
Javier Duarte — April 9, 2023

PHYS 141/241
Lecture 04: Numerical Integration Methods (Continued)

• Euler method uses the first two terms in Taylor series to approximate 
 

 

• We can improve the accuracy if we keep more terms 
 

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt

S(tn+1) = S(tn + Δt) = S(tn) + ·S(tn)Δt +
1
2!

··S(tn)Δt2 + ⋯

2nd-order Runge-Kutta derivation

2

• Recall our ODE:  

• This means 
 

 

• So we can write down two approximations to the derivative: 
 

 

• And then take a weighted average:

dS
dt

= ·S(t) = F(t, S(t))

··S(t) =
d
dt [F(t, S(t))] =

∂F
∂t

+
∂F
∂S

dS
dt

=
∂F
∂t

+
∂F
∂S

F(t, S(t))

k1 = F(tn, S(tn))
k2 = F(tn + αΔt, S(tn) + βk1Δt)

S(tn + Δt) = S(tn) + (ak1 + bk2)Δt

2nd-order Runge-Kutta derivation

3

• What values of minimize the error?

• Expanding our update equation 
 

• Expanding the rightmost term: 

• Inserting back: 
 

a, b, α, β

S(tn + Δt) = S(tn) + (ak1 + bk2)Δt
= S(tn) + aF(tn, S(tn))Δt + b(F(tn + αΔt, S(tn) + βk1Δt))Δt

F(tn + αΔt, S(tn) + βk1Δt) = F(tn, S(tn)) +
∂F
∂t

αΔt +
∂F
∂S

βF(tn, S(tn))Δt + ⋯

S(tn + Δt) = S(tn) + (a + b)F(tn, S(tn))Δt

+bα
∂F
∂t

Δt2 + bβ
∂F
∂S

F(tn, S(tn))Δt2 + …

2nd-order Runge-Kutta derivation

4

• Our proposed solution 
 

• Let’s compare that to the exact solution up to from a Taylor series 
 

• So we find and

• Infinitely many solutions! Common choice is and

S(tn + Δt) = S(tn) + (a + b)F(tn, S(tn))Δt

+bα
∂F
∂t

Δt2 + bβ
∂F
∂S

F(tn, S(tn))Δt2 + …

𝒪(Δt3)

S(tn + Δt) = S(tn) + F(tn, S(tn))Δt

+
1
2

∂F
∂t

Δt2 +
1
2

∂F
∂S

F(tn, S(tn))Δt2 + ⋯

a + b = 1 bα = bβ =
1
2

a = b =
1
2

α = β = 1

2nd-order Runge-Kutta derivation

5

k1 = F(tn, Sn)
k2 = F(tn + Δt, Sn + k1Δt)

Sn+1 = Sn + (k1 + k2

2) Δt

2nd-order accurate 𝒪(Δt2)

• Can repeat same arguments to arrive at
4th-order method

• Basically “guess and check” with
agreement using Taylor series

4th-order Runge-Kutta

6

k1 = F(tn, Sn)
k2 = F(tn + Δt/2,Sn + k1Δt/2)
k3 = F(tn + Δt/2,Sn + k2Δt/2)
k4 = F(tn + Δt, Sn + k3Δt)

Sn+1 = Sn + (k1

6
+

k2

3
+

k3

3
+

k4

6) Δt

4th-order accurate 𝒪(Δt4)

• https://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.solve_ivp.html

• RK4 (with some modifications

SciPy Solve IVP

7

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

• So far methods have been very generic

• For Newton-like equations , more specialized methods

• Verlet algorithm

• Consider expansion of coordinate forward and backward in time: 

 

• Add these together and rearrange: 

• Update without ever consulting velocities!

··r(t) =
1
m

F(t)

r(t + Δt) = r(t) +
1
m

p(t)Δt +
1

2m
F(t)Δt2 +

1
3!

···r (t)Δt3 + O(Δt4)

r(t − Δt) = r(t) −
1
m

p(t)Δt +
1

2m
F(t)Δt2 −

1
3!

···r (t)Δt3 + O(Δt4)

r(t + Δt) = 2r(t) + −r(t − Δt) +
1
m

F(t)Δt2 + O(Δt4)

Verlet methods

8

• Initialization

• How do we get the position at the previous time stem when starting

out?

• Simple approximation:

• Obtaining the velocities

• Not evaluated during the normal course of algorithm

• But needed to compute some properties

• Finite difference: 
 

r(t0 − Δt) = r(t0) − v(t0)Δt

v(t) =
1

2Δt
[r(t + Δt) − r(t − Δt)] + O(Δt2)

Verlet: Issues

9

• Time reversible

• Forward time step 

• Backward time step: replace  

• Same algorithm, with same position and forces, moves system backward
in time

• If you step forward, and then backward, return to the same point!

• Numerical imprecision of adding large/small numbers 
 

r(t0 + Δt) = 2r(t0) − r(t − Δt) +
1
m

F(t)Δt2

Δt → (−Δt)
r(t0+(−Δt)) = 2r(t0) − r(t−(−Δt))) +

1
m

F(t)(−Δt)2

r(t + Δt) − r(t) = r(t) + −r(t − Δt) +
1
m

F(t)Δt2

Verlet: Performance issues

10O(Δt1) O(Δt0)O(Δt0)

• Leapfrog is a variation on the so-called “velocity” Verlet

• Eliminates addition of small numbers to differences in large ones 
 

 

• Mathematically equivalent to Verlet algorithm 
 

r(t + Δt) = r(t) + v(t+ 1
2 Δt)Δt

v(t+ 1
2 Δt) = v(t− 1

2 Δt)+ 1
m F(t)Δt

r(t + Δt) = r(t) + [v(t− 1
2 Δt)+ 1

m F(t)Δt] Δt

Leapfrog

11

r(t) = r(t − Δt) + v(t− 1
2 t)Δt

• Initialization

• Simple approximation to get velocity at first time step:

• Obtaining the velocities

• Interpolate

•

v(t0−
1
2 Δt) ≡ v(t0) −

1
m

F(t0)
1
2 Δt

v(t) =
1
2 (v(t+ 1

2 Δt) + v(t− 1
2 Δt))

Leapfrog: Issues

12

13

The Leapfrog

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

● 2nd order accurate

● symplectic

● can be rewritten into time-centred formulation

For a second order ODE:

When compared with an integrator of the same
order, the leapfrog is highly superior

INTEGRATING THE KEPLER PROBLEM

14

The leapfrog is behaving much better
than one might expect...

INTEGRATING THE KEPLER PROBLEM

15

16

Even for rather large timesteps, the leapfrog maintains
qualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM

• Advances of leapfrog and verlet algorithms

• Time-reversal invariant

• Conserves angular momentum

• Symplectic (i.e. phase-space area preserving)
• Euler, RK2, and RK4 are not!

•

Advantages

17

6

correspond precisely to the three steps in the forward trajectory (with positions the same

and velocities reversed) but in the reverse order.

2. In a spherically symmetric potential, angular momentum is conserved and, remarkably, the

leapfrog/(velocity or position) Verlet algorithm conserves it exactly. If the potential energy

U only depends on the magnitude of !r and not its direction then the force is along the

direction of !r, i.e.

!F (r) = −r̂
dU(r)
dr

, (16)

where r̂ is a unit vector in the direction of !r. It is left as a homework exercise to show that

the leapfrog algorithm conserves angular momentum for such a force. (Unfortunately energy

is not exactly conserved in the algorithm.)

It is obviously desirable that a numerical approximation respect symmetries exactly, and

I’m not aware of any other algorithms which conserve angular momentum, though they may

exist. This is obviously a “plus” for the leapfrog algorithm.

3. The leapfrog/(velocity or position) Verlet algorithm is “symplectic”, i.e. area preserving.

I will now explain this important concept. Consider a small rectangular region of phase

space of area dA as shown in the left part of the figure below.

p

x

p’

x’

dA

time t time t’

dA’
1

4

2

dp

dx

2 3

41
3

Let the four corners of the square, (x, p), (x + dx, p), (x, p + dp), (x + dx, p + dp) represent

four possible coordinates of a particle at time t. These are labeled 1, 2, 3, 4. Then, at a later

time t′ each of these four points will have changed, to form the corners of a parallelogram,

as shown on the right of the figure. Let the area of the parallelogram be dA′. An important

theorem (Liouville’s theorem) states that the areas are equal, i.e.

dA′ = dA. (17)

What is the underlying mathematical reason for the very good
long-term behaviour of the leapfrog ?

HAMILTONIAN SYSTEMS AND SYMPLECTIC INTEGRATION

The Hamiltonian structure of the system can be preserved in the integration if each step is
formulated as a canoncial transformation. Such integration schemes are called symplectic.

If the integration scheme introduces non-Hamiltonian perturbations, a completely different long-term
behaviour results.

Poisson bracket: Hamilton's equations

Hamilton operator System state vector

Time evolution operator

The time evolution of the system is a continuous canonical transformation generated by the Hamiltonian.
18

Symplectic integration schemes can be generated by applying
the idea of operating splitting to the Hamiltonian

THE LEAPFROG AS A SYMPLECTIC INTEGRATOR

Drift- and Kick-Operators

Separable Hamiltonian

The Leapfrog

The drift and kick operators are symplectic transformations of phase-space !

Drift-Kick-Drift:

Kick-Drift-Kick:

Hamiltonian of the
numerical system:

19

20

When an adaptive timestep is used, much
of the symplectic advantage is lost

INTEGRATING THE KEPLER PROBLEM

That's what's
done in

GADGET-1

Going to KDK reduces the error by a factor
4, at the same cost !

21

For periodic motion with adaptive timesteps, the DKD leapfrog shows
more time-asymmetry than the KDK variant

LEAPFROG WITH ADAPTIVE TIMESTEP

force forceforce

KDK

forwards backwards

asymmetry

force forceforce

DKD

forwards backwards

asymmetry

force

