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PHYS 141/241
Lecture 04: Numerical Integration Methods (Continued)



• Euler method uses the first two terms in Taylor series to approximate 
 

 

• We can improve the accuracy if we keep more terms 
 

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt +
1
2!

··S(tn)Δt2 + ⋯

2nd-order Runge-Kutta derivation
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• Recall our ODE:  

• This means 
 

 

• So we can write down two approximations to the derivative: 
 

 

• And then take a weighted average: 

dS
dt

= ·S(t) = F(t, S(t))

··S(t) =
d
dt [F(t, S(t))] =

∂F
∂t

+
∂F
∂S

dS
dt

=
∂F
∂t

+
∂F
∂S

F(t, S(t))

k1 = F(tn, S(tn))
k2 = F(tn + αΔt, S(tn) + βk1Δt)

S(tn + Δt) = S(tn) + (ak1 + bk2)Δt

2nd-order Runge-Kutta derivation
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• What values of  minimize the error?

• Expanding our update equation 
 




• Expanding the rightmost term: 



• Inserting back: 
 

a, b, α, β

S(tn + Δt) = S(tn) + (ak1 + bk2)Δt
= S(tn) + aF(tn, S(tn))Δt + b(F(tn + αΔt, S(tn) + βk1Δt))Δt

F(tn + αΔt, S(tn) + βk1Δt) = F(tn, S(tn)) +
∂F
∂t

αΔt +
∂F
∂S

βF(tn, S(tn))Δt + ⋯

S(tn + Δt) = S(tn) + (a + b)F(tn, S(tn))Δt

+bα
∂F
∂t

Δt2 + bβ
∂F
∂S

F(tn, S(tn))Δt2 + …

2nd-order Runge-Kutta derivation
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• Our proposed solution 
 




• Let’s compare that to the exact solution up to  from a Taylor series 
 

 


• So we find  and 


• Infinitely many solutions! Common choice is  and 

S(tn + Δt) = S(tn) + (a + b)F(tn, S(tn))Δt

+bα
∂F
∂t

Δt2 + bβ
∂F
∂S

F(tn, S(tn))Δt2 + …

𝒪(Δt3)

S(tn + Δt) = S(tn) + F(tn, S(tn))Δt

+
1
2

∂F
∂t

Δt2 +
1
2

∂F
∂S

F(tn, S(tn))Δt2 + ⋯

a + b = 1 bα = bβ =
1
2

a = b =
1
2

α = β = 1

2nd-order Runge-Kutta derivation
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k1 = F(tn, Sn)
k2 = F(tn + Δt, Sn + k1Δt)

Sn+1 = Sn + ( k1 + k2

2 ) Δt

2nd-order accurate 𝒪(Δt2)



• Can repeat same arguments to arrive at 
4th-order method


• Basically “guess and check” with 
agreement using Taylor series

4th-order Runge-Kutta
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k1 = F(tn, Sn)
k2 = F(tn + Δt/2,Sn + k1Δt/2)
k3 = F(tn + Δt/2,Sn + k2Δt/2)
k4 = F(tn + Δt, Sn + k3Δt)

Sn+1 = Sn + ( k1

6
+

k2

3
+

k3

3
+

k4

6 ) Δt

4th-order accurate 𝒪(Δt4)



• https://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.solve_ivp.html


• RK4 (with some modifications 

SciPy Solve IVP

7

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html


• So far methods have been very generic


• For Newton-like equations , more specialized methods


• Verlet algorithm

• Consider expansion of coordinate forward and backward in time: 

 

• Add these together and rearrange: 



• Update without ever consulting velocities!

··r(t) =
1
m

F(t)

r(t + Δt) = r(t) +
1
m

p(t)Δt +
1

2m
F(t)Δt2 +

1
3!

···r (t)Δt3 + O(Δt4)

r(t − Δt) = r(t) −
1
m

p(t)Δt +
1

2m
F(t)Δt2 −

1
3!

···r (t)Δt3 + O(Δt4)

r(t + Δt) = 2r(t) + −r(t − Δt) +
1
m

F(t)Δt2 + O(Δt4)

Verlet methods
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• Initialization

• How do we get the position at the previous time stem when starting 

out?


• Simple approximation: 

• Obtaining the velocities

• Not evaluated during the normal course of algorithm

• But needed to compute some properties

• Finite difference: 
 

r(t0 − Δt) = r(t0) − v(t0)Δt

v(t) =
1

2Δt
[r(t + Δt) − r(t − Δt)] + O(Δt2)

Verlet: Issues
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• Time reversible

• Forward time step 




• Backward time step: replace  




• Same algorithm, with same position and forces, moves system backward 
in time


• If you step forward, and then backward, return to the same point!

• Numerical imprecision of adding large/small numbers 
 

r(t0 + Δt) = 2r(t0) − r(t − Δt) +
1
m

F(t)Δt2

Δt → (−Δt)
r(t0+(−Δt)) = 2r(t0) − r(t−(−Δt))) +

1
m

F(t)(−Δt)2

r(t + Δt) − r(t) = r(t) + −r(t − Δt) +
1
m

F(t)Δt2

Verlet: Performance issues
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• Leapfrog is a variation on the so-called “velocity” Verlet

• Eliminates addition of small numbers to differences in large ones 
 

 

• Mathematically equivalent to Verlet algorithm 
 

r(t + Δt) = r(t) + v(t+ 1
2 Δt)Δt

v(t+ 1
2 Δt) = v(t− 1

2 Δt)+ 1
m F(t)Δt

r(t + Δt) = r(t) + [v(t− 1
2 Δt)+ 1

m F(t)Δt] Δt

Leapfrog
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r(t) = r(t − Δt) + v(t− 1
2 t)Δt



• Initialization

• Simple approximation to get velocity at first time step: 




• Obtaining the velocities

• Interpolate


•

v(t0−
1
2 Δt) ≡ v(t0) −

1
m

F(t0)
1
2 Δt

v(t) =
1
2 (v(t+ 1

2 Δt) + v(t− 1
2 Δt))

Leapfrog: Issues
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The Leapfrog

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

● 2nd order accurate

● symplectic

● can be rewritten into time-centred formulation

For a second order ODE:



When compared with an integrator of the same 
order, the leapfrog is highly superior

INTEGRATING THE KEPLER PROBLEM
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The leapfrog is behaving much better 
than one might expect...
 

INTEGRATING THE KEPLER PROBLEM
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Even for rather large timesteps, the leapfrog maintains 
qualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM



• Advances of leapfrog and verlet algorithms 

• Time-reversal invariant

• Conserves angular momentum

• Symplectic (i.e. phase-space area preserving)  
• Euler, RK2, and RK4 are not!


•

Advantages
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correspond precisely to the three steps in the forward trajectory (with positions the same

and velocities reversed) but in the reverse order.

2. In a spherically symmetric potential, angular momentum is conserved and, remarkably, the

leapfrog/(velocity or position) Verlet algorithm conserves it exactly. If the potential energy

U only depends on the magnitude of !r and not its direction then the force is along the

direction of !r, i.e.

!F (r) = −r̂
dU(r)
dr

, (16)

where r̂ is a unit vector in the direction of !r. It is left as a homework exercise to show that

the leapfrog algorithm conserves angular momentum for such a force. (Unfortunately energy

is not exactly conserved in the algorithm.)

It is obviously desirable that a numerical approximation respect symmetries exactly, and

I’m not aware of any other algorithms which conserve angular momentum, though they may

exist. This is obviously a “plus” for the leapfrog algorithm.

3. The leapfrog/(velocity or position) Verlet algorithm is “symplectic”, i.e. area preserving.

I will now explain this important concept. Consider a small rectangular region of phase

space of area dA as shown in the left part of the figure below.

p

x

p’

x’

dA

time t time t’

dA’
1

4

2

dp

dx

2 3

41
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Let the four corners of the square, (x, p), (x + dx, p), (x, p + dp), (x + dx, p + dp) represent

four possible coordinates of a particle at time t. These are labeled 1, 2, 3, 4. Then, at a later

time t′ each of these four points will have changed, to form the corners of a parallelogram,

as shown on the right of the figure. Let the area of the parallelogram be dA′. An important

theorem (Liouville’s theorem) states that the areas are equal, i.e.

dA′ = dA. (17)



What is the underlying mathematical reason for the very good 
long-term behaviour of the leapfrog ?

HAMILTONIAN SYSTEMS AND SYMPLECTIC INTEGRATION

The Hamiltonian structure of the system can be preserved in the integration if each step is 
formulated as a canoncial transformation. Such integration schemes are called symplectic.

If the integration scheme introduces non-Hamiltonian perturbations, a completely different long-term 
behaviour results.

Poisson bracket: Hamilton's equations

Hamilton operator System state vector

Time evolution operator

The time evolution of the system is a continuous canonical transformation generated by the Hamiltonian.
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Symplectic integration schemes can be generated by applying 
the idea of operating splitting to the Hamiltonian

THE LEAPFROG AS A SYMPLECTIC INTEGRATOR

Drift- and Kick-Operators

Separable Hamiltonian

The Leapfrog

The drift and kick operators are symplectic transformations of phase-space !

Drift-Kick-Drift:

Kick-Drift-Kick:

Hamiltonian of the 
numerical system:
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When an adaptive timestep is used, much 
of the symplectic advantage is lost

INTEGRATING THE KEPLER PROBLEM

That's what's 
done in 

GADGET-1

Going to KDK reduces the error by a factor 
4, at the same cost !
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For periodic motion with adaptive timesteps, the DKD leapfrog shows 
more time-asymmetry than the KDK variant

LEAPFROG WITH ADAPTIVE TIMESTEP

force forceforce

KDK

forwards backwards

asymmetry

force forceforce

DKD

forwards backwards

asymmetry

force


