
Javier Duarte — April 7, 2023

PHYS 141/241
Lecture 03: Numerical Integration Methods

• Equations of motion in cartesian coordinates 

• Desirable features of an integrator

• Minimal need to compute forces (expensive)

• Good ability for large time steps

• Good accuracy

• Conserves energy and momentum

• Time-reversible

• Phase space area-preserving (symplectic)

drj

dt
=

pj

m
dpj

dt
= Fj =

N

∑
i=1, i≠j

Fij

Integration algorithms

2

(pairwise additive forces)

More on these later

{

13

Integration Algorithms
 Equations of motion in cartesian coordinates

 Desirable features of an integrator
•  minimal need to compute forces (a very expensive calculation)
•  good stability for large time steps
•  good accuracy
•  conserves energy and momentum
•  time-reversible
•  area-preserving (symplectic)

pairwise additive forces

2-dimensional space (for example)

More on these later

F

• Let’s integrate a first-order ordinary differential equation (ODE): 
 

 

• Example: exponential function 
 

 

• A numerical approximation to the ODE  
is a set of values: and  

 

• There are many different ways of obtaining this

dS
dt

= ·S(t) = F(t, S(t))

·y = e−t

{S0, S1, S2, …}
{t0, t1, t2, …}

Time integration methods

3

• Explicit Euler method:

• Simplest of all

• Right-hand side depends on things  

already known: explicit method

• The error in a single step is , but  
for steps needed for a finite time interval,  
the total error scales as !

• Only first-order accurate, not advised to use!

• Implicit Euler method:

• Excellent stability properties

• Suitable for stiff ODE

• Requires implicit solver for (i.e. more computations)

Sn+1 = Sn + F(tn, yn)Δt

𝒪(Δt2)
N

𝒪(Δt)

Sn+1 = Sn + F(tn+1, yn+1)Δt

yn+1

Euler method

4

• Predictor-corrector methods of solving initial value problems
improve the approximation accuracy by querying the function
several times at different locations (predictions), and then using a
weighted average of the results (corrections) to update the state

• Two formulas: the predictor and corrector

• The predictor is an explicit formula and first estimates the

solution at , i.e. we can use Euler method or some other
methods to finish this step.

• Using the found , the corrector can calculate a new,
more accurate solution

t

S(tn+1)

Predictor-corrector methods

5

• Implicit midpoint method:  
 

 

• 2nd-order accurate

• Time symmetric and symplectic

• But still implicit

• Explicit midpoint method  
 

Sn+1 = Sn + F (tn + tn+1

2
,

Sn + Sn+1

2) Δt

Sn+1 = Sn + F (tn + Δt/2, Sn + F(tn, Sn)Δt/2) Δt

Midpoint method

6

• Euler uses the slope formula  
 

  
 
to derive  

• Midpoint replaces this with the more accurate 
 

 
 
to derive

y′ (t) ≈
y(t + h) − y(t)

h

y(t + h) ≈ y(t) + hf(t, y(t))

y′ (t + h/2) ≈
y(t + h) − y(t)

h

y(t + h) ≈ y(t) + hf(t + h/2,y(t + h/2))

Midpoint vs Euler

7

• Runge-Kutta (RK) methods are one of the most widely used methods for solving
ODEs

• Euler method uses the first two terms in Taylor series to approximate the
numerical integration 
 

• We can improve the accuracy of the numerical integration if we keep more

terms! 
 

 

• In order to get this more accurate solution, we need to derive expressions for
the higher order derivatives

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt +
1
2!

··S(tn)Δt2 + ⋯ +
1

m!
dmS
dtm

(tn)Δtm

Runge-Kutta motivation

8

• Runge-Kutta methods:

• Whole class of integration methods

Runge-Kutta methods

9

k1 = F(tn, Sn)
k2 = F(tn + Δt, Sn + k1Δt)

Sn+1 = Sn + (k1 + k2

2) Δt

2nd-order accurate 𝒪(Δt2) k1 = F(tn, Sn)
k2 = F(tn + Δt/2,Sn + k1Δt/2)
k3 = F(tn + Δt/2,Sn + k2Δt/2)
k3 = F(tn + Δt, Sn + k3Δt/2)

Sn+1 = Sn + (k1

6
+

k2

3
+

k3

3
+

k4

6) Δt

4th-order accurate 𝒪(Δt4)

• So far methods have been very generic

• For Newton-like equations , more specialized methods

• Verlet algorithm

• Consider expansion of coordinate forward and backward in time: 

 

• Add these together and rearrange: 

• Update without ever consulting velocities!

··r(t) =
1
m

F(t)

r(t + Δt) = r(t) +
1
m

p(t)Δt +
1

2m
F(t)Δt2 +

1
3!

···r (t)Δt3 + O(Δt4)

r(t − Δt) = r(t) −
1
m

p(t)Δt +
1

2m
F(t)Δt2 −

1
3!

···r (t)Δt3 + O(Δt4)

r(t + Δt) = 2r(t) + −r(t − Δt) +
1
m

F(t)Δt2 + O(Δt4)

Verlet methods

10

• Initialization

• How do we get the position at the previous time stem when starting

out?

• Simple approximation:

• Obtaining the velocities

• Not evaluated during the normal course of algorithm

• But needed to compute some properties

• Finite difference: 
 

r(t0 + Δt) = r(t0) − v(t0)Δt

v(t) =
1

2Δt
[r(t + Δt) − r(t − Δt)] + O(Δt2)

Verlet: Issues

11

• Time reversible

• Forward time step 

• Backward time step: replace  

• Same algorithm, with same position and forces, moves system backward
in time

• If you step forward, and then backward, return to the same point!

• Numerical imprecision of adding large/small numbers 
 

r(t0 + Δt) = 2r(t0) − r(t − Δt) +
1
m

F(t)Δt2

Δt → (−Δt)
r(t0+(−Δt)) = 2r(t0) − r(t−(−Δt))) +

1
m

F(t)(−Δt)2

r(t + Δt) − r(t) = r(t) + −r(t − Δt) +
1
m

F(t)Δt2

Verlet: Performance issues

12O(Δt1) O(Δt0)O(Δt0)

• Leapfrog is a variation on the so-called “velocity” Verlet

• Eliminates addition of small numbers to differences in large ones 
 

 

• Mathematically equivalent to Verlet algorithm 
 

r(t + Δt) = r(t) + v(t+ 1
2 Δt)Δt

v(t+ 1
2 Δt) = v(t− 1

2 Δt)+ 1
m F(t)Δt

r(t + Δt) = r(t) + [v(t− 1
2 Δt)+ 1

m F(t)Δt] Δt

Leapfrog

13

r(t) = r(t − Δt) + v(t− 1
2 t)Δt

• Initialization

• Simple approximation to get velocity at first time step:

• Obtaining the velocities

• Interpolate

•

v(t0−
1
2 Δt) ≡ v(t0) −

1
m

F(t0)
1
2 Δt

v(t) =
1
2 (v(t+ 1

2 Δt) + v(t− 1
2 Δt))

Leapfrog: Issues

14

15

The Leapfrog

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

● 2nd order accurate

● symplectic

● can be rewritten into time-centred formulation

For a second order ODE:

When compared with an integrator of the same
order, the leapfrog is highly superior

INTEGRATING THE KEPLER PROBLEM

16

The leapfrog is behaving much better
than one might expect...

INTEGRATING THE KEPLER PROBLEM

17

18

Even for rather large timesteps, the leapfrog maintains
qualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM

