
Javier Duarte — April 12, 2023

PHYS 141/241
Lecture 05: Gravitational Potential and -Body EquationsN



• In a 1D system, can define potential energy as 
 




• Note:  


• Different choices of  produce produce a different zero-point

• Example: simple harmonic oscillator like a spring 
 

U(x) = − ∫
x

x0

dx′￼ f(x′￼)

U(x0) = 0
x0

f(x) = − kx
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dx′￼ (−kx′￼) =

1
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Conservative force fields (1D)
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• In  dimensions, we have the line integral 
 




• In general this may depend on the on the exact route taken from  to 


• If it does, then we cannot define a unique potential 

• One way to guarantee this is well defined is if the  

integral around any closed path of the force   
vanishes


• Equivalent condition: 

• Force fields sasyfing these conditions, e.g.  

gravitational field of a stationary point mass, are 
conservative

n > 1

U(x) = − ∫
x

x0

dx′￼ f(x′￼)

x0 x
U(x)

f(x)

f(x) = − ∇U(x)

Conservative force fields ( D)n
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• For simulation, natural to work with the line integral of the acceleration rather 
than the force: potential energy per unit mass or gravitational potential  

• Given a point (or test) mass , the potential energy is 


• For an arbitrary mass density , the gravitational potential is 
 

Φ(x′￼)
m U(x′￼) = mΦ(x′￼)
ρ(x′￼)

Φ(x) = − G∫ d3x′￼

ρ(x′￼)
|x′￼− x |

x

ρ(x′￼)

x′￼

x − x′￼ m

Gravitational potential
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What is 
 here?Φ(x)



• Equivalently, Poisson’s equation relates the mass density and gravitational 
potential 
 

 

• This is linear! If  generates  and  generates , then 
 generates 

∇2Φ(x) = 4πGρ(x)

ρ1(x) Φ1(x) ρ2(x) Φ2(x)
ρ1(x) + ρ2(x) Φ1(x) + Φ2(x)

Gravitational potential (local)
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(  )∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2



• Consider an (infinitesimally thin)  
spherical shell of mass  radius 

• The acceleration inside the shell vanishes


• The acceleration outside the shell is 

• It follows that the gravitational potential of any spherical mass distribution is 

 




• Where the enclosed mass is: 
 

M R

−GM/r2

Φ(r) = ∫
r

r0

dr′￼ a(r′￼) = G∫
r

r0

dr′￼

M(r′￼)
r′￼2

M(r) = 4π∫
r

r0

dr′￼ r′￼2ρ(r′￼)

Spherical potentials

6

M



• Point of mass : 
 

   (Keplerian potential)


• Orbits in this potential obey Kepler’s 3 laws


• If , the velocity of a circular orbit at radius  is: 


• Uniform sphere of mass  and radius : 
 

 

 
where  is the mass density

M

Φ(r) = − G M
r

G = 1 r vc(r) = M
r

M R

Φ(r) = − 2πGρ (R2− r2

3 ) r ≤ R,

Φ(r) = − G M
r r > R,

ρ = M/(4πR3/3)

Spherical potentials: examples
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 (potential)Φ(r)
 (distance)rr = R

Φ(r) ∝
1
r2

Φ(r) ∝ r2



• Galactic potential is the collective self-consistent field of all stars within the 
galaxy

• Determined by the distribution  

function   that accounts  
for the mechanical state of the  
galaxy


• Milky Way has


•  visible stars weighing  



• Gas weighing  


• Dark matter weighing 

• Gas has little effect on main  

features of galactic dynamics

f(r, v, t)

∼ 1011

∼ 5 × 1010M⊙

∼ 1010M⊙

∼ 1012M⊙

Galactic potential
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• Solar mass  g


• Earth’s mass  g

M⊙ = 1.989 × 1033

M⊕ = 5.976 × 1027



• Let’s start with time; What is natural unit of time  when discussing the solar 
system (Kepler motion)

• 1 s is clearly too small

• 1 day is reasonable (1 Earth orbit is 365 days)


• What about colliding galaxies

• Collide over time scale of 1 billion years! 1 day is too small…

• How do we choose?

Scales, units: Motivation
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• Most of the stars in the galaxy travel on nearly circular orbits in a thin disk 
whose radius is ~ 10 kpc and thickness ~ 1 kpc


• Typical circular speed of stars is of the order of 200 km/s  and the time required 
to complete a galactic orbit at 10 kpc is about   years3 × 108

Scales, units: Typical values
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(1 kpc =  cm)3.085678 × 1021



• Note in cgs units,  




• It is convenient in numerical simulation to use units such that 

• Normally there are 3 degrees of freedom (e.g. length scale, time scale, mass 

scale or equivalently, length scale, velocity scale, mass scale, etc.)


• Setting  removes 1, so we still have two choices.

• e.g. could choose [L] = 4.5 kpc, [v] = 220 km/s

• This determines the mass scale as 

G = 6.67 × 10−8 cm3g−1s−2

[G] =
[L]3

[M][T]2
=

[L][v]2

[M]
G = 1

G = 1

[M] =
[L][v]2

[G]
=

(4.5 kpc)(220 km/s)2

6.67 × 10−8 cm3g−1s−2
= 5.06 × 1010 M⊙

Scales, units: Practical choice
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(1 kpc =  cm)3.085678 × 1021



• 1 Earth year

Kepler orbit simulations
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• 1 Saturn year

Kepler orbit simulations
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• Astro-Physical Calculator: http://dmaitra.webspace.wheatoncollege.edu/
calc.html


• Kepler’s Laws: http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html

Links
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http://dmaitra.webspace.wheatoncollege.edu/calc.html
http://dmaitra.webspace.wheatoncollege.edu/calc.html
http://dmaitra.webspace.wheatoncollege.edu/calc.html
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• https://jduarte.physics.ucsd.edu/
phys141/quizzes/quiz1.html


• Due Friday 5pm!

Quiz 1
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