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Success of Symmetry

Ravanbakhsh et al. (2017); Kondor & Trivedi (2018); Cohen & 
Welling (2016b); Thomas et al. (2018); Maron et al. (2020); 
Walters et al. (2021)…..

Cohen et al 2019 Jumper et al 2021 Bogatskiy et al 2020 

How about Spatiotemporal Dynamics?



Incorporating Symmetry for Generalization

Rui Wang
 Robin Walters


Incorporating Symmetry into Deep Dynamics Models for Improved Generalization 
Rui Wang*, Robin Walters*, and Rose Yu 
International Conference on Learning Representations (ICLR), 2021.



Generalization Challenge

• Generalization: fundamental challenge in dynamics forecasting

• Performance degrades with test distributional shift 

• Punchline: distributions change, laws of physics do not!

θtr ∈ [a, b] θte ∈ [a, b] θtr ∈ [a, b] θte ∈ [b, c]

Bridging Physics-based and Data-driven modeling for Learning Dynamical Systems 
Rui Wang, Danielle Maddix, Christos Faloutsos, Yuyang Wang, Rose Yu.  
International Conference in Learning for Dynamics and Control (L4DC), 2021



• Noether’s theorem: For every symmetry, 
there is a corresponding conservation law

Conservation Laws and Symmetry

• Invariance, Equivariance:


• G-invariant:  


• G-equivariant:  

f(g(x)) = f(x)
f(gx) = gf(x)



Symmetry in Dynamical Systems

• 2D Navier-Stokes Equations

▿ ⋅ w = 0

∂w
∂t

+ (w ⋅ ▿ )w = − 1
ρ0

▿ p + ν ▿2 w + f

∂T
∂t

+ (w ⋅ ▿ )T = κ ▿2 T
Scaling Law

• A system of differential operators 



• if  is a solution of , then for all 
,  is also a solution

D = {P1, ⋯, Pr}
ϕ D

g ∈ G g(ϕ)



Theorem (Weiler & Cesa 2019): a convolutional layer is G-equivariant if 
and only if the kernel satisfies   for all , 
with action maps  and  .

K(gv) = ρ−1
out(g)K(v)ρin(g) g ∈ G

ρin ρout

Weight Symmetry



Symmetry: Scaling

• Standard convolution shares weights across the input by 
translating a kernel across the input. 


• For scale-equivariant convolution, we must translate and 
scale a kernel across the input. 



Symmetry: Scaling

• Scale equivariant 


Tλw(x, t) = λw(λx, λ2t)



Ocean Currents Forecast

Physically Consistent Predictions!



Approximately Equivariant Networks 

Approximately Equivariant Networks for Imperfectly Symmetric Dynamics 
Rui Wang, Robin Walters, and Rose Yu.  
International Conference on Machine Learning (ICML) 2022.

Rui Wang
 Robin Walters




Symmetry as Inductive Bias



Approximate Symmetry

Definition: Let  be a function and  be a group. Assume 
that  acts on  and  via representations  and . We say   is 
-approximately -equivariant if for any , 


  .  

f : X → Y G
G X Y ρX ρY f

ϵ G g ∈ G

∥f(ρX(g)(x)) − ρY(g)f(x)∥ ≤ ϵ



Equivariant Convolution
• Group Convolution (G-conv) 

 
                            


• G-conv does not need to precompute an equivariant 
kernel basis 


• But limited to discrete (compact) group, not efficient 
when the group order is large


• G-Steerable Convolution (Steer) 
                       

f *G K(g) = ∑
h∈G

f(h)K(g−1h)

K(hx) = ρout(h)K(x)ρin(h−1)



Relaxed Equivariance

• Relaxed G-conv (RGroup):  

                    


• Relaxed Steerable (RSteer): 

                    

˜f * GK(g) = ∑
h∈G

f(h)
L

∑
l=1

wl(h)Kl(g−1h)

K̃(hx) = ρout(h)
L

∑
l=1

wl(h)Kl(x)ρin(h−1)



Smoke Plume



Smoke Plume Results



Supersonic Jet Flow

• Real experimental data of 2D turbulent velocity in multi-
stream jets from NASA


• Measured using time-solved partial image velocimetry 



Prediction Performance

20% better



Conclusion
• Incorporating symmetry in deep learning for learning 

spatiotemporal dynamics


• EquNet: symmetry in differential equations


• Relaxed-EquNet: approximate symmetry 


• Teleportation: symmetry in learning dynamics


• Probabilistic modeling, symmetry discovery, etc… 

Rose Yu



@yuqirose

Open Source Code and Data: roseyu.com
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Symmetry

● Group: a set with an operation satisfying group axioms
○ Associativity

○ Identity element

○ Inverse elements

● Invariance & Equivariance: function and group
○ G-invariant:

○ G-equivariant:



Symmetry

● Equivariance is an important inductive bias in deep learning [Bronstein et al., 2021]

● Most existing equivariant NN models require knowing the symmetry before constructing 
the model

○ which is sometimes unrealistic and not optimal

[Satorras et al., 2022] [Wang et al., 2022]



Symmetry Discovery

Structure of the proposed LieGAN model. The transformation generator learns a continuous Lie group 
acting on the data that preserves the original joint distribution. This is an example task of predicting future 
3-body movement based on past observations, where the generator could learn rotation symmetry.

● LieGAN framework



Symmetry Discovery

● Meta-learning Symmetries by Reparameterization [Zhou et al., 2021]



Symmetry Discovery

● Augerino [Benton et al., 2020]: finding the extent of symmetry



Symmetry Discovery



Supervised vs Unsupervised Learning

Input & output data

Classification
Regression

…

Predictive models

Supervised Learning

Input data

Clustering
Generation

…

Analysis & discovery

Unsupervised Learning



Generative Models

Decoder

Encoder

Variational Autoencoder

Generator

Discriminator

Real/Fake

Generative Adversarial Network



Symmetry Discovery

● Problem definition: what are we trying to discover?
○ The unknown equivariance property of a given dataset



Generative Model for Symmetry Discovery

Structure of the proposed LieGAN model. The transformation generator learns a continuous Lie group 
acting on the data that preserves the original joint distribution. This is an example task of predicting future 
3-body movement based on past observations, where the generator could learn rotation symmetry.

● LieGAN framework



Model Design

● GAN generator

● Loss function



Proof of Correctness



Model Design

● How to parameterize a distribution over a matrix group?
● Consider the following density function:

Arbitrary distribution over general linear group 
may not respect the group axioms! 



Symmetry Discovery

● Parameterizing the distribution over continuous Lie group



Symmetry Discovery for Prediction



Example: Equivariant GNN

● E-GNN enforces E(n) symmetry by invariant features [Satorras et al, 2022]



Example: Equivariant GNN

● Replacing E(n) with discovered symmetry from LieGAN
● Use invariant feature

● Compute general group invariant metric tensor



Discovering Symmetry in 2-Body Trajectory
● Task: predict future dynamics given the past observations
● Input / output: planar positions and momentums of two masses
● Rotation equivariance (SO(2))

LieGAN discovers correct rotation symmetry with different parameterizations.



Predicting 2-Body Trajectory

● Test MSE loss for 2-body trajectory prediction
● Symmetries from different discovery models and ground truth are inserted into 

EMLP or used to perform data augmentation



Discovering Lorentz Symmetry in Top Quark Tagging

● Task: binary classification between top quark jets and background
● Input: 4-momenta of the particle jets
● Lorentz transformation invariance (O(1,3))

● Left: LieGAN discovers an approximate restricted Lorentz group symmetry
● Right: Computed invariant metric of the discovered symmetry



Top Quark Tagging

● Test accuracy and AUROC for top tagging
● LieGNN reaches the performance with LorentzNet which explicitly encodes 

Lorentz symmetry



Applications

Dynamics Molecules Vision



Conclusion

● Discover general linear symmetries from data with LieGAN
● Interpretable Lie algebra basis as discovery result
● Larger search space than previous works
● Pipeline for utilizing discovered symmetry to downstream prediction tasks
● Scientific discovery with machine learning



Thank you!

Contact: Jianke Yang <jiy065@ucsd.edu>


