with DKL,i > 0.1) is 0, 9, and 48 at each of these � values respectively, and the compression rates
DKL are 0, 12, and 145 bits, respectively.

The overall structure of the left plot is summarized by the two heat capacities in the right plot, defined
in analogy with the thermodynamic heat capacity [8, 30, 31] by

CS =
d hS(x, x0)i

d�
, CKL = �

d hDKL(q(z|x)||p(z))i

d log �
. (2)

Because the lines in the left plot have gradient close to �0.5, the heat capacities are related to the
effective number of degrees of the system by dim ' 2C, similarly to a thermodynamic system with
quadratic Hamiltonian. There is a plateau for � . 10�2, indicating that the VAE is unable to learn
additional informative structure at smaller scales than this. For � . 10�4, the VAE begins to overfit
the data and the two heat capacities diverge.

Figure 2: Left: KL divergences of the 256 individual latent space directions as a function of �,
averaged over the test SM data. Right: Heat capacities on same data, defined in the text.

Having trained a VAE on SM data, we explore the distinguishability of our signal models after being
compressed and reconstructed. A PFN classifier is trained on the HT-normalized VAE reconstructions
of the two signal categories. The details of this architecture and training parameters are described in
the Appendix.

In Fig. 3, we see the AUC for classification between reconstructed signal events as a function of �. For
� > 1, the VAE reconstruction is uninformative for signal classification, but it contains increasingly
useful information for classification for 10�2

< � < 1, before a plateau is reached for � < 10�2.

4

-VAEβ
-VAE loss: 

  
β

∑
Z∼p(z|x)

(x − D(z))2 + β KL(p(z |x) | |p0(z))

2210.11489



25Introduction: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)

Loss: −log(p(x))



26Introduction: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)

Loss: −log(p(x))

Invertible transformations 
with tractable Jacobians

In case you have not seen the change of variables formula…

Food for thought: 
Suppose the PDF of X is f 
and the CDF is F.  What is 

the density of F(X)? 
z

x

The Jacobian is a matrix 
of partial derivatives.

http://stla.github.io/stlapblog/posts/ChangeOfVariables.html
http://stla.github.io/stlapblog/posts/ChangeOfVariables.html
http://stla.github.io/stlapblog/posts/ChangeOfVariables.html


27Introduction: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)

Loss: −log(p(x))



28Introduction: NFs
Normalizing Flows (NFs):  
A series of invertible transformations mapping a known 
density into the data density.

F

latent 
space

F F F

Invertible transformations 
with tractable Jacobians

Optimize via 
maximum likelihood

p(x) = p(z) |dF-1/dx|p(z) p(x)

Example:  
(“autoregressive”)

F(xi) = zi + NN(xi−1)



29NFs: overview
Pros:

Cons:

• Usually only fast to sample OR to estimate the density 
• Access to the density 
• Easy to train

• Sometimes hard to make expressive enough 
• “Generator” is highly limited in form 
• Cannot learn topology



30Introduction: Score-based
Score-based 
Learn the gradient of the density instead of the probability 
density itself.

From 2206.11898

Loss: | f(x) − ∇p(x) |2

…but since we don’t know , we make use of a trick 
whereby the data are perturbed and it is sufficient to 

match the score of the perturbing function (!)

∇p

“score”

This turns the problem into a stochastic differential equation which is 
the same as diffusion (sometimes this is called a “diffusion model”)



31Introduction: Score-based
Score-based 
Learn the gradient of the density instead of the probability 
density itself. 3

t=1t=0 t=0.75t=0.25

Forward diffusion (training)

Reverse-time diffusion (data generation)

FIG. 1. The score-based generative model is trained using a di↵usion process that slowly perturbs the data. Generation of new
samples is carried out by reversing the di↵usion process using the learned score-function, or the gradient of the data density.
For di↵erent time-steps, we show the distribution of deposited energies versus generated particle energies (top) and the energy
deposition in a single layer of a calorimeter (bottom), generated with our proposed CaloScore model.

minimized during training is:

1

2
Ep�(x̃|x)pdata

h
ks✓(x̃)�rx̃ log p�(x̃|x)k

2
2

i
. (4)

The advantage of this strategy is that we can directly
estimate the last term in Eq. 4, since:

rx̃ log p�(x̃|x) =
x� x̃

�2
⇠

N (0, 1)

�
(5)

The time component can be made explicit by rewriting
the loss function in Eq. 4 as:

1

2
EtEp(xt|x0)p(x0)

h
�(t) ks✓(x, t)�rxt log pt(xt|x0)k

2
2

i
.

(6)
The weighting function �(t) : R ! R ensures

the loss function has the same order of magnitude at
all times and is chosen to be inversely proportional

to E
h
krxt log pt(xt|x0)k

2
2

i
. When the drift coe�cient

f(x, t) is chosen to be an a�ne function of x, the result-
ing perturbation kernel is always Gaussian [58] and can
be chosen such that both mean and variance are known
in closed form, making Eq. 6 e�cient to compute during
training.

III. CHOICE OF DRIFT AND DIFFUSION
COEFFICIENTS

In this work we investigate three di↵erent choices of
drift and di↵usion coe�cients that result in perturbation
kernels that are easy to calculate in closed form. The
first SDE, initially proposed in [53], is defined as:

dx =

r
d[�2(t)]

dt
dw. (7)

The parameter �(t) = �min

⇣
�max
�min

⌘t
is defined with

�min = 0.01 and �max = 50 to ensure x(1) ⇠ N (0,�2
max)

is independent from x(0). Since the time-dependent vari-
ance of the resulting perturbation explodes when t ! 1,
this SDE is often referred to variance exploding (VE)
SDE.
The second SDE is a continuous version of the discrete

perturbation introduced in [54], defined as:

dx = �
1

2
�(t)xdt+

p
�(t)dw. (8)

The parameter �(t) = �min + t (�max � �min) with
�min = 0.1 and �max = 20 is used, resulting in x(1) ⇠

N (0, 1). The variance of this process is fixed to one when

From 2206.11898
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• Many of the benefits of a NF, but unrestricted functions 
• Access to the density with some work 
• Easy to train 
• Currently the “best” on the market

• A bit slow to train / evaluate

Image Generation on CIFAR-10
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34Statistical Amplification

Performance continues to improve on many fronts.  As we integrate 
these tools into our workflows, we need to think about uncertainties. 

See also 1909.03081, 2002.06307, 2104.04543 (Generative Bayesian NNs), and 2107.08979 (“resampling”)

2006.06685; 2202.07352

One question is about the statistical power of samples 
from a generative model.  This depends on the implicit or 

explicit information we encode in the networks.
SciPost Physics Submission

Figure 2: Quantile error for the 1D camel back function for sampling (blue), fit (green), and
GAN (orange). We fit to and train on 100 data points, but also show (hypothetical) results
for larger data sets with 200, 300, 500 and 1000 data points (dotted blue). These results were
obtained using the same procedure as for the sample, but they have no influence on the GAN
or fit. Left to right we show results for 10, 20, and 50 quantiles.

populated 1D-phase space, the assumed functional value for the fit allows the data to have the
same statistical power as a dataset with no knowledge of the functional form that is 10 times
bigger. If we define the amplification factor as the ratio between asymptotic performance to
training events, the factor when using the fit information would be about 10. The question
is, how much is a GAN with its very basic assumptions worth, for instance in comparison to
this fit?

We introduce a simple generative model using the generator-discriminator structure of a
standard GAN. This architecture remains generic in the sense that we do not use specific
knowledge about the data structure or its symmetries in the network construction. Our setup
is illustrated in Fig. 3. All neural networks are implemented using PyTorch [48]. The
generator is a fully connected network (FCN). Its input consists of 1000 random numbers,
uniformly sampled from [�1, 1]. It is passed to seven layers with 256 nodes each, followed by
a final output layer with d nodes, where d is the number of phase space dimensions. To each
fully-connected layer we add a 50% dropout layer [49] to reduce over-fitting which is kept
active during generation. The generator uses the ELU activation function [50].

The discriminator is also a FCN. In a naive setup, our bi-modal density makes us especially
vulnerable to mode collapse, where the network simply ignores one of the two Gaussians. To
avoid it, we give it access to per-batch statistics in addition to individual examples using an
architecture inspired by DeepSets [51, 52]. This way its input consists of two objects, a data
point x 2 Rd and the full batch B 2 Rd,n, where n is the batch size and x corresponds to one
column in B. First, we calculate the di↵erence vector between x and every point in B, B� x
with appropriate broadcasting, so that B � x 2 Rd,n as well. This gives the discriminator a
handle on the distance of generated points. This distance is passed to an embedding function
� : Rd,n ! Rm,n, where m the size of the embedding. The embedding � is implemented as
three 1D-convolutions (256 filters, 256 filters, m filters) with kernel size 1, stride 1 and no
padding. Each of the convolutions uses a LeakyReLU [53] activation function with a slope
of 0.01. For the embedding size we choose m = 32.

We then use an aggregation function F : Rm,n ! Rm along the batch-size direction. The

5
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Generative models are NOT invariant under coordinate 
transformations.  Choose your coordinates wisely!
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FIG. 1. Histograms for a random normal variable X with
a (a) linear transform Y = 2X + 5, (b) non-linear transform
Y = e�X . The shaded regions mark where |X| > 1. Variables
that originate from low-density values of X are hatched (“/”
for X < 1 and “\” for X > 1). For the linear transforma-
tion, low-density values of X map to low-density values of Y .
For the non-linear transformation, however, the low-density
values originating from X > 1 are mapped to high-density
values of Y .

detection was recently made by the machine learning
community [81]. In the following section, we provide an
illustrative Gaussian example and then make an explicit
connection with HEP, both using the relative threshold
protocol.

IV. NUMERICAL EXAMPLES

A. Analytic Case

To clearly illustrate the ideas discussed in the previous
section, we will construct a simple example to demon-
strate a dramatic consequence of this sensitivity to co-
ordinate transformations. Let Xb ⇠ N (0, 1) represent

a set of background observables, and let Xs ⇠ N (1, 1)
represent a set of signal observables. This scenario is il-
lustrated in Fig. 2(a). A density estimation-based search
for anomalies would consist of learning the density of the
background pXb , then making a cut where the density is
low. This would designate the two tails of Xb as rare,
and a search for anomalies would then successfully pick
up the signal events Xs overlapping with the right-tail
phase space of the background.
Now, suppose that instead of the variables Xb and Xs,

we used Yb = f(Xb) and Ys = f(Xs), where f is the CDF
of a standard normal random variable. This scenario is
illustrated in Fig. 2(b). In this case, Yb (but not Ys)
would be distributed uniformly from 0 to 1. A density
estimation-based anomaly detection search would then
fail: while the signal is mapped to high values under the
transformation Ys = f(Xs), there are no anomalous (i.e.
low-density) regions of the background variable Yb that
would be identified and probed for signal.
One could imagine even less optimal transformations

that produce high background densities where there are
high signal densities and low background densities where
there are low (or zero) signal densities. One such scenario
is illustrated in Fig. 2(c) for the transformation Yb,s =
g(Xb,s) = tanh(Xb,s + 2). Anomaly detection through
density estimation would fail for such a transformation
of variables due to the background distribution aligning
closely with the signal distribution.
We also illustrate the impact of a change of coordi-

nates when popular anomaly detection algorithms are
used to identify the anomalies. We train an Autoencoder,
a Normalizing Flow, and a weakly-supervised model
based on the Classification Without Labels (CWoLa)
paradigm [2, 3, 93]. The dataset before the change of
coordinates consists of two-dimensional distributions of
background Xb ⇠ N (0, 1) and signal Xs ⇠ N (1, 1), with
each dimension independent and identically distributed.
The two-dimensional dataset is used to ensure the bottle-
neck layer of the Autoencoder is lower dimensional than
the input. The two functions used are the same ones
introduced previously: f , i.e. the CDF of a standard
normal random variable, and g(x) = tanh(x+ 2).

The Autoencoder compresses the two-dimensional
data into a one-dimensional latent space using fully-
connected layers of sizes (50, 20, 10) and ReLU activa-
tion functions before the bottleneck layer of size 1. The
decoder is simply the mirrored version of the encoder
architecture. Only background events are used during
training, and the anomaly score is then defined by the
reconstruction loss. The Normalizing Flow is built us-
ing a continuous Normalizing Flow [94] with a backbone
neural network defined by two stacked fully-connected
models with layer sizes (50, 20, 10) and tanh activa-
tion. The background-only density is estimated with
anomaly score defined as minus the probability density
of a single event. Finally, the weakly-supervised model
based on CWoLa is trained using a classifier consist-
ing of six fully-connected layers of sizes (50, 50, 20, 20,
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is illustrated in Fig. 2(c) for the transformation Yb,s =
g(Xb,s) = tanh(Xb,s + 2). Anomaly detection through
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of variables due to the background distribution aligning
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nates when popular anomaly detection algorithms are
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paradigm [2, 3, 93]. The dataset before the change of
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each dimension independent and identically distributed.
The two-dimensional dataset is used to ensure the bottle-
neck layer of the Autoencoder is lower dimensional than
the input. The two functions used are the same ones
introduced previously: f , i.e. the CDF of a standard
normal random variable, and g(x) = tanh(x+ 2).

The Autoencoder compresses the two-dimensional
data into a one-dimensional latent space using fully-
connected layers of sizes (50, 20, 10) and ReLU activa-
tion functions before the bottleneck layer of size 1. The
decoder is simply the mirrored version of the encoder
architecture. Only background events are used during
training, and the anomaly score is then defined by the
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ing a continuous Normalizing Flow [94] with a backbone
neural network defined by two stacked fully-connected
models with layer sizes (50, 20, 10) and tanh activa-
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

37Generative Models for Particle/Nuclear/AstroFigure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582

Material Interactions with High Energy Particles

M. Mustafa, et al., Comp. Astrophysics and Cosmology 6 (2019) 

Synthetic 
Universes for 
Dark Matter 

Structure

Synthetic Galactic 
radiation for Cosmic 

Microwave Background

The Structure of 
Radiation in the 

Quantum Strong Force



2

FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor
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"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 042003
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221

M. Paganini, L. De Oliveira, B. Nachman, Phys. Rev. Lett. 120 (2018) 042003
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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7

FIG. 3. Comparison of the sum of all voxel energies (top) and number of hits (bottom) for datasets 1 (left), 2 (middle), and 3
(right). Dashed red bands represent the 10% deviation interval of the generated samples when compared to Geant predictions

as:

�i =
q

hx2
i i � hxii

2, (15)

with energy-weighted mean defined as

hxii =

P
j xi,jEjP

j Ej
. (16)

A good agreement between all CaloScore implemen-
tations and Geant predictions is observed in dataset 2,
with all implementations showing less than 10% devia-
tion in all calorimeter layers. However, for dataset 3, the
VP implementations shows a disagreement at the last
layers of the detector while the shift observed in Fig. 4
for the VE implementation leads to a similar shift in
the shower width. Nevertheless, the subVP implemen-
tation maintains the same level of agreement as observed
in dataset 2.

A qualitative assessment of the generation is shown
in Fig. 7 for datasets 2 and 3. The 2-dimensional dis-
tribution of the average energy deposition is shown in
the detector layers with highest (layer 10) and lowest
(layer 44) mean energy depositions. Empty entries in the
Geant simulation are a result of the initial voxelization
combined with the following transformation to Cartesian
coordinates. All voxels with an expected energy deposi-

tion above 0 are populated in all CaloScore implemen-
tations, an indication that CaloScore is able to repro-
duce the shower diversity from the training set. Images at
layer 10 are identical for all di↵usion models, dominated
by the central voxel. Layer 44; however, has more vox-
els sharing a significant fraction of the layer energy. The
subVP implementation shows a visually similar average
to Geant compared to the other di↵usion implementa-
tions, capturing the high energy depositions along the
y-axis in dataset 2 and the isotropic pattern around the
center in dataset 3.
Finally, the assessment of generated samples using dif-

ferent conditional energies is investigated in Fig. 8, by
comparing the total deposited energy versus the gener-
ated particle energy.
All CaloScore models show similar mean and spread

compared to Geant, with the exception of the VE im-
plementation that shows a wider spread for dataset 2 and
higher mean in dataset 3.
We have also explored the classifier metric introduced

in CalowFlow whereby a post-hoc classifier is trained
to distinguish generated showers from Geant 4 exam-
ples. While the classifier could not exactly identify fake
from real showers, it did have an area under the receiver
operating characteristic curve (AUC) of about 0.98 for all
three models. While this suggests that further (hyper-
parameter)optimization would be beneficial, it already

2206.11898

See also https://calochallenge.github.io/homepage/

Figure 8. Distributions that are sensitive to Flow II for ⇡+. Top row: energy of brightest voxel
compared to the layer energy; second row: energy of second brightest voxel compared to the layer
energy; third row: di↵erence of brightest and second brightest voxel, normalized to their sum; last
row: sparsity of the showers. See [17] for detailed definitions.

– 16 –
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Depth-weighted total energy ld

FIG. 3. Comparison of shower shape variables and other variables of interest, such as the sparsity level per layer, for the
Geant4 and CaloGAN datasets for e+, � and ⇡+. See [PRD companion paper] for detailed definitions.

fier tested on CaloGAN samples. The stability of the
accuracy metric implies that the CaloGAN succeeds at
representing at least as much variation among showers
initiated by di↵erent particles as it is necessary to clas-
sify them using the same features in Geant4. Training
on CaloGAN and testing on Geant4 does show signif-
icant degradation, indicating that the GAN is inventing
new class-dependent features or underrepresenting class-

independent features. While percent-level variations may
be important for some applications, using classification
as a generator diagnostic is an important tool for expos-
ing the modeling of interclass shower variations.

Figure 5. Deposited energy
per layer in z-direction for
showers which are decoded
with all latent variables
zi = 0, except the highest
KLD latent z0 variable
which is set to values
between -3 and 3.

Specifically, we can increase generation fidelity by either regularizing the latent space more
strongly or by leveraging and sampling from the information rich non-Gaussian distributions.
Either optimization path can be approached in di↵erent ways. We have chosen one exem-
plary method for each: (1) By increasing �KLD the overall KLD in the latent space is reduced,
yielding latent distributions stronger regularized towards Standard Normal distributions and
therefore more accurate generative sampling from such a N(0, 1) distribution; or (2) keeping
the already trained model but using a second density estimator — such as Kernel Density
Estimation (KDE) [25] — on the latent variables and sampling directly from the encoded
latent space. The former approach is motivated by [26] while the latter mirrors a method for
the Bu↵er-VAE from Ref. [27].

Figure 6. Di↵erential distributions comparing physics quantities between Geant4 and BIB-AE models
with �KLD = 0.05, �KLD = 0.4 and �KLD = 0.05 with the KDE sampling approach.
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A key challenge in training GANs is the diversity of generated images. 
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46Conditioning

Figure 4. Interpolation across physical range of x0 as a conditioning latent factor for e+ showers.
Note in the ATLAS coordinate system, x represents the vertical direction in this dataset. Each
point in the interpolation is an average of 10 showers, with each point along the traversal build
from an identical latent prior z.

Figure 5. Interpolation across physical range of ✓ as a conditioning latent factor for e+
showers, with ✓ increasing from left to right. Each point in the interpolation is an average
of 10 showers subtracted from the middle point along the interpolation path, with each point
along the traversal build from an identical latent prior z.

controllability of generation procedures, but much future work remains. In particular, a thorough
investigation around dynamics between the attribute estimation portion of the network, ⌅, and
the overall training objective should be pursued, particularly as it relates to the final fidelity of
the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.
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[10] Paganini M, de Oliveira L and Nachman B 2017 (Preprint 1705.02355)
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Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.
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Figure 4. Interpolation across physical range of x0 as a conditioning latent factor for e+ showers.
Note in the ATLAS coordinate system, x represents the vertical direction in this dataset. Each
point in the interpolation is an average of 10 showers, with each point along the traversal build
from an identical latent prior z.

Figure 5. Interpolation across physical range of ✓ as a conditioning latent factor for e+
showers, with ✓ increasing from left to right. Each point in the interpolation is an average
of 10 showers subtracted from the middle point along the interpolation path, with each point
along the traversal build from an identical latent prior z.

controllability of generation procedures, but much future work remains. In particular, a thorough
investigation around dynamics between the attribute estimation portion of the network, ⌅, and
the overall training objective should be pursued, particularly as it relates to the final fidelity of
the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.
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Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.
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48Timing
Generation Method Hardware Batch Size milliseconds/shower

GEANT4 CPU N/A 1772

1 13.1

10 5.11

128 2.19
CPU

1024 2.03

1 14.5

4 3.68

128 0.021

512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under

various algorithm-hardware combinations.

21

NVIDIA K80

Intel Xeon 
E5-2670

(clearly these numbers have changed as both technologies have 
improved - this is simply meant to be qualitative & motivating!)

1705.02355
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2106.05285

Figure 13. Distributions that are sensitive to Flow I for ⇡
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.

– 22 –

Generative models have gotten much better; flow models are 
particularly promising.  Added bonus: have an explicit density.

See also score-based: 2206.11898
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Figure 13. Distributions that are sensitive to Flow I for ⇡
+. Top row: energy deposition per layer

and total energy deposition; center row: layer energy normalized to total energy deposition; bottom
row: weighted energy depositions, see text for detailed definitions.

– 22 –

Generative models have gotten much better; flow models are 
particularly promising.  Added bonus: have an explicit density.

classifier gives AUC= 0.5, whereas a perfect classifier gives AUC= 1.0. The second metric,

JSD, is the Jensen-Shannon divergence between the two distributions, which we deduce from

the binary cross entropy of the test set at the minimum [85, 86]. The JSD is 0 if the two

distributions are identical and 1 if they are disjoint. In all these tests we see that a classifier

can distinguish Geant4 and CaloGAN samples with 100% accuracy, whereas it has a much

harder time to distinguish between Geant4 and CaloFlow, indicating that CaloFlow

produced a more realistic dataset. We think that this is in part due to CaloGAN not

sampling the full space, as can be seen from average layer depositions that show voxels with

0 value, as well as centroid correlations that peak o↵-center. All these features act as “tells”

for the classifier.

In addition to these results, we investigated the influence of working in logit space by

transforming voxel values using (4.2) and then dividing it by 10 before feeding it into the

classifiers. As this preprocessing step artificially enhances features of dim voxels that likely

do not contribute much to the physics analysis, we do not think that these results neces-

sarily reflect physically meaningful di↵erences between the CaloFlow (or CaloGAN) and

Geant4 datasets. For completeness, we report the results of the classifiers with data in logit

space in table 5 in appendix B. We also checked if applying a threshold cut of 10 keV to

Geant4 and CaloGAN data (the same as in the last step of generating CaloFlow data)

has an influence and we found none.

Table 3. AUC and JSD metrics for the classification of Geant4 vs CaloGAN and CaloFlow

showers. Classifiers were trained on each particle type (e+, �, ⇡
+) separately. The results of two

classifiers based on DNN and CNN architectures are shown; for details on the classifier architectures
and training, see appendix A. All entries show mean and standard deviation of 10 runs and are rounded
to 3 digits. We see that the classifiers can distinguish Geant4 from CaloGAN showers with nearly
perfect accuracy in all cases, whereas Geant4 vs. CaloFlow showers are much more di�cult for the
classifiers to tell apart.

AUC / JSD
DNN CNN

vs. CaloGAN vs. CaloFlow vs. CaloGAN vs. CaloFlow

e
+

unnormalized 1.000(0) / 0.993(1) 0.847(8) / 0.345(12) 0.952(6) / 0.613(19) 0.504(2) / 0.002(1)

normalized 1.000(0) / 0.997(0) 0.869(2) / 0.376(4) 1.000(0) / 0.979(1) 0.736(92) / 0.168(134)

�

unnormalized 1.000(0) / 0.996(1) 0.660(6) / 0.067(4) 0.975(5) / 0.712(31) 0.516(1) / 0.002(1)

normalized 1.000(0) / 0.994(1) 0.794(4) / 0.213(7) 1.000(0) / 0.989(1) 0.678(50) / 0.082(57)

⇡
+

unnormalized 1.000(0) / 0.988(1) 0.632(2) / 0.048(1) 0.970(18) / 0.714(119) 0.517(2) / 0.001(0)

normalized 1.000(0) / 0.997(0) 0.751(4) / 0.148(4) 1.000(0) / 0.997(1) 0.864(7) / 0.340(16)

– 31 –

Output is nearly 
indistinguishable 

from Geant4 ! 
AUC = 1 means easily 

distinguishable, AUC = 0.5 
means not distinguishable

2106.05285

See also score-based: 2206.11898How to compare generative models? See e.g. 2211.10295



51Integration into real detector sim.
2109.02551

FastCalo
Sim V2Geant4

FastCaloSimv2

FastCalo
GAN

Geant4

Inner 
Detector Calorimeters Muon 

Spectrometer

Muons

Electrons 
Photons

Hadrons
FastCalo
Sim V2

Muon 
Punchthrough 

+Geant4

Geant4

Ekin < (8−16) GeV Ekin > (256 − 512) GeV(8−16) GeV < Ekin

Geant4
Ekin < 200 MeV

Ekin < 400 MeV
Other hadrons:

pions:

< (256 − 512) GeV

The ATLAS Collaboration fast simulation (AF3) now 
includes a GAN at intermediate energies for pions
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55Refining Simulations
As we move towards precision, we may need to 

complement primary generative models with post-hoc 
correction models (e.g. via reweighting)

2106.00792 , 2009.03796

2. Data space 
refinement via 
classification

3. Latent space 
refinement via 

generative models

1. Nominal generative model: 
a map from latent space to data space

4. LASER 
Generative Model

g(z)Φ(y)

f(x)

g(Φ(y))

Figure 1: A schematic diagram illustrating the LASER protocol. 1. The upper right part of the
diagram represents a given generative model g : RN ! RM that maps features from a latent space to
a data space. 2. A classifier network f : RM ! R is trained to distinguish between the generated
samples and real samples from data. The output of this classifier is interpreted as a likelihood ratio
between the generated samples and the real samples and is pulled back to the latent space. If f is
trained with binary cross entropy, the weights are approximated as w(x) = f(x)/(1�f(x)) and then
the weight of a latent space point z is w(g(z)). 3. Next, a second generative model � : RL ! RN

is trained with these weights to transform the original latent space into a new latent space. 4. The
LASER model is then given by g(�(y)).

Table 1: A comparison of commonly used deep generative models.

Method Train on
data

Exact log-
likelihood

Non-topology
preserving

Variational Autoencoders 3 7 3
Generative Adversarial Networks 3 7 3
Normalizing Flows 3 3 7

discriminator network that tries to distinguish samples drawn from pZ passed through g and those
drawn from pX directly. For VAEs, the generator is called the decoder and the auxiliary task requires
an encoder network h to satisfy g(h(x)) ⇡ x, while regularizing the latent space probability density.
Due to the structure of these networks, N need not be the same size as M .

In contrast to GANs and VAEs, NFs explicitly encode an estimate for the probability density pX .
These networks rely on a coordinate transformation which maps the prior distribution pZ into a
target distribution pg with g now being invertible. This requires M = N but allows for an analytic
expression for the probability density induced by g:

pg(x) ⌘ pg(g(z)) =

����
@g(z)

@z

����
�1

pZ(z). (1)

In order to match pg and the data probability density pX , one can directly maximize the log-likelihood
of the data without resorting to an auxiliary task:

log pg(x) = log pZ(g
�1(x)) + log

����
@g

�1(x)

@x

���� . (2)

3
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complement primary generative models with post-hoc 
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Exact log-
likelihood
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preserving

Variational Autoencoders 3 7 3
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discriminator network that tries to distinguish samples drawn from pZ passed through g and those
drawn from pX directly. For VAEs, the generator is called the decoder and the auxiliary task requires
an encoder network h to satisfy g(h(x)) ⇡ x, while regularizing the latent space probability density.
Due to the structure of these networks, N need not be the same size as M .

In contrast to GANs and VAEs, NFs explicitly encode an estimate for the probability density pX .
These networks rely on a coordinate transformation which maps the prior distribution pZ into a
target distribution pg with g now being invertible. This requires M = N but allows for an analytic
expression for the probability density induced by g:

pg(x) ⌘ pg(g(z)) =

����
@g(z)
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pZ(z). (1)

In order to match pg and the data probability density pX , one can directly maximize the log-likelihood
of the data without resorting to an auxiliary task:
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FIG. 2: The weights of the low-level and high-level Dctr
models. The top plot presents histograms of the weights and
the bottom plot presents a scatter plot demonstrating the cor-
relation between the weights of the two models. The Pearson
correlation (⇢) is indicated in the plot.

tween 1-10 while the Gan is many ten-thousand times
faster than Geant4 [39].

Three composite observables are presented in Fig. 3.
The total number of activated cells is more peaked
around 780 in Geant4 than the Gan and both the low-
level and high-level models are able to significantly im-
prove the agreement with Geant4. The value of hS2i
is about 20 times smaller than the unweighted Gan for
the high-level Dctr model and about 5 times smaller for
the low-level model. The statistical dilution is modest for
the low-level model with r = 1.2 while it is 3.6 for the
high-level model. The modeling of the total energy is
also improved through the reweighting, where both the
low-level and high-level models shift the energy towards
lower values. The longitudinal centroid is already rela-
tively well-modeled by the Gan, but is further improved
by the high-levelDctrmodel, reducing the hS2i by more
than a factor of two.

Histograms of the energy in representative layers are
shown in Fig. 4. Generally, the Geant4 showers pen-
etrate deeper into the calorimeter than the Gan show-
ers, so the energy in the early layers is too high for the
Gan and the energy in the later layers is too low. The
Dctr models are able to correct these trends, with a sys-
tematically superior fidelity as measured by hS2i for the
high-level model.

The modeling of correlations between layers is probed

FIG. 3: Histograms of various observables from simulated
calorimeter showers of 50 GeV photons in a 5-layer calorime-
ter with 30 ⇥ 30 cells in each layer. A cell is activated if a
non-zero energy is registered in that cell. The panels below
each histogram show the ratio between the Gan or the Dctr-
Gan and the physics-based simulator Geant4. The legend
includes the separation power hS2i between the (weighted)
Gan model and the Geant4 model. Additionally, the ratio r
of the uncertainty in the mean of the observable between the
Gan and Geant4 is also presented.
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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where Ii, ⌘i, and �i are the pixel intensity, pseudorapidity, and azimuthal angle, respectively. The
sums run over the entire image. The quantities ⌘a and �a are axis values determined with the one-pass
kt axis selection using the winner-take-all combination scheme [42].

The distributions of m(I), pT(I), and ⌧21(I) are shown in Fig. 6 for both GAN and Pythia images.
These quantities are highly non-linear, low dimensional manifolds of the 625-dimensional space in
which jet images live, so there is no guarantee that these non-trivial mappings will be preserved under
generation. However this property is desirable and easily verifiable. The GAN images reproduce many
of the jet-observable features of the Pythia images. Shapes are nearly matched, and, for example, signal
mass exhibits a peak at ⇠ 80GeV, which corresponds to the mass of the W boson that generates the
hadronic shower. This is an emergent property - nothing in the training or architecture encourages
this. Importantly, the generated GAN images are as diverse as the true Pythia images used for training
- the fake images do not simply occupy a small subspace of credible images.

Figure 6: The distributions of image mass m(I), transverse momentum pT(I), and n-subjettiness
⌧21(I). See the text for definitions.

We claim that the network is not only learning to produce samples with a diverse range of m, pT
and ⌧21, but it’s also internally learning these projections of the true data distribution and making use
of them in the discriminator. To provide evidence for this claim, we explore the relationships between
the D’s primary and auxiliary outputs, namely P (real) and P (signal), and the physical quantities that
the generated images possess, such as mass m and transverse momentum pT .

The auxiliary classifier is trained to achieve optimal performance in discriminating signal from
background images. Fig. 7 confirms its ability to correctly identify the class most generated images
belong to. Here, we can identify the response’s dependence on the kinematic variables. Notice how
D is making use of its internal representation of mass to identify signal-like images: the peak of the
m distribution for signal events is located around 80 GeV, and indeed images with mass around that
point have a higher P (signal) than the ones at very low or very high mass. Similarly, low pT images
are more likely to be classified as background, while high pT ones have a higher probability of being
categorized as signal images. This behavior is well understood from a physical standpoint and can be
easily cross-checked with the m and pT distribution for boosted W and QCD jets displayed in Fig. 6.
Although mass and transverse momentum influence the label assignment, D is only partially relying
on these quantities; there is more knowledge learned by the network that allows it, for example, to
still manage to correctly classify the majority of signal and background images regardless of their m
and pT values.

– 9 –
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Figure 6. Number of jets per event using the anti-kt R=0.4 jet algorithm (left) and the kt R=0.6
algorithm (right).

The jet width,6 ⇢, is a test of the shape of the radiation pattern emitted around a jet,

and is shown in Figure 7 for all jets that satisfy the selection criteria. The simple CNN

models do a surprisingly good job of recreating the jet shapes of the true parton shower,

especially for the large width jets. There is a deficiency in small width jets compared to

Sherpa, and an over-abundance of zero-width jets. This suggests some kind of dead cone

e↵ect, which could be an artefact of the approximate merging procedure, or some other

e↵ect of using an angular ordered-type shower. By way of comparison, Herwig’s angular-

ordered shower also displays a similar dip in the number of low width jets and shows the

range of expected di↵erences between an angular-ordered shower and a kT ordered shower.

The CNN models have no information about parton mass, and also have a cut o↵ at small

angle due to the finite pixel size, both of which may a↵ect the small width jets to some

extent.

Jet masses arise from the finite width of the jet, and jet mass distributions also serve

as a test of the radiation emitted around a jet. The distributions of jet masses from all

selected jets are shown in figure 8. Both the k2 and k3 CNN models have generated smooth

mass distributions from the input ME partons, with gradients close to those of the target

Sherpa model in the tails. However, the peak of the mass distributions do not match the

target. This is not surprising because the CNN models do not contain any information

about mass and do not trace the parton masses through the network; jet masses arise only

from the angular width of the jets. Furthermore, the existence of massive b and c quarks

can be seen in the Sherpa mass distribution as the small spikes at around 4.5 and 1.7 GeV,

respectively. Since the CNN does not include any mass term for the partons (or pixels) it

cannot reproduce these spikes. Again, the Herwig shower is shown as an example of the

di↵erences that can be expected between angular and kT ordered showers, in particular in

6
⇢ is given by ⇢ =

P

i
�R(j,pi)piT

P

i
piT

where the sum is over all constituents of the jet, piT is the pT of the i
th

jet constituent and �R (j, pi) is the angular separation between that constituent and the jet axis.

– 17 –

Figure 7. Jet width distributions using the anti-kt R=0.4 jet algorithm (left) and the kt R=0.6
algorithm (right).

the low mass region.
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Figure 8. Jet mass distributions using the anti-kt R=0.4 jet algorithm (left) and the kt R=0.6
algorithm (right).

Finally, the transverse momentum (pT ) distributions of all jets that satisfy the selection

criteria are shown in Figure 9. Both of the CNN models improve the jet pT spectra relative

to the unshowered matrix element partons by increasing the proportion of high-pT jets

and flattening the bump7 in the ME distribution between 40 and 50 GeV. Model k3 is

very close to the pT spectrum of the target Sherpa parton shower for both jet algorithms.

However, model k2 is somewhat too hard, and shows a flattening of the spectrum around

80 GeV. This flattening is an artefact of the shower merging procedure and disappears if

the merging layer is removed from the CNN.

7This small bump occurs because the ME event selection requires the sub-leading jet to pass the same
pT > 40 GeV criterion as the leading jet.

– 18 –
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Figure 4: Energy (top) and transverse momentum (bottom) distributions of the final-
state b-quark (left) and the decaying top quark (right) for MC truth (blue) and the GAN
(red). The lower panels give the bin-wise ratio of MC truth to GAN distribution. For the
pT distributions we show the relative statistic uncertainty on the cumulative number of
events in the tail of the distribution for our training batch size.

easily corrected for instance by slicing the parameter in pT and train the di↵erent phase
space regions separately. Alternatively, we can train the GAN on events with a simple
re-weighting, for example in pT , but at the expense of requiring a final unweighting step.

Phase space coverage

To illustrate that the GAN populates the full phase space we can for instance look at the
azimuthal coordinates of two final-state jets in Fig. 5. Indeed, the generated events follow
the expected flat distribution and correctly match the true events.

Furthermore, we can use these otherwise not very interesting angular correlations to
illustrate how the GAN interpolates and generates events beyond the statistics of the
training data. In Fig. 6 we show the 2-dimensional correlation between the azimuthal
jet angles �j1 and �j2 . The upper-left panel includes 1 million training events, while the
following three panels show an increasing number of GANed events, starting from 1 million
events up to 50 million events. As expected, the GAN generates statistically independent
events beyond the sample size of the training data and of course covers the entire phase
space.
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Figure 7: Comparison of di↵erent kernel functions (left) and varying widths (right) and
their impact on the invariant mass of W boson (top) and top quark (bottom).

GAN setup does not reproduce the phase space structure. The crucial task of this paper
is to show how well our network reproduces the resonance structures of the intermediate
narrow resonances. In Fig. 7 we show the e↵ect of the additional MMD loss on learning
the invariant mass distributions of the intermediate W and top states. Without the MMD,
the GAN barely learns the correct mass value, in complete agreement with the findings
of Ref. [15]. Adding the MMD loss with default kernel widths of the Standard Model
decay widths drastically improves the results, and the mass distribution almost perfectly
matches the true distribution in the W -case. For the top mass and width the results are
slightly worse, because its invariant mass needs to be reconstructed from three external
particles and thus requires the generator to correlate more variables. This gets particularly
tricky in our scenario, where the W -peak reconstruction directly a↵ects the top peak. We
can further improve the results by choosing a bigger batch size as this naturally enhances
the power of the MMD loss. However, bigger batch sizes leads to longer training times
and bigger memory consumption. In order to keep the training time on responsible level,
we limited our batch size to 1024 events per batch. As already pointed out, the results are
not perfect in this scenario, especially for the top invariant mass, however, we can clearly
see the advantages of adding the MMD loss.

To check the sensitivity of the kernel width on the results, we vary it by factors of
{1/4, 4}. As can be seen in the lower panels of both distributions, increasing the resolution
of the kernel or decreasing the kernel width hardly a↵ects the network performance. On
the other hand, increasing the width decreases the resolution and leads to too broad mass
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Figure 4: Comparison of real and generated distributions for a subset of jet and particle features. We
use the best performing model for each of the FC, GraphCNN, and MP generators, as per Table 2.
Top: gluon jet features, Middle: top quark jet, Bottom: lighter quark jets.

Architecture discussion. To disentangle the effectiveness of the MP generator and discriminator,
we train each individually with alternative counterparts (Table 2). With the same PointNet discrimi-
nator, the GraphCNN generator performs worse than the simple FC generator for every metric on
all three datasets. The physics-motivated MP generator on the other hand outperforms both on the
gluon and top quark datasets, and significantly so on the jet-level W1 scores and the FPND. We note,
however, that the MP generator is not a significant improvement over FC or GraphCNN with an FC
discriminator. Holding the generator fixed, the PointNet discriminator performs significantly better
over the FC for all metrics. With the FC and GraphCNN generators, PointNet is also an improvement
over the MP discriminator. With an MP generator, the MP discrimimator is more performant on
jet-level W1 and FPND scores but, on the gluon and top quark datasets, degrades WP

1 relative to
PointNet.

We learn from these three things: (1) a generator or discriminator architecture is only as effective
as its counterpart — even though the MPGAN combination is the best overall, when paired with a
network which is not able to learn complex substructure, or which breaks the permutation symmetry,
neither the generator or discriminator is performant, (2) for high-fidelity jet feature reconstruction,
both networks must be able to learn complex multi-particle correlations — however, this can come at
the cost of low-level feature accuracy, and (3) MPGAN’s masking strategy is highly effective as both
MP networks are improvements all around on light quark jets.

Particle cloud evaluation metrics. Each metric proposed here has unique merit. We see that
models with low W1 scores relative to the baseline have the best coverage and MMD scores as well.
This indicates that the W1 metrics are sensitive to both mode collapse (measured by coverage) — this
is expected as, in terms of feature distributions, mode collapse manifests as differing supports, to
which the W1 distance is reasonably sensitive, as well as to individual sample quality (measured by
MMD) — this supports our claim that recovering jet feature distributions implies accurate learning of
individual cloud structure. Together this suggests that low W1 scores are alone sufficient to validate
sample quality and against mode collapse, and justifies our criteria that a practical ML simulation
alternative have W1 scores close to the baselines in Table 2. However, MMD and coverage, being
focused tests of these aspects of generation, are useful for understanding failure modes.

8
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.

N. Krachmalnicoff and G. Puglisi, arXiv:2011.02221
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
Essentially, a generative model aims to construct a den-
sity estimator of the dataset. The GAN frameworks
constructs an implicit density estimator which can be

efficiently sampled to generate samples of Pg.
The GAN framework [23] sets up a game between

two players, a generator and a discriminator. The gen-
erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
to judge whether a sample looks real or fake. Essen-
tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
work parameters �, and discriminator network D✓,
parametrized by ✓, are simultaneously optimized us-
ing gradient descent. The discriminator is trained in
a supervised manner by showing it real and generated
samples, it outputs a probability of the input map be-
ing real or fake. It is trained to minimize the following
cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future

Y. S. Lai, D. Neill, M. Płoskoń, F. Ringer, arXiv:2012.06582
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M. Mustafa, et al., Comp. Astrophysics and Cosmology 6 (2019) 
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Many cases where simulation is not good enough - can 
train generate models to act as simulation surrogates

Example 1: unbinned templates for QCD jets 
     to extrapolate in jet multiplicity
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Particles
Discriminator

Particles

strip particles of mass 
and add noise

Generator

Input Particle with Mass
replaced by Noise

Particle + 
Generated

Mass

Sampled from Delphes+Pythia

Mass replaced by Noise

The noise  is sampled
from a latent space 

Update Generator Weights
According to some cost

Update Discriminator Weights

According to some cost

Cost Functions
Particle + Real Mass

Figure 1. Flowchart describing how GANs are used to learn templates (shown here mass templates
for the RPV-SUSY search) given kinematic variables. The generator network is a feed-forward network
that takes as input particles with their mass replaced by noise, and generates mass according to a
learnt distribution. These fake particles are bundled with real particles and passed to the discriminator,
which learns to discriminate between the real and fake distributions.
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Figure 5. The physics-based (‘real’) mass distributions compared with distributions from the template
method and the vanilla GAN in bins of jet pT (top row), ÷ (middle row), and N (bottom row). The
uncertainty in the ratio was calculated as the 1-sigma error assuming poisson distributions of events in
each bin. The error shown in the plots is the calculated statistical error. The corresponding plot in the
control region is qualitatively similar, but converges quicker.
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Many cases where simulation is not good enough - can 
train generate models to act as simulation surrogates

Example 2: unbinned templates for QCD jets 
     to extrapolate in dijet mass 2

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

FIG. 1. Schematic view of the bump hunt. The signal (blue)
is localized in the signal region (SR). The background (red)
is estimated from a sideband region (SB).

Multiple strategies have been proposed for this task.
One approach is based on the Classification Without La-
bels (CWoLa) protocol [25, 26, 76] in which one trains a
classifier to distinguish the SR and SB data. One of the
biggest challenges with the CWoLa Hunting approach is
its high sensitivity to correlations between the features
x and m. Multiple variations of CWoLa Hunting have
been proposed to circumvent the correlation challenge,
such as Simulation Assisted Likelihood-free Anomaly De-
tection (Salad) [38] and Simulation-Assisted Decorrela-
tion for Resonant Anomaly Detection (SA-CWoLa) [52].

An alternative approach is to learn the two likeli-
hoods directly and then take the ratio. This is the core
idea behind Anomaly Detection with Density Estima-
tion (Anode) [39]. The SB is used to estimate pbg(x|m)
for the background (assuming little signal contamination
outside the SR). This likelihood is then interpolated into
the SR. Combined with an estimate of pdata(x|m) trained
in the SR, one can construct an estimate of the likelihood
ratio. The SB interpolation makes Anode robust to cor-
relations between x and m, although density estimation
is inherently more challenging than classification.

In this paper, we propose a new method which com-
bines the best of CWoLa Hunting and Anode. With
Classifying Anomalies THrough Outer Density Estima-
tion (Cathode), we train a density estimator to learn
the (usually smooth) background distribution in the SB
which we refer to as the “outer” region. Then we interpo-
late it into the SR, but rather than directly constructing
the likelihood ratio as in Anode (which would require
us to also separately learn pdata(x|m) in the SR), we in-
stead generate sample events from the trained, interpo-
lated background density estimator. These sample events
should follow pbg(x|m) in the SR. Finally, we train a clas-
sifier (as in CWoLa Hunting) to distinguish pdata(x|m)

from pbg(x|m) in the SR.

Using the R&D dataset [77] from the LHC Olympics
(LHCO) [59], we will show that Cathode achieves a level
of performance (as measured by the significance improve-
ment characteristic) that greatly surpasses both CWoLa
Hunting and Anode, across a wide range of signal cross
sections. Cathode easily outperforms Anode because it
does not have to directly learn pdata in the SR, and in par-
ticular does not have to learn the sharp increase in pdata
where the signal is localized in all of the features. Mean-
while, it outperforms CWoLa Hunting because of a com-
bination of two e↵ects: one is that in Cathode, we can
oversample the outer density estimator, leading to more
background events than CWoLa Hunting has access to
(CWoLa Hunting is limited to the actual data events in
the sideband region), and yielding a more powerful clas-
sifier. Secondly, the features are slightly correlated with
m in the LHCO R&D dataset, and this slightly degrades
the performance of CWoLa Hunting, while Cathode is
robust.

We also compare Cathode to a fully supervised classi-
fier (i.e. trained on labeled signal and background events)
and an “idealized anomaly detector” (trained on data vs.
perfectly simulated background). We demonstrate that
Cathode nearly saturates the performance of the ide-
alized anomaly detector, and even nearly matches the
performance of the fully supervised classifier at low sig-
nal e�ciencies. These approaches (particularly the ide-
alized anomaly detector) place upper bounds on the per-
formance of any data-vs-background anomaly detection
technique, and the fact that Cathode is nearly saturat-
ing them indicates that it is nearly the best that it could
possibly be.

Finally, as in [39], we study the case where x and m are
correlated, by adding artificial linear correlations to two
of the features in x. Again we show that Cathode (like
Anode, and unlike CWoLa Hunting) is largely robust
against such correlations, and continues to nearly match
the performance of the idealized anomaly detector.

In this work, we will concern ourselves solely with sig-
nal sensitivity, and reserve the problem of background
estimation for future study. As long as the Cathode
classifier does not sculpt features into the invariant mass
spectrum, it should be straightforward to combine it with
a bump hunt in m.

This paper is organized as follows: Section II briefly in-
troduces the LHCO dataset and our treatment of it, and
Section III describes the steps of the Cathode approach
in detail. Results are given in Section IV and we con-
clude with Section V. In Appendix A, we provide details
of the other approaches (CWoLa Hunting, Anode, ide-
alized anomaly detector and fully supervised classifier)
considered in this paper. A further study of correlated
features is given in Appendix B.

Normalizing 
Flow

7

FIG. 6. Background rejection (left) and significance improvement (right) of the various anomaly classifiers as a function of
the signal e�ciency. The solid lines are deduced from a median value of 10 fully independent trainings on the same training,
validation and evaluation set. The uncertainty bands quantify the variance from retraining the NNs on the same, fixed dataset
and are defined such that they contain 68% of the runs around the median.

FIG. 7. Left: Median maximum significance improvement of each method with 10 di↵erent signal injections (leading to a
di↵erent split of training, validation and evaluation sets in each run) at each decreasing value of signal/background ratios.
Here, the 68% hatched uncertainty bands quantify the variance (around the median) from both retrainings of the NN and

random realizations of the training and validation data, including di↵erent realizations of the 1,000 injected signal events.
Right: Achieved maximum significance, which is computed by multiplying the uncut significance by the maximum significance
improvement. Both plots feature the significance without any cut applied in the upper horizontal axis. The dotted lines on the
right hand side denote 3 and 5 sigma significance values.

and the simulation-dependent methods. The fact
that Cathode is only marginally worse than the
idealized anomaly detector (in fact, they are over-
lapping within their respective error bands al-
most everywhere) is truly striking. The idealized
anomaly detector is meant to provide an upper
bound on the performance of any data vs. back-
ground anomaly detection method. The fact that
the Cathode method is nearly saturating it in-
dicates that Cathode is achieving close to opti-
mal performance on the LHCO R&D dataset. Evi-

dently, the background in the SR is being extremely
well modeled by the interpolated conditional den-
sity estimator.

• Finally, we see from Fig. 6 that while Cathode and
the idealized anomaly detector are outperformed
by the supervised classifier at higher signal e�cien-
cies, at lower signal e�ciencies their performances
are all increasingly comparable. The behavior at
high signal e�ciency may be explained by the fact
that there is simply too much background to find
the signal; meanwhile, at low signal e�ciency, the

Anomaly detection 
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FIG. 2. Schematic illustrations of the generator network: a) Parallelized data structure of the random splitting trees executed
on the GPU. b) Flow diagram of the ith splitting process (n ! n+1 partons) of a randomly chosen parton with momentum pk.
The time dependent and independent networks are shown which take as input random numbers (RND) as well as Q, ✓i�1 in the
time dependent case. The output of the two neural networks is passed through a softmax to the module M which determines
the four-vectors of the two daughter partons from the variables of the 1 ! 2 splitting process and the parent momentum pk.

data. In particular, in our work, the necessary permu-

tation invariance is achieved by using so-called deep sets

which were developed in Refs. [68–70].

With the framework introduced in this work, we can

access the underlying physics mechanisms e↵ectively de-

parting from the typical black-box paradigm for neu-

ral networks. Moreover, we expect that eventually the

GAN can be trained directly on experimental data (i.e.

measured four-vectors of detected particles). Generally,

GANs are ideally suited for such applications due to

their generalizability and robustness when exposed to im-

perfect data sets. We expect that our approach will be

particularly relevant for studies of heavy-ion collisions at

RHIC and the LHC as well as electron-nucleus collisions

at the future Electron-Ion Collider [71]. In heavy-ion col-

lisions, the presence of quark-gluon plasma (QGP) [72–

80] leads to modifications of highly energetic jets as com-

pared to the proton-proton baseline. These phenomena

are typically referred to as jet quenching. Significant the-
oretical [51–59, 61–63, 65] and experimental [81–85] ef-

forts have been made to better understand the physics of

this process. Using the novel techniques proposed in this

work, we will eventually be able to analyze the properties

of the medium modified parton shower using, for the first

time, the complete event information.

The parton shower. The parton shower we use for

training the GAN is designed to solve the DGLAP evo-

lution equations, see Refs. [50, 86]. In addition, we set

up the full event kinematics in spherical coordinates such

that we can use the final distribution of partons gener-

ated by the shower as input to the adversarial training

process. We start with a highly energetic parton which

originates from a hard-scattering event at the scale Q.

The parton shower cascade is obtained through recursive

1 ! 2 branching processes according to the DGLAP
evolution equations. There are three variables that de-

scribe a DGLAP splitting process i ! jk as illustrated

in Fig. 1. First, the large light cone momentum fraction

z of the daughter partons relative to the parent is de-

termined by sampling from the Altarelli-Parisi splitting

functions. Second, the orientation of the two daughter

partons, the azimuthal angle �, is obtained by sampling

from a flat distribution in the range [�⇡,⇡]. Third, the

splitting angle ✓ which is the relative opening angle of

the two daughter partons, is determined as follows: First,

sample a Monte Carlo time step �t from the no-emission

Sudakov factor

exp

"
��t

X

i=q,q̄,g

1�✏Z

✏

dz Pi(z)

#
, (1)

where the Pi denote the final state summed Altarelli-

Parisi splitting functions for (anti-)quarks and gluons.

Then advance the shower time t ! t +�t and solve for

the splitting angle ✓ in

t(Q, ✓) =

Q tan(✓/2)Z

Q tan(⇡/2)

dt0

t0
↵s(t0)

⇡
. (2)

We evolve the shower from the hard scale Q down to the

hadronization scale which we choose as 1 GeV. We note

that the DGLAP shower described here has two cuto↵

parameters. First, the angular cuto↵ on the splitting

angle ✓ which is introduced by the hadronization scale

and which determines the end of the shower. Second,

we introduce the cuto↵ ✏ on the momentum fraction z,
see Eq. (1). For our numerical results we choose ✏ = 0.03
which avoids the singular endpoints. The generated spec-

trum is accurate in the range ✏ < z < 1� ✏, and emitted

partons that violate these bounds are not evolved further

in the shower. From the parent direction and the vari-

ables (z, ✓,�) of a given 1 ! 2 splitting, we set up the

full event kinematics and determine the absolute posi-

tion of the two daughter partons in spherical coordinates

(⇥̃, �̃). The relevant kinematic relations are summarized

in the supplemental material. After the shower termi-

nates, we record the final momentum fractions Z of the

partons relative to the initial momentum scale Q as well

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x0, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x0 is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x0 increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓
increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion

In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.
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Figure 1: Weak lensing convergence maps for our ⇤CDM cosmological model. Randomly selected maps from
validation dataset (top) and GAN generated examples (bottom).

only learns about it by means of information from an-
other network, the discriminator, as is described in the
next section. Therefore, in our studies, it did not make
any difference how we sample our validation dataset.
We demonstrate that the generator network did not
memorize the training dataset in Sect. 3.2. Finally,
the probability for a map to have a single pixel value
outside [�1.0, 1.0] range is less than 0.9% so it was safe
to use the data without any normalization.

In one of the tests we report in this paper we use
an auxiliary dataset, which consists of 1000 maps pro-
duced using the same simulation code and cosmological
parameters, but with a different random seed, result-
ing in a set of convergence maps that are statistically
independent from those used in our training and vali-
dation.

2.2 Generative Adversarial Networks

The central problem of generative models is the ques-
tion: given a distribution of data Pr can one devise a
generator G such that the distribution of model gener-
ated data Pg = Pr? Our information about Pr comes
from the training dataset, typically an independent and
identically distributed random sample x1, x2, . . . , xn

which is assumed to have the same distribution as Pr.
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erator is trained to generate samples that aim to be
indistinguishable from training data as judged by a
competent discriminator. The discriminator is trained
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tially, the generator tries to fool the discriminator into
judging a generated map looks real.

In the neural network formulation of this frame-
work the generator network G�, parametrized by net-
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cross-entropy cost function:

J
(D) = �Ex⇠Pr logD✓(x) � Ex⇠Pg log (1 � D✓(x)).

(2)
The generator is a differentiable function (except at

possibly finitely many points) that maps a sample from
a noise prior, z ⇠ p(z), to the support of Pg. For ex-
ample, in this work, the noise vector is sampled from
a 64-dimensional isotropic normal distribution and the
output of the generator are maps x 2 R256⇥256. The
dimension of the noise vector z needs to be commen-
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Figure 9. Top row: full sky polarization maps (left: Stokes Q, right: Stokes U) for the GNILC template at 80 arc-mininutes
angular resolution. These maps are the input to our algorithm. Middle row: maps with small scale features, up to 12 arc-
minutes, generated by ForSE . Bottom row: di↵erence between the two maps. Notice the residuals mostly encode smaller
angular scales as expected.

due to the resolution scale. No additional loss of power
due to the reprojection is visible at the full sky level. We
further compared the power spectra of the input low res-
olution Q and U maps with the ones estimated from the
GAN maps by estimating the index of the power law as
C` / `�↵ and we performed the fit on a di↵erent multi-
pole range, i.e. `  100 for the former and `  800 for
the latter. The spectral indices estimates from the large
scale maps are ↵EE = 2.48 and ↵BB = 2.46, whereas
for the NN maps we get 2.54 and 2.38 respectively for

EE and BB; indicating that the NN does not induce
any pivoting scale in the polarization power spectra at
sub-degree angular scales.

However, The E/B asymmetry holds up only to the
scales where the dust polarization has been probed by
latest Planck measurements. As already stressed, this
is somewhat expected since no polarization small scale
data, that encode this characteristic, are given as train-
ing features to the GAN. Once high resolution data will
be made publicly available from the current and future
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Figure 1: BayesFlow setup of the cINN for training and inference [47].

Finally, we can apply a coordinate transformation for the bijective mapping and enforce a
Gaussian noise distribution with mean zero and width one for the latent distribution P (z),
so the loss function becomes

L(✓, ) = �
⌧

log P (g✓(m; h (x))) + log
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@g✓(m; h (x))

@m

����
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2
kg✓(m; h (x))k2 + log

����
@g✓(m; h (x))

@m

����

�

m,x
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This loss guarantees that the networks recover the true posterior under perfect conver-
gence [47].

Inference BayesFlow [47] provides a cINN framework which we can use to measure funda-
mental QCD parameters. From the inversion of a detector simulation and QCD radiation [63]
we know how, given a single detector-level event, the cINN generates samples from a proba-
bility distribution over the phase space of the hard scattering. For the jet inference presented
in this paper, the BayesFlow setup corresponds to this unfolding setup, in which we replace
the parton-level phase space with the model parameter space and the detector-level phase
space with the simulated data. In Fig 1 we give a graphical illustration of the inference setup,
for the training and the inference phases.

To train the BayesFlow networks we use the fact that we can simulate an arbitrary number
of jets fast. This allows us to employ mini-batch gradient descent to approximate the expecta-
tion in the above optimization criterion via its Monte-Carlo empirical mean. Moreover, if we
train the networks on jet samples of varying size, we can use them on data samples with any
size, as long as this size is within the domain of the pre-defined distribution over sample sizes.
The networks will approximate the correct push-forward from a given prior P (m) in model
space to a posterior P (m|x) contingent on a set of measurements x. When the test sample
size leaves the training domain the posterior accuracy will degrade. In case we need to analyse
larger data sets we can then follow the Bayesian logic behind the BayesFlow framework [47]
and use the posterior from an earlier measurement as a prior.
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P (m|{x}) ḡ(z; h) z ⇠ P (z)

Figure 1: BayesFlow setup of the cINN for training and inference [47].

Finally, we can apply a coordinate transformation for the bijective mapping and enforce a
Gaussian noise distribution with mean zero and width one for the latent distribution P (z),
so the loss function becomes

L(✓, ) = �
⌧

log P (g✓(m; h (x))) + log

����
@g✓(m; h (x))

@m

����

�

m,x

= �
⌧
�1

2
kg✓(m; h (x))k2 + log

����
@g✓(m; h (x))

@m

����

�

m,x

. (8)

This loss guarantees that the networks recover the true posterior under perfect conver-
gence [47].

Inference BayesFlow [47] provides a cINN framework which we can use to measure funda-
mental QCD parameters. From the inversion of a detector simulation and QCD radiation [63]
we know how, given a single detector-level event, the cINN generates samples from a proba-
bility distribution over the phase space of the hard scattering. For the jet inference presented
in this paper, the BayesFlow setup corresponds to this unfolding setup, in which we replace
the parton-level phase space with the model parameter space and the detector-level phase
space with the simulated data. In Fig 1 we give a graphical illustration of the inference setup,
for the training and the inference phases.

To train the BayesFlow networks we use the fact that we can simulate an arbitrary number
of jets fast. This allows us to employ mini-batch gradient descent to approximate the expecta-
tion in the above optimization criterion via its Monte-Carlo empirical mean. Moreover, if we
train the networks on jet samples of varying size, we can use them on data samples with any
size, as long as this size is within the domain of the pre-defined distribution over sample sizes.
The networks will approximate the correct push-forward from a given prior P (m) in model
space to a posterior P (m|x) contingent on a set of measurements x. When the test sample
size leaves the training domain the posterior accuracy will degrade. In case we need to analyse
larger data sets we can then follow the Bayesian logic behind the BayesFlow framework [47]
and use the posterior from an earlier measurement as a prior.

5

See also 1804.09720 (“JUNIPR”) and 2012.06582 (GAN-based)

SciPost Physics Submission

0.9 1.0 1.1

Dqq

2

4

6
� =0.06

0.5 1.0 1.5

Fqq

0.9

1.0

1.1

Dqq

0.5 1.0 1.5

Fqq

1

2 � =0.2

-5 0 5

Cqq

0.9

1.0

1.1

Dqq

-5 0 5

Cqq

0.5

1.0

Fqq

-5 0 5

Cqq

0.1

� =2.3

Posterior

Gaussian fit

Relative error of 2%

Absolute error of 2.5

Figure 8: Posterior probabilities for the Sherpa shower, varying the gluon radiation parame-
ters only, {Dqq, Fqq, Cqq}. We assume SM-like jets and show results without Delphes detector
simulation (left) and including detector e↵ects (right).

the splitting kernels. The number of constituents nPF generally increases with Dqq. The toy
shower does not generate a very large number of splittings. Hadronization increases the num-
ber of constituents significantly, but this e↵ect has nothing to do with QCD splittings. The
detector simulation with its resolution and thresholds again leads to a slight decrease. The
width of the constituent distribution, wPF, is small for the toy shower, with a peak once the
toy shower generates enough splittings. An increase in Dqq moves the distribution away from
very small values. Hadronization enhances the peak around wPF ⇡ 0.2, driven by the hadron
decays, and the detector e↵ects have a limited e↵ect because of the explicit pT -weighting. For
pTD a single hard object gives pTD = 1 and adding a soft constituent leads to a downward
shift. The small number of QCD splittings leads to a second peak structure around pTD ⇠ 0.7
for the toy shower, but the entire toy-level distribution has to be taken with a grain of salt.
Hadronization then induces the typical shape with a broad maximum below 0.5, again with
little impact from the detector e↵ects. Finally, the constituent-constituent correlation C0.2

loses all toy-level events at small values when we include hadronization, and the broad feature
around C0.2 ⇠ 0.4 becomes more narrow and moves to values around 0.6. As a side remark,
this variable is particularly e↵ective to distinguish jets from hard quarks and hard gluons,
because the two peak structures are relatively well separated with gluons giving larger values
of C0.2.

The main message from Fig. 7 is that from a QCD point of view the hadronization e↵ects
are qualitatively and quantitatively far more important than the detector e↵ects. Therefore,
we split our study into two parts. First, we shift from the toy shower to the full Sherpa
shower [65], including hadronization. Next, we add detector e↵ects using Delphes [80] with
the default ATLAS card. Unlike for the toy shower, we now vary the parameters for gluon
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In massless QCD some of the kernels P̂ include infrared divergences. They can be partially
fractioned to remove soft double counting, giving us the three QCD splittings [69]
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In this form we include a set of parameters which to leading order in perturbative QCD are
given by

Dqq,gg = 1 Fqq,gg = 1 Cqq,gg,gq = 0 . (12)

The splitting kernels given in Eq.(11) define the fundamental physics hypothesis of our mea-
surements, which should generalize the CA/CF studies from LEP [28, 29]. This hypothesis
is flexible enough to accomodate precision predictions consistently with the kinematics of
parton shower data at the LHC. Concerning its uniqueness, in standard parton showers, D
is typically modified to include a universal K-factor that coincides with the two-loop cusp
anomalous dimension and resums sub-leading logarithms arising from the collinear splitting
of soft gluons [70]. For simplicity, we will set these terms to zero in our toy shower. Within
Sherpa, they are included through a modified running coupling. The second term reflects
the leading terms in pT , in our case truncated in the strong coupling. The rest terms Cij

are, in our case, defined by the appearance of p2T . Generally, we only consider Eq.(11) as a
first attempt for an appropriate theory hypothesis, which might have to be slightly modified
according to the precision simulation framework used for the actual analysis. Another moti-
vations for a modified theory hypothesis could be specific parametrizations to, for instance,
incorporate quantum e↵ects or 1 ! 3 splittings. We skip this option because we will see
that already the global rest terms of Eq.(11) challenge our simulated data. As alluded to
in the Introduction, a caveat concerning the pre-defined theory hypothesis is common to all
simulation-based or likelihood-free analyses.

We will vary the parameters in Eq.(12) away from the leading order QCD prediction,
always making sure that the splitting kernels give positive splitting probabilities all over the
collinear phase space by setting negative kernel values to zero. Given that the numerically
leading contribution comes from the regularized pole, we can approximately identify the
measurement of Dqq and Dgg with measurements of CF and CA, as quoted in Eq.(1).

Data and network To understand the proposed measurement in a controlled setup we sim-
ulate the on-shell process

e+e� ! Z ! qq̄ (13)

assuming massless quarks and combined with a fast approximate parton shower cuto↵ at
1 GeV. Its phase space is completely defined by the scattering angle. For each event we
apply the parton shower to one of the outgoing quarks, such that the second quark acts as
the spectator for the the first splitting and we only consider one jet. For our jets sample we
generally have

pT,j <
mZ

2
, (14)
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Figure 2: Structure of INN. The {xd,p} denote detector-level and parton-level events, {rd,p}
are random numbers to match the phase space dimensionality. A tilde indicates the INN
generation.

3 Unfolding detector e↵ects

We introduce the conditional INN in two steps, starting with the non-conditional, standard
setup. The construction of the INN we use in our analysis combines two goals [11]:

1. the mapping from input to output is invertible and the Jacobians for both directions are
tractable;

2. both directions can be evaluated e�ciently. This second property goes beyond some other
implementations of normalizing flow [38,40].

While the final aim is not actually to evaluate our INN in both directions, we will see that
these networks can be extremely useful to invert a Markov process like detector smearing.
Their bi-directional training makes them especially stable.

In Sec. 3.3 we will show how the conditional INN retains a proper statistical notion of the
inversion to parton level phase space. This avoids a major weakness of standard unfolding
methods, namely that they only work on large enough event samples condensed to one-
dimensional or two-dimensional kinematic distributions. This could be a missing transverse
energy distribution in mono-jet searches or the rapidities and transverse momenta in top
pair production. To avoid systematics or biases in the full phase space coverage required
by the matrix element method, the unfolding needs to construct probability distributions in
parton-level phase space, including small numbers of events in tails of kinematic distributions.

3.1 Naive INN

While it is clear from our discussion in Ref. [48] that a standard INN will not serve our
purpose, we still describe it in some detail before we extend it to a conditional network.
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Figure 9: cINNed example distributions. Training and testing events include two to four jets,
combining the samples from Fig. 6 and Fig. 8 in one network. At the parton level there exist
only two W -decay quarks.

In Fig. 10 we split the unfolded distributions in Fig. 9 by the number of 2, 3, and 4 jets
in the detector-level events. In the first two panels we see that the transverse momentum
spectra of the hard partons are essentially independent of the QCD jet radiation. In the
language of higher-order calculations this means that we can describe extra jet radiation
with a constant K-factor, if necessary with the appropriate phase space mapping. Also the
reconstruction of the W -mass is not a↵ected by the extra jets, confirming that the neural
network correctly identifies the W -decay jets and separates them from the ISR jets. Finally,
we test the transverse momentum conservation at the unfolded parton level. Independent
of the number of jets in the final state the energy and momentum for the pre-defined hard
process is conserved at the 10�4 level. The kinematic modifications from the ISR simulation
are unfolded correctly, so we can compute the matrix element for the hard process and use it
for instance for inference.
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FIG. 1. A schematic diagram of (top) the training setup
for a usual GAN and (bottom) the SymmetryGAN variation
discussed in this paper for automatically discovering symme-
tries. Here, g is the generator and d is the discriminator. Not
represented here is the incorporation of the inertial reference
dataset. In our numerical examples, this is accomplished by
directly imposing constraints on g.

its symmetric counterpart [9–11] (similar to anomaly de-
tection methods comparing data to a reference [12–14]).
Another class of targeted approaches can be found in the
domain of automatic data augmentation. If a dataset can
be augmented without changing its statistical properties,
then one has learned a symmetry. Significant advances
in this area have used reinforcement learning [15, 16].

An alternative symmetry discovery approach that is
flexible, fully di↵erentiable, and simple is based on gen-
erative models [17, 18]. Usually, a generative model
is a function that maps random numbers to structured
data. For example, a deep generative surrogate model
can be trained such that the resulting probability density
matches that of a target dataset. For symmetry discov-
ery, by contrast, the random numbers are replaced with
the target dataset itself. In this way, a well-trained gener-
ator designed to confound an adversary will implement a
symmetry transformation. We call this generative model
framework for symmetry discovery SymmetryGAN, since
it has the same basic training strategy as a generative
adversarial network (GAN) [19], as shown in Fig. 1.

In this paper, we extend the SymmetryGAN approach
and introduce it to the physics community. In particu-
lar, we build a rigorous statistical framework for describ-
ing the symmetries of a dataset and construct a learn-
ing paradigm for automatically detecting generic sym-
metries. The key idea is that symmetries of a target

dataset have to be defined with respect to an inertial
reference dataset, analogous to inertial frames in classi-
cal mechanics. Our deep learning setup is simpler than
existing approaches and we develop an analytic under-
standing of the algorithm’s performance in simple cases.
This in turn allows us to understand the dynamics of the
machine learning as it trains from a random initialization
to an element of the symmetry group.
This rest of this paper is organized as follows. In

Sec. II, we build a rigorous statistical framework for dis-
covering the symmetries of a dataset, contrasting it with
discovering the symmetries of an individual data element.
Our machine learning approach with an inertial restric-
tion is introduced in Sec. III and the deep learning im-
plementation is described in Sec. IV. Empirical studies of
simple Gaussian examples, including both analytic and
numerical results, are presented in Sec. V. We then apply
our method to a high energy physics dataset in Sec. VI.
In Sec. VII, we discuss possible ways to go beyond sym-
metry discovery and towards symmetry inference, with
further studies in App. A. Our conclusions and outlook
are in Sec. VIII.

II. STATISTICS OF SYMMETRIES

What is a symmetry? Let X be a random variable
on an open set O ✓ Rn, and let x be an instantiation
of X. When we refer to the symmetry of an individual
data element x 2 X, we usually mean a transformation
h : O ! O such that:

h(x) = x, (1)

i.e. x is invariant to the transformation h. More generally,
we can consider functions of individual data elements,
f : O ✓ Rn

! O
0
✓ Rm. In that case, the function is

symmetric if

f(h(x)) = f(x), (2)

i.e. the output of f is invariant to the transformation h

acting on x. One can also consider equivariances, where
the output of f has well-defined transformation proper-
ties under the symmetry [20–23]. While symmetries act-
ing on individual data elements are interesting, they are
not the focus of this paper.

We are interested in the symmetries of a dataset as
a whole, treated as a statistical distribution. Let X be
governed by the probability density function (PDF) p.
Naively, a symmetry of the dataset X is a map g : Rn

!

Rn such that g preserves the PDF:

p(X = x) = p(X = g(x)) |g0(x)|, (3)

where |g
0(x)| is the Jacobian determinant of g. While it

is necessary that any candidate symmetry preserves the
probability density, it is not su�cient, at least not in the
usual way that physicists think about symmetries.

12

(i) (ii)

FIG. 11. (i) Empirically discovered symmetries in the LHC Olympics dijet dataset. The final values of ✓1 and ✓2 from the
SymmetryGAN are plotted over the line ✓1 = ✓2. (ii) The map between initial and final symmetry parameters. The final
rotation angle is the average of the initialized rotation angles, o↵set by ⇡ if the angle between the initialized angles is reflex.

(i) (ii)

FIG. 12. Two dimensional projection of (i) the original LHC Olympics dijet dataset and (ii) its transformation by one of the
generators discovered by the SymmetryGAN. Here, we plot the momenta of the two leading jets in the transverse plane.

The framework of generative 
models is quite flexible and we can 

do more than generate events.

For example, can discover 
symmetries in data!
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Figure 1: Reconstruction of an SM event as a function of log10 �. Red points: Example test event.
Blue points: MLE reconstruction of the same test event. Each point represents a particle in the event,
with area proportional to the particle’s pT. The number of active latent dimensions (defined as those
with DKL,i > 0.1) is 0, 9, and 48 at each of these � values respectively, and the compression rates
DKL are 0, 12, and 145 bits, respectively.

The overall structure of the left plot is summarized by the two heat capacities in the right plot, defined
in analogy with the thermodynamic heat capacity [8, 30, 31] by

CS =
d hS(x, x0)i

d�
, CKL = �

d hDKL(q(z|x)||p(z))i

d log �
. (2)

Because the lines in the left plot have gradient close to �0.5, the heat capacities are related to the
effective number of degrees of the system by dim ' 2C, similarly to a thermodynamic system with
quadratic Hamiltonian. There is a plateau for � . 10�2, indicating that the VAE is unable to learn
additional informative structure at smaller scales than this. For � . 10�4, the VAE begins to overfit
the data and the two heat capacities diverge.

Figure 2: Left: KL divergences of the 256 individual latent space directions as a function of �,
averaged over the test SM data. Right: Heat capacities on same data, defined in the text.

Having trained a VAE on SM data, we explore the distinguishability of our signal models after being
compressed and reconstructed. A PFN classifier is trained on the HT-normalized VAE reconstructions
of the two signal categories. The details of this architecture and training parameters are described in
the Appendix.

In Fig. 3, we see the AUC for classification between reconstructed signal events as a function of �. For
� > 1, the VAE reconstruction is uninformative for signal classification, but it contains increasingly
useful information for classification for 10�2

< � < 1, before a plateau is reached for � < 10�2.
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with area proportional to the particle’s pT. The number of active latent dimensions (defined as those
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averaged over the test SM data. Right: Heat capacities on same data, defined in the text.

Having trained a VAE on SM data, we explore the distinguishability of our signal models after being
compressed and reconstructed. A PFN classifier is trained on the HT-normalized VAE reconstructions
of the two signal categories. The details of this architecture and training parameters are described in
the Appendix.

In Fig. 3, we see the AUC for classification between reconstructed signal events as a function of �. For
� > 1, the VAE reconstruction is uninformative for signal classification, but it contains increasingly
useful information for classification for 10�2

< � < 1, before a plateau is reached for � < 10�2.
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Automatically vary the 
compression level by varying β
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2

Simulation-assisted Data-driven

Likelihood

learning
Salad [8]

Overdensity searches [9],

Anode [10],

(La)Cathode [11, 12]

Feature

morphing
Feta (this work) Curtains [13]

TABLE I: Broadly speaking, many methods for
constructing SM background templates for resonant

anomaly detection can be classified on two axes. In this
study, we introduce the Feta method.

In Feta, we train a normalizing flow1. [15] to learn
a mapping between simulation and data in sidebands re-
gions. We then apply the learned mapping to signal re-
gion simulation to create a simulation-informed template
for signal region SM background. Feta benefits from
being simulation-assisted since it can use simulated SM
data as a physically-informed prior for the background
template; the method further benefits from using feature
morphing since it is robust to mapping between feature
spaces with non-overlapping support.

The structure of this paper is as follows. In Sec. II,
we provide a concise background of normalizing flows
and outline how they will be applied to physics-specific
datasets. In Sec. III, we illustrate the e↵ectiveness of
flow-based models for creating context-dependent map-
pings with a toy example of triangular datasets. In
Sec. IV, we exchange the toy models for LHC-like data
and use Feta to create a model for LHC-like detected
SM data. In Sec. V, we test the performance of Feta in
a series of realistic anomaly detection tasks. In Sec. VI,
we conclude and suggest avenues for further study.

II. METHODOLOGY

A. Normalizing flows as morphing functions

Normalizing flows are constructed from invertible neu-
ral networks between sets of variables sampled from dif-
ferent probability densities. Given a random variable X
sampled from a reference distribution pR, one can define
a transformation T that produces another random vari-
able Z, i.e. Z = T (X). The density of Z is then given by
pZ(Z) = pR(X)|det @T

@X |�1. By chaining together a num-
ber of transformations Ti, one can produce an arbitrarily
complex mapping between the initial reference density
pR and a target distribution pT . Typically, the target
density is taken to be a standard normal distribution.
(Hence the name “normalizing” flow.)

In this work, we use the normalizing flow both for its
density estimation power and its ability to construct mor-
phing functions between nontrivial reference XR ⇠ pR

1
A comprehensive review of flow-based models is given in [14]

FIG. 1: A schematic of the Feta method. We train a
flow to learn the mapping between simulation and data

in sidebands regions, which are expected to be
background-only. We then apply the learned flow to

simulation in a signal region to produce an
approximation for background in that region.

and target XT ⇠ pT distributions. Our reference den-
sity is derived from Standard Model simulation (XSIM ⇠
pSIM), and our target dataset is derived from detected
data (XDAT ⇠ pDAT).

More explicitly, we define a set of N event observ-
ables such that events in the reference and target are
N -dimensional vectors XSIM and XDAT, which respec-
tively are sampled from the N -dimensional feature den-
sities pSIM and pDAT. We then train a flow to learn the
mapping T between pSIM and pDAT. In training the flow,
we must ensure that the learned mapping is between sim-
ulated Standard-Model background and LHC-detected
background. For resonant anomalies, we assume that the
signal will be localized in one feature mres. This allows
us to define sidebands (SB) and a signal region (SR) in
mres, where data from the former regions is assumed to
follow the SM distribution. We then train the flow only
on data from SB, using the resonant feature to condition
the mapping T (·|mres). The learned flow is then applied
to simulation in the SR to produce an approximation of
XDAT: X⇤

SIM = T (XSIM|mres) for LHC-detected back-
ground in the SR. A schematic of this method is shown
in Fig. 1.

There are several advantages to using a flow-based
architecture over other architectures such as GANs or
VAEs. Normalizing flows are known to be more sta-
ble and achieve convergence during training faster, es-
pecially in higher dimensions. This property allows for
the freedom to choose a larger feature space X, which
may be desirable for a model-agnostic study. For GANs
specifically, attempting to learn conditional mappings be-
tween datasets is not an easily done task. In addition,
the density estimating power of the normalizing flow al-
lows us to oversample from the reference distribution and
reduce statistical uncertainties (explored in more detail
in App. A). This is not possible with VAEs, which re-
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FIG. 3: Probability distributions for XR, X⇤
R, and XT for the toy model. The X⇤

R samples represent the trained
flow acting upon XR. The good agreement between X⇤

R and XT indicates that the flow has successfully learned to
map between the two datasets. We also provide the distribution for reweighted reference XW

R to illustrate its failure
to provide an accurate model for XT , as the reference and target datasets have di↵erent regions of support.

FIG. 4: Feature distributions for the six dijet observables used in the LHC Olympics analysis. SIM represents
Herwig++ simulation, and DAT represents Pythia simulation. The last feature, mJJ , is the feature in which we

expect the anomaly to be resonant and conditions the flow mapping.

B. Training Method

The method for training a flow on the LHC data is
the same as for the toy dataset. However, the flow ar-
chitectures used for LHC-like data are significantly more
expressive. Architectures and hyperparameters are out-
lined in Table V. Notably, the Base Density flow pa-
rameters were derived from the main architecture from
Cathode (which relies on faithful density estimation of
detected collider data in SB), and they were confirmed to
give the best performance through manual tuning. Data
is minmaxscaled to the range (-3, 3) before flow train-
ing, and a training-validation split of 80%-20% is used.
All settings were manually optimized to give the best-
performing flow possible, as quantified by the ROC AUCs
in SB1 and SB2.

C. LHCO results

In Figs. 5a and 5b, we plot the distributions for XSIM,
X⇤

SIM, and XDAT for the LHC-like data in SB1 and SB2.
For each band, we also plot the ratio of untransformed
and transformed simulation distributions to the target
distribution. For all features, the transformed simulation
XSIM is visually much closer to the target XDAT than the

Parameter Base Density flow Transport flow

Flow type Autoregressive Coupling
Spline Piecewise RQ Piecewise RQ

Num. MADE blocks 15 8
Num. layers 1 2

Num. hidden features 128 16
Epochs 100 100

Batch size 128 256
Learning rate 1⇥10�4 5⇥10�4

Weight Decay 1⇥10�4 1⇥10�5

TABLE V: Flow architecture and training
hyperparameters used for SM background construction
for the LHC Olympics dataset. The Base Density flow
parameters were derived from the main architecture
from Cathode, but were confirmed to give the best
performance through manual tuning. The Transport

flow parameters were optimized through manual tuning.

untransformed simulation.

In Fig. 5c, we provide the same distributions for XSIM,
X⇤

SIM, and XDAT in SR. For these plots, we once again
see good qualitative agreement between X⇤

SIM and XDAT,
despite the fact that the flow was not explicitly trained
to morph between SR datasets.

“Move” instead of “Reweight” 
with normalizing flows
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78Conclusions and Outlook

Generative models hold great promise 
for many areas of physics research

This is an area of rapid 
development at the intersection 
of theory & experiment and I’m 
excited for where it will take us!

This is a link to a recent 
Berkeley workshop dedicated 

to generative models →

Examples today were not exhaustive …  
Prof. Duarte has also been a pioneer in this area!
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