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Classical equations of motion

» Several formulations
 Newtonian
| agrangian
 Hamiltonian
* Advantages of non-Newtonian formulations
 More general, no need for “fictitious” forces
e Better suited for multiparticle systems
» Better handling of constraints
 Can be derived from more basic postulates

 Assume conservative forces:
F = — VU (gradient of a scalar potential energy)



Newtonian formulation

» Cartesian spatial coordinates r; = (x;, y;, z;) are primary variables

d*r,
. N 2nd-order ordinary differential equations: m—— = m¥. = F,

dr? ’

 Example: 2D motion in a central force field
mi=F-X=—f(ryr-x=—xf(r)
my=F-y=—f(rr-y=—yf(r)

* [ransform to polar coordinates

mrzé’ — /#  Constant angular momentum

?/ﬂ . Tedious to
) __ 1 . "L 7) get
mr — _f(;/') _I_ _ FICtItIOUS fOrCe general case

mr




Lagrangian formulation

* |ndependent of coordinate system
)

Define the Lagrangian L(q, ¢) = K(q, q) — U(qg) and action § = J L(q, q)dt

I

« Equations of motion arise from the principle of least action (PLA) 05 = 0
d [ oL oL , | | |
— | — )|——=0, j=1,...,N (N 2nd-order differential equations)

| .
. Central-force example: L = K — U = E(nfzif2 + r°6%) — U(r)

d (dL\ oL - d (dL\ oL d .
— | — — >mF=mro-—f(r)| — | — — = |—(mr<0) =
dt \ or ]  or dt \o9) 00 |dt

F.=-VUs=—frp -



Hamiltonian formulation

* Appropriate for application to statistical and quantum mechanics

» Newtonian and Lagrangian viewpoints take the ¢; as the fundamental variables

» N-variable configuration space

» ¢, appears only as convenient shorthand for dq/dt
 Formulas are 2nd-order differential equations
 Hamiltonian formulation seeks to work with 1st-order differential equations

« 2N variables: phase space density of the N-body system
* [reat the coordinate and its time derivative as independent variables



Hamiltonian formulation

« Mathematically, Lagrangian treats g and g as distinct

oL

. ldentity generalized momentum as p;=——

dqj

 Example:
i Lo ) oL |
. Lagrangian L = K — U = 5Md” = U(g) and momentum p = — = meg
q
apj oL

. Lagrangian equations of motion: — = —
dt  dq;

* We would like a formulation in which p is an independent variable

« p;is the derivative of the Lagrangian with respect to ¢; and we’re looking to
replace g; with p;



Hamiltonian formulation

 Using a Legendre tranform, we can define the Hamiltonian

H(Q'japj) = = (L(qj, q]) — ZP;‘%)

— K(g;, q;) + U(g;) + Z Zq,

=2 X md} + Ulg) +> Z (2md)q;

|
— 2
= + > E mq; + U(g;)

=K+ U



Hamiltonian formulation )L Lagrange's

—~ =P =—""equation of motion
» Hamiltonian’s equations of motion dt og 1

 Rewrite Lagrangian equations in terms of b= 8_L Definition of
momentum 0g momentum
Differential change in L:
| oOH
oL oL q =T N
dl = a_dq T ?dq P Hamilton’s equation of motion
= .  O0H
= pdq + pdq P="%
Legendre transform:
C tion of L L
— — (L — p¢ onservation of energy: — = — p— — =
H==(=pg) P Tar T T

dH = — pdqg + qdp



Hamiltonian formulation

Lagrange’s equations

 Particle motion in a central force field

(1) m¥ = mr@? — f(r)

H=K+U
Py Pg ) Lm0y = 0
= — + + U B
2m  2mr? () at
0 dr p, di Po
= + — ) — =— ) — = ——
! 0q () dt m %) dt  mr?
oH dpr Po dp6’ \.
p Y (3) rulie— J(r) (4) 7

 Equations equivalent, but theoretical basis is better
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Phase space

« Complete picture of phase space

* Full specification of micro state of the system is given by the values of all
positions and all momentum of all bodies

* View all positions and momenta as independent coordinates
 Connection between them comes through equations of motion

 Motion through phase space

* Helpful to think of dynamics as “simple” e )
movement through phase space

* Facilitates connection to quantum mechanics . N

7, Daniel A. Russell

- Basis for theoretical treatment of dynamics - /0_/ /N [N
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https://www.acs.psu.edu/drussell/Demos/phase-diagram/phase-diagram.html

Integration algorithms

 Equations of motion in cartesian coordinates

dr pj S
K
dp] _ F _ 2 F (pairwise additive forces)

=1, i#j
. Desirable features of an integrator

 Minimal need to compute forces (expensive)
* (Good ability for large time steps

 (Good accuracy

 Conserves energy and momentum
 [Ime-reversible

. . More on these later
* Phase space area-preserving (symplectic)



Time integration methods

» |Let’s integrate a first-order ordinary differential equation (ODE):

ds .
— = 5(1) = F(2,5(2)) S(t)
dt
S(t)
« Example: exponential function \ '
. — Exact
y ==¢€ t solution //

\ y
» Slope: F(t;, S(t))

* A numerical approximation to the ODE
is a set of values: {5, 51,9, ...} and sl -- /’\Numerica,

{t09 tl? tz» o } solution

* There are many different ways of obtaining this
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Euler method

» Explicit Euler method: §,., = S, + F(z,, y,) At

Simplest of all

Right-hand side depends on things
already known: explicit method

The error in a single step is O(At?), but
for N steps needed for a finite time interval,
the total error scales as O(At?)!

Only first-order accurate, not advised to use!

S(t)

_03 -

_04 -

_05 -

_06 -

_07 -

_08 -

_09 -

_10 -

» Implicit Euler method: S, =S, + F(¢,. 1, y,..1) At

Excellent stability properties
Suitable for stiff ODE

—@-- Explicit Euler
— EXxact

0.0

0.2 0.4 0.6 0.8 1.0

 Requires implicit solver fory, _ (i.e.13more computations)




Predictor-corrector methods

* Predictor-corrector methods of solving initial value problems
improve the approximation accuracy by querying the function
several times at different locations (predictions), and then using a
weighted average of the results (corrections) to update the state

 Two formulas: the predictor and corrector

 The predictor is an explicit formula and first estimates the

solution at 7, I.e. we can use Euler method or some other
methods to finish this step.

» Using the found 5(¢,. ;), the corrector can calculate a new,
more accurate solution
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Midpoint
e Implicit midpoint method:

[ +1 S + S
Sn+1:Sn+F<nTn+lanTn+l) At

e 2nd-order accurate
* Time symmetric and symplectic

. But still implicit i
* Explicit midpoint method

S

n

=S, +F(1,+A1/2, S, + F(t, S,)At/2) At
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Runge-Kutta Motivation

Runge-Kutta (RK) methods are one of the most widely used methods for solving
ODEs

Euler method uses the first two terms in Taylor series to approximate the
numerical integration

S(t,.) = S(t, + Ar) = S(t,) + S(t,) At

We can improve the accuracy of the numerical integration if we keep more
terms!

. 1 .. 1 d"§
S(t,.) =S, + Ar) = S(t,) + S(t,)At + ES(tn)Atz + e+ —'W(tH)Atm
! m'! m

In order to get this more accurate solution, we need to derive expressions for
the higher order derivatives
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Runge-Kutta

 Runge-Kutta methods:
* Whole class of integration methods

4th-order accurate O(At™)

2nd-order accurate O(At?) k,=F(t,S)
k,=F(t,S) ky =F(t,+ At/2,S, + k;At/2)
ky = F(t, + At, S, + kAr) ky = F(t, + At/2,S, + k,At/2)
ki + k ky = F(t, + AL, S, + kyAt/2)
Sn+1=S+(122>At : :

S

n

ki, k ki k
=S+ =+=+=2+2) A
6 3 3 6
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