N ' _ P . | .

Lecture 04: Numerical Integration Methods (Continued)

» .

Javier Duarte — April 9, 2023 -

2nd-order Runge-Kutta derivation

* Euler method uses the first two terms in Taylor series to approximate

S(t,.) = S(t, + Ar) = S(t,) + S(t,) At
 We can improve the accuracy if we keep more terms

. 1 ..
S(t,.1) =S, + At = S,) + S(t,) At + ES(tn)Atz + -

2nd-order Runge-Kutta derivation

ds .
. Recall our ODE: = = S5(t) = F(1,5())

e This means

S(f) = d [F(t,5(t)| = oF + or a3 _ of + aFF(t S(1))
Cdr b ot 9Sdt ot 0S

S0 we can write down two approximations to the derivative:

k, = F(t,5(t))
k, = F(t, + aAt, S(t,) + Pk At)

 And then take a weighted average: S(¢, + Afr) = S(¢,) + (ak,; + bk,) At

3

2nd-order Runge-Kutta derivation

» What values of a, b, a, f minimize the error?
 Expanding our update equation

S(t, + At) = S(t,) + (ak, + bk,)At
= S(t,)) + aF(z,S5(t))At + b(F(t, + aAt, S(t) + Pk Ar)) At
* Expanding the rightmost term:

oF oF
F(t, + aAt,S(t,) + pk At = F(t,,5(,) + EOCAI + a—SﬁF(tn, S(t,) At + ---

* |nserting back:

S(t,+ Ar) =8(¢,) + (a+ b)F(¢, 5(¢,)) At

+b aFAt2+bﬂ aFF(t S(t,))At? +
oA— — , O(7,
ot as

4

2nd-order Runge-Kutta derivation

* Our proposed solution

S(t,+ Ar) =8(¢,) + (a+ b)F(¢, 5(¢,)) At

oF OF ,
+ba— At +bﬁa_SF(t”’ S())At" + ...

ot
. Let’s compare that to the exact solution up to O(At>) from a Taylor series
S(tn + At) = S(tn) + F(tn, S(tn))At 2nd-order accurate @(Atz)
U o ’ ky=F(t, + At, S, + kAt
| ki + k;
.Sowefinda+b=1andba=bﬁ=5 Skl = O F | T | AL
. Infinitely many solutions! Common choiceisa =b =—anda = =1

2

4th-order Runge-Kutta =
0.0 1 /P’ o ¥ Dl SEETIL JLLl _:___ ____:_____ :
* Can repeat same arguments to arrive at AN il
4th-order method s S
—0.4 1 II&;;/
* Basically "guess and check” with el)
agreement using Taylor series i/ > Spterae
'I;/ -: E“gpomt

4th-order accurate O(At%)

ky = F(t, + At/2,S, + k| At/2)
ky=F(t, + At/2,S, + k,At/2)
k, = F(t, + At, S, + k3 Ar)

| ki k, ky k
a=S+=+=2+24+2) A1
6 3 3 6

S

n
6

ciPy Solve IVP

https://docs.scipy.org/doc/scipy/reference/generated/
scipy.integrate.solve ivp.html

RK4 (with some modifications

method : string or 0OdeSolver, optional

Integration method to use:
e 'RK45' (default): Explicit Runge-Kutta method of order 5(4) [1]. The error is
controlled assuming accuracy of the fourth-order method, but steps are taken

scipy.integrate.solve_ivp(fun, t_span, y@, method='RK45', t_eval=None,

dense_output=False, events=None, vectorized=False, args=None, *xoptions)

Solve an initial value problem for a system of ODEs. using the fifth-order accurate formula (local extrapolation is done). A quartic

interpolation polynomial is used for the dense output [2]. Can be applied in

This function numerically integrates a system of ordinary differential equations given an initial value: the complex domain.

‘RK23": Explicit Runge-Kutta method of order 3(2) [3]. The error is controlled

d dt = . .
y/ assuming accuracy of the second-order method, but steps are taken using

y(t0) = yo
the third-order accurate formula (local extrapolation is done). A cubic Hermite

Here t is a 1-D independent variable (time), y(t) is an N-D vector-valued function (state), and an N-D polynomial is used for the dense output. Can be applied in the complex

domain.

vector-valued function f(t, y) determines the differential equations. The goal is to find y(t) approximately
satisfying the differential equations, given an initial value y(t0)=yO.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

Verlet methods

e So far methods have been very generic

. For Newton-like equations F(¢#) = —F(t), more specialized methods
m

* \erlet algorithm
 Consider expansion of coordinate forward and backward in time:

r(t 4+ A1) = r(t) + 1 — (At + ZLF(z)Az + % F(HAP + O(AY)
m

r(it — At) =r(t) — ip(t)At + LF(t)At — L (O AL + O(AtY)
2m 3!

* Add these together and rearrange:

r(t 4+ Af) = 2r(f) + —r(t — Af) + iF(z)Az2 + O(At
m

 Update without ever consulting velocities!

Verlet: Issues

e |nitialization

* How do we get the position at the previous time stem when starting
out?

» Simple approximation: r(f, — Ar) = r(t,) — v(t,)) At
* Obtaining the velocities
* Not evaluated during the normal course of algorithm

 But needed to compute some properties
* Finite difference:

_ i — 2
v(1) = AT [r(t + At) —r(t — At)] + O(At%)

Verlet: Performance issues

e Time reversible
 Forward time step

r(ty + Af) = 2r(ty) — r(t — Af) + iF(r)Az2
m

« Backward time step: replace At — (— At)

r(ty+(— A1) = 2r(ty) — r(t—(—Ar))) + %F(t)(At)

 Same algorithm, with same position and forces, moves system backward
INn time
* |f you step forward, and then backward, return to the same point!
* Numerical imprecision of adding large/small numbers

O(Ath O(At) O(A1") 10

Leapfrog

* | eapfrog is a variation on the so-called “velocity” Verlet
* Eliminates addition of small numbers to differences in large ones

r(t + Af) = r(f) + v(i+5An At /\/\/\/\

v(t+%At) — V(t—%At)+%F(t)At /\/\/\/_

 Mathematically equivalent to\Verlet algorithm

F(t + Af) = r(f) + [v(t—%AtH %F(t)At] N

r(f) = r(t — Af) + v(t—%t)At

11

Leapfrog: Issues

* |nitialization
* Simple approximation to get velocity at first time step:

1
V(ty—~Af) = v(ty) — ZF(tO)%At

* Obtaining the velocities
e |nterpolate

1
(1) = (v(t+ A +v(t——At))

12

The Leapfrog For a second order ODE: X — f (X)

“Drift-Kick-Drift” version “Kick-Drift-Kick” version

« 2"4 order accurate

* symplectic

 can be rewritten into time-centred formulation

13

When compared with an integrator of the same

order, the leapfrog is highly superior
INTEGRATING THE KEPLER PROBLEM

AE/ |E]

AE/|El

0.4

0.2

0.4

0.10

0.05

0.00

-0.05

-0.10

lllllllll

|_second-order Runge-Kutta

A
o
-.
=
o
4
-
=
=

—
=
—1
-1
-.
o
=
=
=
=

e
=
=
o
-.
o
=
o
=
=

—
=
-
=
o
-.
=
o
-
-

—
=
—
=
—1
-1
-
o
=
=

—
=
=
=
=
o
-.
o
=
=

llllllllll

[Illlllllllllllllll

rounds

| Leapfrog (fixed stepsize)

IIIIIII

IIII]IIII

|

lllllllll

lllllllll

rounds

100

150

)
8

14

2

1TTIIIITTIIIIITTIIITITIIlITTTlll]]Tlll

1

second-order Runge-Kutta

e=0.9

51 orbits

2784.6 steps / orbit
5569.2 forces/ orbit

lllllllillllllllllllllllll

\

(only every LO-th orbit drawn)

lllllllllllllllllll]lllllllllllllllllll

lllllllllllllllllllllllllllllllllllllll

-1 0 1 2

Illlllll]lllll]lllllllllIlllllllll]llll

1

Leapfrog (fixed stepsize)

L T

e=0.9
200 orbits
2010.6 steps / orbit

lllllllllllllllllllll

(only every LO-th orbit drawn)

lllllllllllllllllll]llllllllllllllllll

| T T |

llllllllllllllllllllllllIllllllllllllll

-1 0 1 2

AE] |E]

AE | |El

2 _l LB l |] rr e I r] L lq

The IeapfrOg IS behaV|ng much better - fourth-order Runge-Kutta i

than one might expect... - e 09 :

1= . _

INTEGRATING THE KEPLER PROBLEM - 200 orbits .

T T T T T T T T T | T T T T T T T T T : 502,.8 StePS / Orbit :

0.4 __fourth-order Runge-Kutta _ - 201 1.0 forces / orbit b

i - O =

0.2} - - — -

0.0~ ~ 1 -

02— L - -

- - - (only every LO-th orbit drawn) B

: : "2 _l 1 1 1 l | I S S I S 1 | S N R B N . l | I N N S A l 111 l—‘
04— _ -1 0 1 2

- 2 _I L] | | l Py I rFr I L l_‘

1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 :) | :

0 50 100 150 200 - Leapfrog (fixed stepsize) N

rounds - _

O. 10 T T T T | T T T T [T T T T I T T T : e = 0.9 :

_ Leapfrog (fixed stepsize i "_ _

- HOAPHOE psize) : 1 200 orbits -

0.05— N - 2010.6 steps / orbit E

i i Of -

0.00 - -

i At i - .

- xn—l—% — In -+ Un 5 _ - -

-0.05 Vi1 = Upt+ [T,)AL — N - E

- At S : ' :

- Tpyl1 — CE’n_|_% —+ ’Un_|_17 u - N

-0_10 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 — . -

0 50 100 150 500 ' (only every LO-th orbit drawn) -

rounds 15 .4 NEEEE R RS NS NN NN R

-1 0 1 2

Even for rather large timesteps, the leapfrog maintains
qgualitatively correct behaviour without long-term secular trends

INTEGRATING THE KEPLER PROBLEM

2 _l 1 11 I P P l P] P l_‘
L L g (fixed stepsize) N
- e O. : 0-10 B T T T T | T T T T I T T T T [T T]
p - _ Leapfrog (fixed stepsize) N
L\ 200 ot _ - _
/(i: 61N Stepd /b - 0.05 -
B _ a5 5 i
1 g 000 I
e
- . l I
P LT B || II
/ /_.L ~ —
B n 0.05 _— i
/ — - | —
- -0,10 i 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 i
k _ 0 50 100 150
= - rounds
- (onlye th t n) -
-2 _l 1 11 I | I I N I A |] | S S R N | l | N B I l | . . | l—‘
-1 0 1 2

16

2

Advantages

* Advances of leapfrog and verlet algorithms
* [Ime-reversal invariant
* Conserves angular momentum
 Symplectic (i.e. phase-space area preserving)
e Fuler, RK2, and RK4 are not!

time t

17

What is the underlying mathematical reason for the very good
long-term behaviour of the leapfrog ?

HAMILTONIAN SYSTEMS AND SYMPLECTIC INTEGRATION

9
p; | 1
H(p{,.- - Pn,X1,.--,Xn) :ZQm. | §Zmiqu5(xi—xj)
7 t 1]

If the integration scheme introduces non-Hamiltonian perturbations, a completely different long-term
behaviour results.

The Hamiltonian structure of the system can be preserved in the integration if each step is
formulated as a canoncial transformation. Such integration schemes are called symplectic.

Poisson bracket Hamilton's equations
dx;
0A OB 0A OB L= {x;, H}
A B} = dt
{ ’ } ZZ: (8Xz’ Opi Opi 8Xz’>
dp;
—{p.. H
¥ {p:, H}
Hamilton operator System state vector
Hf={f H} t) = [x1(t),..., %, (), p1(t),...,Pn(t),1)
Time evolution operator
t+At
|t1> _ [J(t17 tO) ‘t0> U(t + At,t) = exp </t . Hdt)

The time evolution of the system is a continuous canonical transformation generated by the Hamiltonian.
18

Symplectic integration schemes can be generated by applying

the idea of operating splitting to the Hamiltonian
THE LEAPFROG AS A SYMPLECTIC INTEGRATOR

Separable Hamiltonian
H = Hyin + Hpot
Drift- and Kick-Operators

t+At D;
D(At) — eXp / dt Hkin — <
¢ (

K(At) = /HN dtH,, | =4 & 7
— P ")l P = pi— X mam; 6¢(§:Zj)At
The drift and kick operators are symplectic transformations of phase-space !
The Leapfrog
~ At At
Drift-Kick-Drift: U(At) =D (7> K(At)D (7)
~ A A
Kick-Drift-Kick: ~ U(At) = K (g) D(At) K (g)
Hamiltonian of the I:I:H—|—H H _A_tQ{{H H. } . Hy —|—3H }+O(At3)
numerical system: err err — 19 kiny £4pot f » £4Kkin 9 pot

19

— P

When an adaptive timestep is used, much

of the symplectic advantage is lost
INTEGRATING THE KEPLER PROBLEM

AE/|E

AE/ |E]

0.4 -DKD, variable step

0.2
0.0
0.2

0.4

0.4|-KDK, variable step

0.2
0.0
0.2

0.4

] | I] 1 I] 1 | I [

Illllll

IIIIIIIII

| 1 l | 1 1 1 I 1 1 1 | l 1 | 1

lllllllllllllllllll

o
3

100 150
rounds

l I I]] l] | I | l

IIIIIII
llllllllll

IIIIIIIII

lllllll

' 1 1 1 1 I 1 1 1 1 l

50 100 150
rounds

@)

—» (Going to KDK reduces the error by a factor

4. at the same cost !

2

2

20

lllllllllllllllllll]lllllllllIlllllllll

e=0.9
200 orbits
230.4 steps / orbit

DKD, vanable step

ITTIIIIIIIIIIIIIIIIIITIIITITTIIIT‘ITIIl

F I T T

lllllllllllllllllllillllllllll

That's what's
done in
GADGET-1
(only every LO-th orbit drawn)
1111llllllllllllllllllllllllllllllllll
-1 0 1 2

—{

lllllllllllllllllllllllllllllllllllllll

1 1 1 1

e=0.9
200 orbits
245.3 steps / orbit

Illlllllllllllllllllllllllllllllll

KDK, vanable step

(only every LO-th orbit drawn)

IIIIll]]llllIlillll]]llll]]lllll]]lll

lllllllllllllllllllllllllllllllllllllll

1

1

0

1

2

For periodic motion with adaptive timesteps, the DKD leapfrog shows
more time-asymmetry than the KDK variant

LEAPFROG WITH ADAPTIVE TIMESTEP

forwards backwards
) AN A
DKD I T I I
force force force force
| asymmetry
forwards backwards
KDK i
force force force
| asymmetry

21

