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Kepler orbit simulations

e 1 Earth year




Kepler orbit simulations

e 1 Saturn year




Orbits in Spherical Potentials

* Consider the motion of a star in a spherically-symmetric potential
D(R) = D(|r|)

* The orbit of the star remains in a plane
e Why?
 Because angular momentum is conserved!

« Natural to adopt a polar coordinate system; call the coordinates R and ¢

« n = 2 degrees of freedom, so the phase space has 4 dimensions



Lagrangian

« Equations of motion can be derived by starting with the Lagrangian L = K — U
L(R, ¢, R, ¢) = %m (R* + R*¢p*) — m®(R)
where R = dR/dt and ¢ = dop/dt.

e We will work in units where m = 1

: |
LR, ¢, R, ¢) = — (R*+ R*¢*) = ®(R)



Equations of motion

+ Differentiating L with respect to R and @ yields the momenta conjugate
to R and o,
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where v and v, are the velocities in the radial and azimuthal directions



Hamiltonian

 Hamiltonian may be expressed as
J2

1
— _(v2
H(R, ¢, v, J) = = (g + =) + @(R)

* The (1st-order) equations of motions are then
doldt = 0H/0J = J/R>

dvpldt = — 0H/OR = — 0®(R)/0R + J*/R>
dJ/dt = — 0H/op = 0

 dJ/dt = 0 because the conjugate coordinate ¢ does not appear in H (cyclic
coordinate)
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Conserved quantities

* The system has two “integrals of motion” (conserved quantities)
» Total energy E (numerically equal to the value of H)

 Total angular momentum J
1
E=<i+v,)+®R)
J =Ry,

 Each of these defines a hypersurface in phase space and the orbit must remain
IN the intersection of these hypersurfaces

. Ignoring ¢, can visualize surface of constant £ and J in 3D space (R, vp, v¢)

« Surfaces of constant £ are figures of revolution about R axis, surfaces of
constant J are hyperbolas in (R, Vco) plane (intersection is a closed curve)
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Effective potential

« For an orbit of a given J, the system can be -
reduced to 1 degree of freedom by defining
the effective potential, |

P(R) = ®(R) + J*/(2R?) |

» The corresponding equations of motion are || T B ———

then just E

dvyldt = — d¥/dR

« Y(R) diverges as R — 0, so star is prohibited from coming too close to the
origin, and shuttles back and forth between turning points R .- and R ...
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Typical orbits

In spherical potential, star executes periodic radial motion
and periodic azimuthal motion

 |f the two periods are commensurate, orbits close
Keplerian potential (generated by point mass) is a very

special case in which the radial and azimuthal periods are
equal (A@ = 2r between pericenters)

Harmonic potential (generated by uniform sphere) orbits
also close, but radial period is half the azimuthal one

(A = m between pericenters)

In general, most orbits in spherical galaxies are Rosetta
advancing by 7 < A@ < 2z between percenters

* Figures + Animations:
https://galaxiesbook.org/chapters/|-03.-Orbits-in-
Spherical-Potentials.html#Orbits-in-the-homogeneous-
sphere
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N-body equations of motion

* Any system where stellar collisions are rare can be idealized as a a collection
of N point-sized bodies, each with mass m, position r; , velocity v;

e Hamiltonian iIs

G N N
Hr,v) = va —Ez Z |r—r
=1 j=1, j#i

where H depends on all body positions and velocities

e First sum runs over all NV bodies

« Second runs over all N(N — 1)/2 pairs N
of bodies (twice! So factor of 1/2) dvldi = — G Z my(r; — 1)

° ' ' 3
Equations of motion i1 i | 7, ”j‘
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Conserved quantities

« N-body systems obey several basic conservation laws

o Symmetry of the Hamiltonian is a transformation that leaves the physical
system unchanged

» For example, translation in time, t — ¢ + At is a symmetry because H is not
an explicit function of time

e« F =K+ V = H is conserved

» Symmetry with respect to translation in space r; — r; + Ar implies
conservation of total momentum

o Symmetry with respect to rotation in space gives rise to conservation of total
angular momentum
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Virial parameters

* For a system in equilibrium

2(K)+(U) =0
e Because £ = K + U, we have
(K =—FE, (U)=2E

« For an N-body system of total mass M and total energy £, we can define
characteristic velocity and length scales

V2=2K/IM =2|E|IM
R = — GM?*/{U) = GM*/(2E)

 Known as viral velocity and radius
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Timescale

* [he quantity

1/2
M? /

3 = GM/R"
3| E]

t =RIV=G

IS an estimate of the time a typical star takes to cross the system
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Links

* Astro-Physical Calculator: http://dmaitra.webspace.wheatoncollege.edu/
calc.html

 Kepler’s Laws: http://hyperphysics.phy-astr.gsu.edu/hbase/kepler.html
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