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PHYS 141/241
Lecture 03: Numerical Integration Methods



• Equations of motion in cartesian coordinates 




• Desirable features of an integrator

• Minimal need to compute forces (expensive)

• Good ability for large time steps

• Good accuracy

• Conserves energy and momentum

• Time-reversible

• Phase space area-preserving (symplectic)

drj

dt
=

pj

m
dpj

dt
= Fj =

N

∑
i=1, i≠j

Fij

Integration algorithms
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(pairwise additive forces)

More on these later
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Integration Algorithms 
 Equations of motion in cartesian coordinates 

 Desirable features of an integrator 
•  minimal need to compute forces (a very expensive calculation) 
•  good stability for large time steps 
•  good accuracy  
•  conserves energy and momentum 
•  time-reversible 
•  area-preserving (symplectic) 

pairwise additive forces

2-dimensional space (for example)

More on these later
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• Let’s integrate a first-order ordinary differential equation (ODE): 
 

 

• Example: exponential function 
 

 

• A numerical approximation to the ODE  
is a set of values:  and  

 

• There are many different ways of obtaining this

dS
dt

= ·S(t) = F(t, S(t))

·y = e−t

{S0, S1, S2, …}
{t0, t1, t2, …}

Time integration methods
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• Explicit Euler method: 

• Simplest of all

• Right-hand side depends on things  

already known: explicit method


• The error in a single step is , but  
for  steps needed for a finite time interval,  
the total error scales as !


• Only first-order accurate, not advised to use!


• Implicit Euler method: 

• Excellent stability properties

• Suitable for stiff ODE


• Requires implicit solver for  (i.e. more computations)

Sn+1 = Sn + F(tn, yn)Δt

𝒪(Δt2)
N

𝒪(Δt)

Sn+1 = Sn + F(tn+1, yn+1)Δt

yn+1

Euler method
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• Predictor-corrector methods of solving initial value problems 
improve the approximation accuracy by querying the function 
several times at different locations (predictions), and then using a 
weighted average of the results (corrections) to update the state


• Two formulas: the predictor and corrector

• The predictor is an explicit formula and first estimates the 

solution at  , i.e. we can use Euler method or some other 
methods to finish this step.


• Using the found , the corrector can calculate a new, 
more accurate solution

t

S(tn+1)

Predictor-corrector methods
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• Implicit midpoint method:  
 

 

• 2nd-order accurate

• Time symmetric and symplectic

• But still implicit


• Explicit midpoint method  
 

Sn+1 = Sn + F ( tn + tn+1

2
,

Sn + Sn+1

2 ) Δt

Sn+1 = Sn + F (tn + Δt/2, Sn + F(tn, Sn)Δt/2) Δt

Midpoint method
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• Euler uses the slope formula  
 

  
 
to derive  

• Midpoint replaces this with the more accurate 
 

 
 
to derive 

y′ (t) ≈
y(t + h) − y(t)

h

y(t + h) ≈ y(t) + hf(t, y(t))

y′ (t + h/2) ≈
y(t + h) − y(t)

h

y(t + h) ≈ y(t) + hf(t + h/2,y(t + h/2))

Midpoint vs Euler
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• Runge-Kutta (RK) methods are one of the most widely used methods for solving 
ODEs


• Euler method uses the first two terms in Taylor series to approximate the 
numerical integration 
 



• We can improve the accuracy of the numerical integration if we keep more 

terms! 
 

 

• In order to get this more accurate solution, we need to derive expressions for 
the higher order derivatives

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt +
1
2!

··S(tn)Δt2 + ⋯ +
1

m!
dmS
dtm

(tn)Δtm

Runge-Kutta motivation
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• Runge-Kutta methods: 

• Whole class of integration methods

Runge-Kutta methods
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k1 = F(tn, Sn)
k2 = F(tn + Δt, Sn + k1Δt)

Sn+1 = Sn + ( k1 + k2

2 ) Δt

2nd-order accurate 𝒪(Δt2) k1 = F(tn, Sn)
k2 = F(tn + Δt/2,Sn + k1Δt/2)
k3 = F(tn + Δt/2,Sn + k2Δt/2)
k3 = F(tn + Δt, Sn + k3Δt/2)

Sn+1 = Sn + ( k1

6
+

k2

3
+

k3

3
+

k4

6 ) Δt

4th-order accurate 𝒪(Δt4)



• So far methods have been very generic


• For Newton-like equations , more specialized methods


• Verlet algorithm

• Consider expansion of coordinate forward and backward in time: 

 

• Add these together and rearrange: 



• Update without ever consulting velocities!

··r(t) =
1
m

F(t)

r(t + Δt) = r(t) +
1
m

p(t)Δt +
1

2m
F(t)Δt2 +

1
3!

···r (t)Δt3 + O(Δt4)

r(t − Δt) = r(t) −
1
m

p(t)Δt +
1

2m
F(t)Δt2 −

1
3!

···r (t)Δt3 + O(Δt4)

r(t + Δt) = 2r(t) + −r(t − Δt) +
1
m

F(t)Δt2 + O(Δt4)

Verlet methods
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• Initialization

• How do we get the position at the previous time stem when starting 

out?


• Simple approximation: 

• Obtaining the velocities

• Not evaluated during the normal course of algorithm

• But needed to compute some properties

• Finite difference: 
 

r(t0 + Δt) = r(t0) − v(t0)Δt

v(t) =
1

2Δt
[r(t + Δt) − r(t − Δt)] + O(Δt2)

Verlet: Issues
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• Time reversible

• Forward time step 




• Backward time step: replace  




• Same algorithm, with same position and forces, moves system backward 
in time


• If you step forward, and then backward, return to the same point!

• Numerical imprecision of adding large/small numbers 
 

r(t0 + Δt) = 2r(t0) − r(t − Δt) +
1
m

F(t)Δt2

Δt → (−Δt)
r(t0+(−Δt)) = 2r(t0) − r(t−(−Δt))) +

1
m

F(t)(−Δt)2

r(t + Δt) − r(t) = r(t) + −r(t − Δt) +
1
m

F(t)Δt2

Verlet: Performance issues

12O(Δt1) O(Δt0)O(Δt0)



• Leapfrog is a variation on the so-called “velocity” Verlet

• Eliminates addition of small numbers to differences in large ones 
 

 

• Mathematically equivalent to Verlet algorithm 
 

r(t + Δt) = r(t) + v(t+ 1
2 Δt)Δt

v(t+ 1
2 Δt) = v(t− 1

2 Δt)+ 1
m F(t)Δt

r(t + Δt) = r(t) + [v(t− 1
2 Δt)+ 1

m F(t)Δt] Δt

Leapfrog
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r(t) = r(t − Δt) + v(t− 1
2 t)Δt



• Initialization

• Simple approximation to get velocity at first time step: 




• Obtaining the velocities

• Interpolate


•

v(t0−
1
2 Δt) ≡ v(t0) −

1
m

F(t0)
1
2 Δt

v(t) =
1
2 (v(t+ 1

2 Δt) + v(t− 1
2 Δt))

Leapfrog: Issues
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The Leapfrog

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

● 2nd order accurate

● symplectic

● can be rewritten into time-centred formulation

For a second order ODE:



When compared with an integrator of the same 
order, the leapfrog is highly superior

INTEGRATING THE KEPLER PROBLEM
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The leapfrog is behaving much better 
than one might expect...
 

INTEGRATING THE KEPLER PROBLEM
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Even for rather large timesteps, the leapfrog maintains 
qualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM


