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Kepler’s first law of planetary motion states that the orbits of planets are elliptical, with the sun at
one focus. We present an unusual verification of this law for use in classes in mechanics. It has the
advantages of resembling the simple verification of circular orbits, and stressing the importance of
Kepler’s equation. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

Kepler’s first law of planetary motion states that a po
mass moving in a central force field of the formf
52(k/r 2)(r /r ) will have an orbit which is elliptical in
shape with focus at the origin if the motion is bounde
There are many ways to derive this result for students w
have mastered only calculus. The purpose of this note i
call attention to a method of showing that elliptical orb
with the proper time dependence satisfy Newton’s sec
law.

This approach does not seem to be used often, but is
pealing because it resembles closely the verification of
cular orbits.~In this presentation we assume the orbit is
liptical with focus at the center of attraction and that
satisfies Kepler’s equation. We then show that this orbit s
isfies Newton’s second law of motion in the central for
field just described. That is, we do notderive the elliptical
orbits from the assumption of an inverse square force; t
we prefer to describe this note as a ‘‘verification’’ rather th
a ‘‘derivation.’’!

The position vectorr describing circular motion~radiusa!
with uniform angular velocityv and timet is described by
the pair of equations

r5a cosEi1a sinEj , ~1!

E5vt. ~2!

Motion on an elliptical orbit with eccentricitye and focus at
the origin is described by the more complex pair

r5~a cosE2ae!i1b sinEj , ~3!

E2e sinE5vt. ~4!

Notice that whene50 ~and thusb5a!, Eqs. ~3! and ~4!
reduce to~1! and ~2!. The ellipse with position vectorr
5a cosEi1b sinEj would have the origin of coordinates a
point C in Fig. 1. Our ellipse~3! has been shifted the dis
tanceae to the left so that the origin is at a focus. Equati
~4! is called Kepler’s equation.1 Kepler’s equation is a ver
sion of Kepler’s second law, that the radius vectorr sweeps
out equal areas in equal times.~Astronomers callE the ec-
centric anomaly andvt the mean anomaly. The term
anomalyhas been used forangle by astronomers for hun
dreds of years because of the irregularities in planetary
sitions.! A simple geometric derivation of~4! is given in the
Appendix to make this paper self-contained. While~1! and
~2! can be combined to express the position vector directl
terms of time,r5a cosvti1a sinvtj , this cannot be done in
the elliptical case with~3! and~4!. We cannot solve~4! for E
in terms oft using convenient elementary functions.
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II. CIRCULAR ORBITS

We seek orbits of point masses that satisfy Newton’s s
ond law of motion in a central force field attracting inverse
as the square of the distance:

r̈52
k

r 2

r

r
. ~5!

Differentiating ~1! twice we get

r̈52v2~a cosvt i1a sinvt j !52v2r . ~6!

Comparing this last result with~5! we see that

v25
k

r 3 . ~7!

From ~7! we conclude that the circle of radiusa ~1! is a true
orbit @satisfies~5!# if the angular velocityv satisfiesv2

5k/a3. If T is the period of the orbit, thenv52p/T and we
get from ~7! T25(4p2/k)a3. This is Kepler’s third law.

III. ELLIPTICAL ORBITS

We will now show that the elliptical orbit described by~3!
and ~4! satisfies Newton’s second law~5! in much the same
way that the circular orbit given by the pair~1! and~2! does.
The calculations are a bit longer, but there are no tricks.

From ~3! we see that the length of the position vectorr is
given by

r 25~a cosE2ae!21~b sinE!2.

Using b25a22a2e2 we get

r 25~a cosE2ae!21~a22a2e2!sin2 E

which simplifies to

r 5a~12e cosE!. ~8!

Now we obtain nice expressions forĖ and Ë. Differenti-
ating Kepler’s equation~4! we get

Ė~12e cosE!5v, ~9!

and using~8! we have

Ė5
av

r
. ~10!

Differentiating ~9! and solving forË we get

Ë52
e sinE

12e cosE
~Ė!2.
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Using ~8! and ~10! we can rewrite this as

Ë52
a3v2e sinE

r 3 . ~11!

Now we can find the acceleration along the elliptical orb
Differentiating ~3! twice we get

ṙ52a sinEĖi1b cosEĖj

and

r̈5„2a sinEË2a cosE~Ė!2
…i

1„b cosEË2b sinE~Ė!2
…j .

Next we use~10! and ~11! to replaceĖ and Ë. We get

r̈5S a4v2e sin2 E

r 3 2
a3v2 cosE

r 2 D i

2S a3bv2e sinE cosE

r 3 1
a2bv2 sinE

r 2 D j .

Factoring out2a3v2/r 3 we have

r̈52
a3v2

r 3 H ~2aesin2 E1r cosE!i

1S besinE cosE1
b

a
r sinED j J .

Using ~8! to remover from $¯% in the above expression w
get after simplifying

r̈52
a3v2

r 3 $~a cosE2ae!i1b sinEj%.

Finally, using~3!, we have

r̈52
a3v2

r 3 r . ~12!

Fig. 1. The elliptical orbit.
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.

Notice how ~12! for the acceleration on the elliptical pat
compares with~6!, the acceleration on the circular orbi
Substituting~12! into Newton’s second law~5! we get

2
a3v2

r 3 r52
k

r 3 r .

Therefore the elliptical motion described by Eqs.~3! and~4!
satisfies Newton’s second law if

v25
k

a3 . ~13!

IV. FINAL REMARKS

~1! One shortcoming of this method is that it is averifica-
tion, not a derivation. We must know relations~3! and
~4! ~which are mathematical statements of Kepler’s fi
and second laws! before we begin.

~2! Historically, Kepler’s laws were known before Newton
laws of motion and gravity. Kepler’s first two laws mak
their initial appearance in his ‘‘Astronomia Nova’’2 of
1609. Initially, German astronomers, as well as Galile
were reluctant to abandon orbits composed of circu
motion for Kepler’s ellipse. Typical was the reaction
David Fabricius,3 a clergyman and amateur astronom
who wrote: ‘‘With your ellipse you abolish the circular
ity and uniformity of the motions, which appears to m
the more absurd the more profoundly I think about it.
If you could only preserve the perfect circular orbit, an
justify your elliptic orbit by another little epicycle, it
would be much better.’’ The first to realize the impo
tance of Kepler’s discoveries were the British. In New
ton’s Principia4 ~1687!, he proves that if the orbit of the
planet is an ellipse, with one focus at the center of for
then that force must vary inversely as the square of
distance.

~3! Our method emphasizes the importance of Keple
equation~4!. This relation~4! enables us to locate th
position of the planet on the elliptical orbit as a functio
of time. While ~4! is always featured in advanced work
on celestial mechanics, it seems to be omitted in m
mathematical treatments of Kepler’s laws in courses
elementary and intermediate mechanics. During the p
300 years, hundreds of papers have been published
ing methods of solving~4!. The book by Colwell5 traces
this remarkable history.

~4! We recommend Koestler’s biography3 of Kepler for a
lively account of his remarkable achievements.

APPENDIX: A DERIVATION OF KEPLER’S
EQUATION

We now derive Kepler’s equation~4!. Our derivation is
similar to Moulton’s.1 Refer to Fig. 1. Kepler’s second law
states that the radius vectorr sweeps out equal areas in equ
times as the planetP moves along the ellipse. Lett be the
time required for the planet to move fromD to P, and letT
be the time for a complete traversing of the ellipse. Then
have from Kepler’s second law

Area ODP

pab
5

t

T
, ~14!
1037Thomas J. Osler
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where we recall thatpab is the area of the full ellipse. Sinc
our ellipse is the result of squashing the large circle of rad
a in the vertical direction by the factorb/a, we see that

Area ODP5
b

a
Area ODA. ~15!

Now

Area ODA5Area CDA2Area COA

5
a2E

2
2

~ae!~a sinE!

2
. ~16!

Combining~15! and ~16! we see that

Area ODP5
abE

2
2

eabsinE

2
.

1038 Am. J. Phys., Vol. 69, No. 10, October 2001
s
Substituting this last relation into~14! gives us Kepler’s
equation

E2e sinE5
2p

T
t5vt.

a!Electronic mail: osler@rowan.edu
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