N _ . # . . , |

~ Lecture 03: Numerical Integration Methods | -
Javier Duarte — April 7, 2023 o « .

Integration algorithms

 Equations of motion in cartesian coordinates

dr pj S
K
dp] _ F _ 2 F (pairwise additive forces)

=1, i#j
. Desirable features of an integrator

 Minimal need to compute forces (expensive)
* (Good ability for large time steps

 (Good accuracy

 Conserves energy and momentum
 [Ime-reversible

. . More on these later
* Phase space area-preserving (symplectic)

Time integration methods

» |Let’s integrate a first-order ordinary differential equation (ODE):

ds .
— = 5(1) = F(2,5(2)) S(t)
dt
S(t)
« Example: exponential function \ '
. — Exact
y ==¢€ t solution //

\ y
» Slope: F(t;, S(t))

* A numerical approximation to the ODE
is a set of values: {5, 51,9, ...} and sl -- /’\Numerica,

{t09 tl? tz» o } solution

* There are many different ways of obtaining this

3

Euler method

- Explicit Euler method: S, =S, + F(¢,,y,)At ..

e Simplest of all

0.0 1

* Right-hand side depends on things
already known: explicit method .

—0.2 1

~0.4 -

» The error in a single step is O(At?), but

for N steps needed for a finite time interval, _...

the total error scales as O(At)! ol . . I el
° Only fIrSt_Order aCCUFate, not adV|Sed to use' 0.0 0.2 04 0.6 0.8

» Implicit Euler method: S, =S, + F(¢,. 1, y,..1) At

* EXxcellent stability properties
e Suitable for stiff ODE

 Requires implicit solver fory, _ (i.e.4 more computations)

Predictor-corrector methods

* Predictor-corrector methods of solving initial value problems
improve the approximation accuracy by querying the function
several times at different locations (predictions), and then using a
weighted average of the results (corrections) to update the state

 Two formulas: the predictor and corrector

 The predictor is an explicit formula and first estimates the

solution at 7, I.e. we can use Euler method or some other
methods to finish this step.

» Using the found 5(¢,. ;), the corrector can calculate a new,
more accurate solution

Midpoint method

: yn+1
 |Implicit midpoint method: '
f+t S +3S y
Sn+1:Sn+F<n n+1, n n+1>At n:
2 2 yt) /
e 2nd-order accurate 5
» Time symmetric and symplectic E , ,
. But still implicit L L +h/2 1

o EXxplicit midpoint method

S

n

=S, +F(1,+A1/2, S, + F(t, S,)At/2) At

Midpoint vs Euler

* Euler uses the slope formula

0.4 -

V(1) ~ y(t + h})l — Y@ -

to derive y(f + h) ~ y(t) + hf(t, y(¢))

—0.2 1

~0.4 -

—0.6 -

—0.8 -

 Midpoint replaces this with the more accurate

—1.0

0.0 0.2 0.4 0.6 0.8

y(t + h) — y(1) f
h

to derive y(t + h) = y(t) + hf(t + h/2,y(t + h/2))

y(t+ hl2) =

Runge-Kutta motivation

Runge-Kutta (RK) methods are one of the most widely used methods for solving
ODEs

Euler method uses the first two terms in Taylor series to approximate the
numerical integration

S(t,.) = S(t, + Ar) = S(t,) + S(t,) At

We can improve the accuracy of the numerical integration if we keep more
terms!

. 1 .. 1 d"§
S(t,.) =S, + Ar) = S(t,) + S(t,)At + ES(tn)Atz + e+ —'W(tH)Atm
! m'! m

In order to get this more accurate solution, we need to derive expressions for
the higher order derivatives

Runge-Kutta methods

 Runge-Kutta methods:

* Whole class of integration methods

ond-order accurate O(At?)
ky, = F(t,+ At, S, + k| A¥)

(h+@>
Sn_|_1 :Sn+ At

2

9

0.4 - B —
-9 d b ¢
&
”
0.2 | S
0.0 f ’/ Y WETTTLL @ - @:------- @ - ®
| S e e e — @
/ “0‘,,%
“‘M‘
/ L2
_0.2 b // "7/(/
= o 7
it Iy
—0.4 - 1 /
I
/
17
~0.6 I
'7 -+ Explicit Eul
74 —— Exact
Rl !y —®-- Midpoint
/ @ RK2
-1.0 +—© RK4

4th-order accurate O(At%)

ky = F(t, + At/2,S, + ky,At/2)
ky = F(t, + AL, S, + k3 At/2)

| ki, k ki k
=S+ =+=+=2+2) A
6 3 3 6

Verlet methods

e So far methods have been very generic

. For Newton-like equations F(¢#) = —F(t), more specialized methods
m

* \erlet algorithm
 Consider expansion of coordinate forward and backward in time:

r(t 4+ A1) = r(t) + 1 — (At + ZLF(z)Az + % F(HAP + O(AY)
m

r(it — At) =r(t) — ip(t)At + LF(t)At — L (O AL + O(AtY)
2m 3!

* Add these together and rearrange:

r(t 4+ Af) = 2r(f) + —r(t — Af) + iF(z)Az2 + O(At
m

 Update without ever consulting velocities!

Verlet: Issues

e |nitialization

* How do we get the position at the previous time stem when starting
out?

» Simple approximation: r(f, + At) = r(t,) — v(t,) At
* Obtaining the velocities
* Not evaluated during the normal course of algorithm

 But needed to compute some properties
* Finite difference:

_ i — 2
v(1) = AT [r(t + At) —r(t — At)] + O(At%)

11

Verlet: Performance issues

e Time reversible
 Forward time step

r(ty + Af) = 2r(ty) — r(t — Af) + iF(r)Az2
m

« Backward time step: replace At — (— At)

r(ty+(— A1) = 2r(ty) — r(t—(—Ar))) + %F(t)(At)

 Same algorithm, with same position and forces, moves system backward
INn time
* |f you step forward, and then backward, return to the same point!
* Numerical imprecision of adding large/small numbers

O(Ath O(At) O(A1") 12

Leapfrog

* | eapfrog is a variation on the so-called “velocity” Verlet
* Eliminates addition of small numbers to differences in large ones

r(t + Af) = r(f) + v(i+5An At /\/\/\/\

v(t+%At) — V(t—%At)+%F(t)At /\/\/\/_

 Mathematically equivalent to\Verlet algorithm

F(t + Af) = r(f) + [v(t—%AtH %F(t)At] N

r(f) = r(t — Af) + v(t—%t)At

13

Leapfrog: Issues

* |nitialization
* Simple approximation to get velocity at first time step:

1
V(ty—~Af) = v(ty) — ZF(tO)%At

* Obtaining the velocities
e |nterpolate

1
(1) = (v(t+ A +v(t——At))

14

The Leapfrog For a second order ODE: X — f (X)

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

« 2"4 order accurate

* symplectic

 can be rewritten into time-centred formulation

15

When compared with an integrator of the same

order, the leapfrog is highly superior
INTEGRATING THE KEPLER PROBLEM

AE/ |E]

AE/|El

0.4

0.2

0.4

0.10

0.05

0.00

-0.05

-0.10

lllllllll

|_second-order Runge-Kutta

A
o
-.
=
o
4
-
=
=

—
=
—1
-1
-.
o
=
=
=
=

e
=
=
o
-.
o
=
o
=
=

—
=
-
=
o
-.
=
o
-
-

—
=
—
=
—1
-1
-
o
=
=

—
=
=
=
=
o
-.
o
=
=

llllllllll

[Illlllllllllllllll

rounds

| Leapfrog (fixed stepsize)

IIIIIII

IIII]IIII

|

lllllllll

lllllllll

rounds

100

150

)
8

16

2

1TTIIIITTIIIIITTIIITITIIlITTTlll]]Tlll

1

second-order Runge-Kutta

e=0.9

51 orbits

2784.6 steps / orbit
5569.2 forces/ orbit

lllllllillllllllllllllllll

\

(only every LO-th orbit drawn)

lllllllllllllllllll]lllllllllllllllllll

lllllllllllllllllllllllllllllllllllllll

-1 0 1 2

Illlllll]lllll]lllllllllIlllllllll]llll

1

Leapfrog (fixed stepsize)

L T

e=0.9
200 orbits
2010.6 steps / orbit

lllllllllllllllllllll

(only every LO-th orbit drawn)

lllllllllllllllllll]llllllllllllllllll

| T T |

llllllllllllllllllllllllIllllllllllllll

-1 0 1 2

AE] |E]

AE | |El

2 _l LB l |] rr e I r] L lq

The IeapfrOg IS behaV|ng much better - fourth-order Runge-Kutta i

than one might expect... - e 09 :

1= . _

INTEGRATING THE KEPLER PROBLEM - 200 orbits .

T T T T T T T T T | T T T T T T T T T : 502,.8 StePS / Orbit :

0.4 __fourth-order Runge-Kutta _ - 201 1.0 forces / orbit b

i - O =

0.2} - - — -

0.0~ ~ 1 -

02— . - -

- - - (only every LO-th orbit drawn) B

: : "2 _l 1 1 1 l | I S S I S 1 | S N R B N . l | I N N S A l 111 l—‘
04— _ -1 0 1 2

- 2 _I L] | | l Py I rFr I L l_‘

1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 :) | :

0 50 100 150 200 - Leapfrog (fixed stepsize) N

rounds - _

O. 10 T T T T | T T T T [T T T T I T T T : e = 0.9 :

_ Leapfrog (fixed stepsize i - _

- HEAPHOB psize) - 1 200 orbits -

0.05— N - 2010.6 steps / orbit E

i i Of -

0.00 = -

i At i - .

- xn—l—% — In -+ Un 5 _ - -

-0.05 Vi1 = Upt+ [T,)AL — N - E

- At S : ' :

- Tpyl1 — CE’n_|_% —+ ’Un_|_17 u - N

-0_10 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 — . -

0 50 100 150 500 ' (only every LO-th orbit drawn) -

rounds 17 -21111|1111111111111111111||1111|||111||1q

-1 0 1 2

Even for rather large timesteps, the leapfrog maintains
qgualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM

2 _l 1 11 I P P l P] P l_‘
L L g (fixed stepsize) N
- e O. : 0-10 B T T T T | T T T T I T T T T [T T]
p - _ Leapfrog (fixed stepsize) N
L\ 200 ot _ - _
/(i: 61N Stepd /b - 0.05 -
B _ a5 5 i
1 g 000 I
e
- . l I
P LT B || II
/ /_.L ~ —
B n 0.05 _— i
/ — - | —
- -0,10 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 i
k _ 0 50 100 150
= - rounds
- (onlye th t n) -
-2 _l 1 11 I | I I N I A |] | S S R N | l | N B I l | . . | l—‘
-1 0 1 2

18

2

