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Physics Informed Learning

Computational Science is an important tool that we can use to
incorporate physical invariances into learning, but until recently it
was missing from mainstream ML.

“Computational Science can and

. It can explore the effects of thousands of scenarios for or in Data
lieu of actual experiment and be used to study events beyond the
reach of expanding the boundaries of experimental science”

—Tinsley Oden, 2013
Theory

To make further progress in ML it is crucial that we incorporate

computational science into learning.
Hardware

Artificial Maths &
Statistics
visualization

EDA

Physics
Informed
Learning

Intelligence

Largely missing from ML
today

E Dr. J. Tinsley Oden's Commemorative Speech: “THE THIRD PILLAR: The Computational Revolution of Science i
E and Engineering”, Honda Prize, 2013. E



Physics Informed Neural Network

Harmonic oscillator

* Neural Networks require a lot of data to train .\ Problem

» Collecting large scale data is not always possible,

for many applications, especially in medical and N

scientific domain

‘ Neural network
\ Training step: 10

« However, an important source of data are the ‘

\ - . AN y Exact solution
\ === Neural network prediction

Physical Laws that govern our world which have %

been largely ignored in exchange for observed data o
Physics-informed neural network
\ Training step: 150

* Physical Laws include: |
— Conservation of Mass, Momentum, Energy, etc.

_________________________________



Physics Informed Neural Network

Problem at 2

Harmonic oscillator

\ Neural network

\ Training step: 10

\

\ 7N\
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\ A a A / ~ Exact solution

f ‘\\ / \_ = we Neural network prediction
/ / — Training data

Physics-informed neural network
Training step: 150

————— Exact solution

) we Neural network prediction

) d ) N ) Training data

/ ‘:\ - Physics loss training locations




Physical Laws as Additional Sources of Data

« Other than observed data, we know the invariances that govern physical phenomena
— Conservation of mass, momentum, energy
— In many cases, we also have approximate models that can predict the system behavior

Lots of Physics Some Physics No Physics

! lllustration Credit: Prof. Karniadakis ! 6



Physical Laws as Additional Sources of Data

« Other than observed data, we know the invariances that govern physical phenomena
— Conservation of mass, momentum, energy
— In many cases, we also have approximate models that can predict the system behavior

Less Data More Data
\ ] |\
| |
Physical Invariances can help Physical Invariances can help
Improve Generalization or make the model easier to train
regularize training with less parameters

The main question is how can we incorporate these invariances into learning?



MLPs are Universal Function Approximators

Now let’s take a step back and see what are Neural Networks?

y = f(W,f(W,x) )

Research Question: Given that NNs can

approximate general functions, can we apply
them to predict scientific phenomena?

iG.Cybenko.Appro ation by superpo o) Of a sigmoidal tu on. via ema 0] ol, Signals anad Syste A 4):3U5=314, 1955.
' K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989.
1 Kriegeskorte N, Golan T. Neural network models and deep learning-a primer for biologists. arXiv preprint arXiv. 1902. i 8



Why do we expect NNs to be he

|pful?

Now let’s take a step back and see what are Neural Networks(:

y = f(W,f(W,-x) )

--------------------------------------------------------------------------------------------------------------------

i G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303—-314, 1989. :
' K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989. !
1 Kriegeskorte N, Golan T. Neural network models and deep learning-a primer for biologists. arXiv preprint arXiv. 1902. ‘

4 N
MLPs with non-linear activations
are universal function

approximators

o %
4 I
However, they may require

exponentially large number of
neurons

- /

4 Theorem: for n>2, thereis a )
Boolean function of n variables
that requires at least 2"/n
Boolean gates, regardless of

\_ depth! Y,




MLPs are Universal Function Approximators

y = f(W,f(W;-x) )

Y>

--------------------------------------------------------------------------------------------------------------------

i G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals and Systems, 2(4):303—-314, 1989. :
' K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359-366, 1989. !
1 Kriegeskorte N, Golan T. Neural network models and deep learning-a primer for biologists. arXiv preprint arXiv. 1902. I

4 Theorem: for n>2, thereis a )

o

Boolean function of n variables
that requires at least 2"/n
Boolean gates, regardless of
depth!

/
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Universal Function *Approximation*

The missing piece in universal approximation theorem is that it only considers approximation
error, and not trainability and/or generalizability of the NN.

We can broadly characterize the accuracy of a NN into three main types:
« Approximation error to ground truth function

* Generalization to unseen data

« Trainability or optimization difficulty of the model

Universal approximation theorem only considers the first one.

Moreover, it provides no method to train a model to get that approximation (naive method
using the basis function in the previous slide can require exponentially large number of
neurons even for simple functions)

11



Summary So Far

*» Neural Networks are universal function approximators but current methods

require a lot of data to train them
** For many Scientific applications, we cannot obtain large amounts of data
¢+ A solution for this is to incorporate physical laws into learning

Next let's go over methods proposed so far for doing so!

12
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Methods for Incorporating Physics into Learning

» Method 1 (Neural Operator): Train on large amount of data and let the NN learn the
physics based operators
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Methods for Incorporating Physics into Learning

> Train on large amount of data (and hope) that the NN learns the constraints

Obtain/Simulate a lot Train the NN on this
of data dataset

0.00
0 25 50 5 100 125

Main problems:
* No guarantee that the model obeys the physics laws (e.g. conservation laws)
« May require a lot of training data and obtaining/simulating these data is not always feasible



Methods for Incorporating Physics into Learning

» Method 2: Enforce physical laws as hard constraints either in:
— NN Architecture: This is an open problem
— Optimization: Very difficult to train the NN with such constraints

Train the NN on this
dataset

E Xu K, Darve E. Physics constrained learning for data-driven inverse modeling from sparse observations. arXiv preprint arXiv:2002.10521. 2020 Feb 24. E
' Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of !
1 1
1 1
1
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Methods for Incorporating Physics into Learning

« Method 3: Use penalty methods and add the physics model as a residual to the loss.

« Below we consider Burgers’ equation which can be modeled with a PDE (but this approach is
applicable even if your model is different than a PDE)

:u Up + UlUyp — Upy € )
- u(w,t = 0)
um (x,t) €T
Uy
Data Loss Function: Physics Loss Function: /
Lo =i —ul); Lr = ||i + iy — Goa 13

m@inﬁzﬁu—l—)\}-ﬁ}- §



Physics Informed Neural Networks

Method 3: Use penalty methods and add the PDE residual to the loss.
Very easy to implement, and works with any NN architecture
Does not require a mesh or a numerical solver for the PDE

Can (in theory) work for high dimensional problems, and complex PDEs
For example, PDEs containing integral operators which are difficult to solve with

u(t, )

finite difference methods.

u; + uu, — (0.01/n”)u,, =0, xe[-1,1], te€[0,1],

u(0, x) = — sin(7x),
u(t,—1) =u(t,1) = 0.

___________________________________________________________________________________

u(t, )

1.0

0.5

t=0.25 t=0.50
[0y 1
0 0
0 = 04 =
3 S
-1 4 -1
T T
-1 0 1 -1 0 1
T xT
= Exact == = Prediction
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PINO: Physics Informed Neural Operators

 Method 4: Use a combination of Neural Operator and PINNs

— Uses a combination of observation data points as well as physical constraints added as
soft penalty terms to the loss function
Data Loss Function:

Lo =l —ul

125 ﬂﬁ'(XzW ti)

1.00

0.75

0.50

0.25

0 25 50 5 100 125

0.00
0 25 50 75 100 125

Physics Loss Function:

Lr = ||t + 0y — Upe||3

meinﬁ =Ly + A LF

----------------- 19



But this is not the entire story

» There are a lot of subtleties in adding a soft-constraint and PINNs actually do not work as well,
even for simple problems.

» To study this, we chose three families of PDEs:
— Advection (aka wave equation)
— Reaction
— Reaction-Diffusion

For all of these cases we observed that PINNSs fail to learn the relevant physics, since there are many
moving parts in this problem

20



Summary So Far

Broadly there are four popular ways of incorporating physical laws into learning:

% Neural Operators: Have the NN learn the operator by providing it with enough training data points

Pros:

+ Can learn the operator and apply it without specific constraints on mesh/discretization (often only true if given ample data)
* Only needs to be trained once -> Can be applied for different configurations of the operator

* Does not need explicit knowledge of the underlying Physics

« \Very easy to implement as it does not need any special back propagation for computing PDEs and derivatives

Cons:

+ It often needs a lot of training data

+ There is no knob to tune to penalize the model if it violates the physical constraints of the problem

21



Summary So Far

Broadly there are four popular ways of incorporating physical laws into learning:

% Constrained Learning: Constrain the NN to always satisfy the physical laws

Pros:

« Guarantee that the model outputs will always obey the physical laws of the problem

Cons:

» Very difficult to constrain the architecture to obey the laws

» Alternative methods of incorporating them into discretization methods (such as FEM) either

creates optimization difficulty, or requires designing a mesh and a solver as done in FEM methods.

22



Summary So Far

Broadly there are four popular ways of incorporating physical laws into learning:

+ Physics Informed Neural Networks: Add the physical constraints as soft penalty terms
Pros:

» Gives us a knob for enforcing the physical constraints

* Relatively easy to formulate the loss and compute the derivatives

Cons:

» Adding the soft constraint often makes the loss landscape very difficult to optimize

* Only specializes for a given set of model constraints/configuration and needs to be retrained if the

config is changed

23



Summary So Far

* PINO: Could be thought as combining Neural Operators and PINNs
» |t uses both available data as well as given physical constraints to learn

Pros:
* |t often results in better results since it learns from more data sources

Cons:
» Similar issues with Neural Operator and PINNs

Lots of Physics Some Physics No Physics

R R T BN

24
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Challenges Associated with PINNs?

We need to rethink the design, training, and the input data for successful application of NNs to
scientific problems.

* PINN Failures: NeurlPS’21
 PyHessian IEEE BigData’20

* Flat/Sharp Minima: NeurlPS’18
« ANODEVZ2: NeurlPS’19

« ANODE: IJCAI'19



https://openreview.net/pdf?id=a2Gr9gNFD-J
https://arxiv.org/pdf/1912.07145.pdf
https://proceedings.neurips.cc/paper/2018/file/102f0bb6efb3a6128a3c750dd16729be-Paper.pdf
https://papers.nips.cc/paper/2019/hash/227f6afd3b7f89b96c4bb91f95d50f6d-Abstract.html
https://www.ijcai.org/proceedings/2019/103

Advection Equation

—+B8—=0, z€Q,te]0,T],

Initial condition: u(z,0) = sin(z),
Periodic boundary conditions: u(O, t) — u(27r, t)

memﬁ = Ar|us + Bﬂmug PDE Residual
+ ’fL(:L‘, 0) — sm(:c) ||% Initial Condition
+ ’&(Z‘ = 27‘(’) — ’&(ib = O)”% Boundary Condition

____________________________________________________________________________________________________________________________________J 27



PINN can fail to learn Advection

ol
5 -»—Relative error = Absolute error
\ N 710"
Exact 107} r
Solution 5 5
1 j E/ O—l S
8.0 0.2 0.4 0.6 0.8 1.0 § 10_1 i é
o | o
9
21072 | 2
PINN 3 L2
Prediction e 11073

00 102 10 100 107

1 Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021. i 28
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PINN can fail to learn Advection

Exact solution Predicted solution Difference in exact and predicted solution
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PINN can fail to Learn Reaction Equation

Learning reaction with PINNs

_ (z=m)2
% — pu(l _ u) =0,z € Q,t c [O,T], Initial condition: ’u,(aj, O) —F ] 2(m/4)2 5
1 Periodic boundary conditions: ’u,(O, t) — U(27T, t)

u(z,0) = h(z),z €2

Exact solution Predicted solution

reaction coefficient

30




PINN can fail to Learn Fisher Equation

Learning reaction-diffusion with PINNs

ou 92u — Mz_
5 Vo2 T pu(l—u)=0, z€, te(0,T), Initial condition: ’LL((E, 0) =e 2(x/49%,
T
l u(2,0)=h(z), 2 Periodic boundary conditions: 'u,((), t) — U(27T, t)
diffusion  reaction coefficient
fficient
coetticien Exact solution PINN predicted solution
| I
5, v=3 4» | ;06
b oF i
Bh* 04
t
p=5,v=5 e :'

1
\ Krishnapriyan* AS, Gholami* A, Zhe S, Kirby RM, Mahoney MW. Characterizing possible failure modes in physics-informed neural networks. NeurlPS, 2021. H 31



Training: Optimization Challenges with PINNs

Data Loss Function: Physics Loss Function:
L, = ||r&_u||§ Lr = |t + Gty _@m”%
minL =L, + A \rLFr
0

Without Physics Loss With Physics Loss

 lllustration credit: Roman Amici, Mike Kirby ! 32



Training: Optimization Challenges with PINNs

10 (| Armin|/|Amax|)
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Characterizing Failure Points:

Loss Landscape

To better understand the problem, we need to look at the optimization problem.
The loss function that we are dealing with is quite complex and non-convex, so there is no
guarantee that the optimizer can find a good solution.

To diagnose the problem let’s look at the loss landscape after training PINN

X
-

CEENNWWA
Uouvououo o

(b) 8 =10.0 (c) B =20.0 (d) 8 = 30.0 (e) B =40.0
B 1 10 20 30 40
Relative error | 7.84 x 1073 | 1.08 x 1072 | 7.50 x 10~! | 8.97 x 10~ | 9.61 x 101
Absolute error | 3.17 x 1072 | 6.03 x 1073 | 4.32 x 10! | 5.42 x 10~! | 5.82 x 1071
34




Characterizing Failure Points:

Loss Landscape

Adding the PDE-based soft-regularization, while easy to implement, can result in
optimization difficulties (and sometimes ill-conditioning behaviour).

To study this let’s do an experiment and change the weight of the PDE loss and analyze how
the loss landscape changes

Uy + ﬁﬁwl‘g PDE Residual

12

N—"

u(x,0) — sin(x

(2 = 2m) — i

S
s
&K
|

0)12

35



Characterizing Failure Points:

Loss Landscape

-05 T 700
: Z0.5
00 & 05

(A)A=1x10"% (b)A=1x10"° ()A=1x10"3 (d)A=1x10""!

A 1x10% | 1x10%]1x103|1x101|1x10!
Relative error 1.69 1.65 1.00 1.08 0.982
Absolute error 0.987 0.987 0.623 0.647 0.595

min £ = Az ||t + B’&wng PDE Residual As we reduce 1 the
0 ) . ) optimization gets easier but
+|a(z,0) — sin(z)]|3 PINN'’s solution has ~100%
+|@(z = 2m) — a(z = 0)||3 error

36



Summary So Far

s While PINN formulation is easy to implement with auto-diff but it is often very difficult to train it:
% We saw several cases where PINNs may fail to converge to a reasonable solution

% One of the sources is that adding the soft constraint could make the loss landscape rather difficult

to optimize

These are still open problems, but next | will introduce some recent approaches from our group which

aim to alleviate these issues

37



Rethinking PINNs: Curriculum Learning

« The main idea is to start the training with simple physical constraints and introduce the
complexities iteratively throughout learning

» First let the NN learn the simple problems, before penalizing it for learning the exact PDE

Example: For the advection equation, we start to train the NN with very small velocities, and slowly
increase the velocity to the target one

- Regular training = Curriculum training
30
25|
20|
X 157
10}
5l
Oi\

Training duration
38



Rethinking PINNs: Curriculum Learning

—-Regular training = Curriculum training
30t
25¢

~ . 20¢
+||(x, 0) — sin(x)]3 2 15

(z = 27) —i(x = 0)|3

5,
0,

meinﬁ = Ar||as + Bix|3

N—"

_I_
s
s

Training duration

sH

-0.25

-0.50

-0.75

-1.00

i

4 '_ 0.6 0.8 1.0 s : . t
Regular training PINN solution Curriculum training PINN
for B =30 solution for B = 30
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Rethinking PINNs: Curriculum Learning

1.00

1.00 6

0.75 0.75

0.50 0.50
0.25

0.00 e

—0.25

5
4 0.25
3 0.00

-0.25
2

—-0.50 —-0.50

-0.75 ) -0.75

) o oo

0.4 0.6 0.8 1o 100

Regular tmint&:ng PINN solution Curriculum tt’r'a,i'n,i'n,g PINN
Jor B =30 solution for B = 30
Regular PINN | Curriculum training
1D convection: 8 = 20 | Relative error 7.50 x 101 9.84 x 103
Absolute error | 4.32 x 10~ 5.42 X 102
1D convection: 8 = 30 | Relative error 8.97 x 1071 2.02 x 102
Absolute error | 5.42 x 10" 1.10 x 10—2
1D convection: 8 =40 | Relative error 9.61 x 1071 5.33 X 10—2
Absolute error | 5.82 x 10" 2.69 x 10—*
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Rethinking PINNs: Curriculum Learning

» This approach works quite well for reaction problem as well

0
_u_pu(l—’u,):(), xEQ,tE(O,T],

ot
u(x,0) = h(x), =z €.

—»-Regular training relative error— Curriculum training relative error
-+-Regular training absolute error - Curriculum training absolute error

0 o’

= S

§ ’51071 §

o 10! ] ;':J

0.4 t 0.6 . . B . K t 0.6 0.8 _é T;’

3} ., 4

Regular training PINN solution Curriculum training PINN o ’;10 ’<

for p =10 solution for p =10 . ‘ ]
10° 10!
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Rethinking PINNs:

Pose the Problem as Sequence to Sequence Learning

PINN formulation tries to predict the entire space-time simultaneously.

— This is a very difficult task/function to approximate.

An alternative is to pose the problem as sequence to sequence learning, where PINN learns
to predict the solution in a finite time horizon, and iteratively predicts next time steps

x  Initial condition points x  Boundary points x  Collocation points
X Q ol %
6 >§(SE><)‘)<3£§>{2><><§%<xx X%XXX?&X x§;3€ Glx&
§ X )«?% ¥ o x o XX >X°S< x X X 3% XX % " !
xx % xXx X xR T X% X XXx "
X xxxi(‘* X X >3?2< X &( X
KX B g MXX % Xx 3% X x %
5 x);? x ¥ x X oxXy X ’3()( >2<>< X X x e 5] % x
< x %»( ;&Xxx % xx Xxéxxxx ??‘YX %XX»‘*%%?« x f(&( % xx
><)§)X§( X ;Zx" M x)()o,%(xxxxx%xxgg < xii;ixxxxxx ><x§><>< %Xx
X
XX‘YS(»& x Xw)o(xx >e<)§>< X)o;( x»( "x&xx;&*x i’gg)?g?o( %0;222
>< k] B ><X>< X Xx xi x . x xx;é&( :xxx X x X X% N 3l >§E
>3><S2< ><:>S>;( ><):(xx x>§ é o X%(X’Xx&( &fg )S(X X,oe)&:& x><x§><><>< X
x PO %4 X x
X ¥ X WK x X %
b2 E3 & x ;I)gxxx ><><><X>Saf;g x& X%»%&wx W&i XXX>(:X>< 2| *
&’SQ{“ % ig>e<3{>f<><><><;i>< % X X0 Ky XXk X X T Mot §><)§?< i&xﬁﬁ
X
1 %&‘o@(&%”‘ ><§>o<><><x‘§xx>< XX&(% ; % X . X;g:i(% x >0<><X>2<
v B g LK Méﬁ“;%f « ¢
X X
N SRR R P ol M x
0.0 0.2 0.4 0.6 0.8 1.0 0 At 2At 3At 4At 5At 6At TAt 8At 9At  10At
t t

Regular PINN Training Seq2Seq Training
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Rethinking PINNs: Seq2Seq Learning for

Reaction-Diffusion Problem

— —v——pu(l—u)=0, xz€Q, te(0,T],
u(x,0) = h(z), = €.

Exact solution for p = 5, v=3 Regular PINN solution for p = 5, v=3 seqg2seq PINN solution for p = 5, v=3
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Rethinking PINNs: Seq2Seq Learning for

Reaction-Diffusion Problem

Seq2Seq approach can get significantly lower error than regular PINN which tries to predict the
entire state space at once

Entire state space At = 0.05 At = 0.1
v=2,p=>5 | Relative error 5.07 x 1071 2.04 x 1072 | 1.18 x 102
Absolute error 2.70 x 10~ 1.06 x 10~ | 6.41 x 10—°
v =3, p=>5 | Relative error 7.98 x 107! 1.92 x 1072 | 1.56 x 102
Absolute error 4.79 x 101 1.01 x 1072 | 8.17 x 10—3
v=4, p=25 | Relative error 8.84 x 10~1 2.37x 1072 | 1.59 x 10—2
Absolute error 5.74 x 1071 1.15 x 10~% | 8.01 x 10—°
v=2>5, p=>5 | Relative error 9.35 x 10~1 2.36 X 102 | 2.39 x 102
Absolute error 6.46 x 1071 1.09 x 102 | 1.15 x 1072
v =6, p=>5 | Relative error 9.60 x 107! 2.81 x 1072 | 2.69 x 102
Absolute error 6.84 x 1071 1.17 x 1072 | 1.28 x 1072

44



» Introduction

» Physics Informed Neural Networks
»Challenges associated with PINNs
» Optimization Difficulties
»Choice of collocation points

» Conclusions and Future Work

45



Where to enforce the physical laws?

* An important consideration in PINNs is which points
should we enforce the physical constraints?

Problem
Harmonic oscillator

Question:

« What is the problem of enforcing the constraints on
as many points as possible?

 What is a good strategy for choosing the points? Neural network
\ Training step: 10
N\ -

Physics-informed neural network
\ Training step: 150

—— Exact solution
& / === Neural network prediction
d , Training data
/ - Physics loss trainin g locations

_________________________________

i Illustration from Ben Moseley i 46



Rel error

______________________________________________________________________________________________________________

Balancing observations with physics can lead to better estimates

10° ]

=

o
o
1

1072 ]

————

#observations=1
#observations=2
#observations=3
#observations=5
#observations=7

Problem
Harmonic oscillator

Neural network

Training step: 10

P ~ Exact solution
\ / N y ws Neural network prediction
\_ / Training data

Physics-informed neural network
Training step: 150

— Exact solution
weses Neural network prediction

10000 15000

Iterations

5000

20000

; ) - Training data
"\ b Physics loss training locations
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Sampling bias in physics loss can be detrimental

How you impose the physics loss matters

—div K (z)Vu = f(x)
L; = ||div K(x)Vu + f(z)|?

0.25
‘0.20
'0.15

0.10

0.05

0.00
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Sampling bias in physics loss can be detrimental

« Sampling uniformly is suboptimal and can result in large errors

— Testing error ~ 60%
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Rethinking the collocation points sampling helps

« Don’t add new points, just resample them based on a proxy function
» Resample in windows, regularize with uniform sampling
» Testing error improves from 60% to 10%
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1 S. Subramanian, M. Kirby, M. Mahoney, A. Gholami: Rethinking the role of data in PINNS, arxiv:2207.04084, 2022. i 50



Conclusions

Rethinking the design, training, and role of data for the successful application of neural
networks in scientific applications

Adaptive Collocation Points
PINN Failures: NeurlPS’21
PyHessian IEEE BigData’'20
Flat/Sharp Minima: NeurlPS’18

ANODEV2: NeurlPS’19
ANODE: |[JCAI'19

On going research on
Large Models for
Physical Systems
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https://arxiv.org/pdf/1912.07145.pdf
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Open Problems

* There are many more open problems:
* Optimization:
— Unlike all other classical ML tasks, PINNs cannot be optimized with mini-batch (SGD, ADAM,
etc.) and only works with LBFGS with full batch size

— This makes training PINNs very slow and hard to optimize

* NN Architecture:

— Classical NN architecture may not be optimal for PINNs. Need to investigate alternative
architectures that are more suited for the continuous nature of the problem.

— Need to investigate how the architecture should be changed as the underlying dynamics
change

« Elliptical vs Hyperbolic vs Parabolic PDEs may need different architectures
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Lecture Summary

We briefly introduced different methods for incorporating physical laws into learning:
— Neural Operators (NO)
— Physical laws as hard constraints
— Physics Informed Neural Networks (PINN)
— Physics Informed Neural Operators (PINO)
We specifically focused on PINN and discussed possible challenges in training them

Physics Informed Neural Networks are easy to implement but there are many subtle issues
associated with its soft-regularization method

PINNs can fail to learn simple problems such as advection, reaction, and/or reaction-diffusion
problems with non-trivial coefficients

Analyzing the problem shows that while the NN has enough capacity to learn the solution, the
optimization problem with PINN regularization becomes very difficult to solve
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