PHYS 141/241 Lecture 06: Collisionless Boltzmann Equation

Javier Duarte – April 17, 2023

Quiz 1: Recap

- Quiz 1 solution posted: <u>https://jduarte.physics.ucsd.edu/phys141/quizzes/quiz1_sol.html</u>
 - Note, there may be some typos, let us know!

nys141/quizzes/quiz1_sol.html let us know!

Virial parameters

• For a system in equilibrium

$2\langle K \rangle + \langle U \rangle = 0$

• Because E = K + U, we have

$$\langle K \rangle = -E, \ \langle U \rangle = 2E$$

characteristic velocity and length scales

 $V^2 = 2K/M = 2|E|/M$

- $R = -GM^2/\langle U \rangle = GM^2/(2E)$
- Known as viral velocity and radius

• For an N-body system of total mass M and total energy E, we can define

Timescale

• The quantity

$$t_c = R/V = G\left(\frac{M^5}{8|E|^3}\right)^{1/2} = G.$$

is an estimate of the time a typical star takes to cross the system

FM/R^3

Collisionless dynamics

- A typical galaxy has 10^{11} stars, but only ≤ 100 crossing times old, so the cumulative effects of encounters between stars are not significant
- Idealize galaxy as a continuous mass distribution
 - Each star moves in a smooth gravitational field $\Phi(\mathbf{r}, t)$
 - Instead of phase space of 6N dimensions, think about motion in a phase space of just 6 dimensions
 - Very important simplification!

Distribution function

- Galaxy may be described by the one-body distribution function
- and time t

• Let $f(\mathbf{r}, \mathbf{v}, t) d^3 \mathbf{r} d^3 \mathbf{v}$ be the mass of stars in phase space volume $d^3 \mathbf{r} d^3 \mathbf{v}$ at (\mathbf{r}, \mathbf{v})

• This provides a complete description if stars are uncorrelated (no collisions)

Motion in phase space

 $(\dot{\boldsymbol{r}}, \dot{\boldsymbol{v}}) = (\boldsymbol{v}, -\nabla \Phi(\boldsymbol{r}, t))$

• How does this affect the total mass in $d^3r d^3v$?

The motion of matter in phase space is governed by the phase space flow

Fluid continuity equation

$$\frac{dM}{dt} = -\int_{S} \rho \, \boldsymbol{v} \cdot \hat{\boldsymbol{n}} \, d^2 \boldsymbol{s}$$

• Rewriting this in terms of ρ

$$\int_{V} \frac{d\rho}{dt} d^{3}x + \int_{S} \rho \, \mathbf{v} \cdot \hat{\mathbf{n}} \, d^{2}s = 0$$

Local version: $\frac{d\rho}{dt} + \nabla(\rho \mathbf{v}) = 0$

• Applied to phase space: $\frac{\partial f}{\partial t} + \nabla_r (f \dot{r}) + \nabla_v (f \dot{v}) = 0$

Collisionless Boltzmann Equation (CBE)

- Combining the phase space flow $(\dot{\boldsymbol{r}}, \dot{\boldsymbol{v}}) = (\boldsymbol{v}, -\nabla \Phi(\boldsymbol{r}, t))$
- And the continuity equation

 $\frac{\partial f}{\partial t} + \nabla_r (f \, \dot{r}) + \nabla_v (f \, \dot{v}) = 0$

• The CBE describes the evolution of the distribution function $f(\mathbf{r}, \mathbf{v}, t)$ $\frac{\partial f}{\partial x} + (\nabla_r f) \cdot v - (\nabla_v f) \cdot (\nabla \Phi) = 0$

Gravitational potential

Gravitational potential is given self-consistently by Poisson's equation

$$\nabla^2 \Phi(\mathbf{r}, t) = 4\pi G \int d^3 \mathbf{v} f(\mathbf{r}, \mathbf{v}, t)$$

 $\rho(\mathbf{r},t)$

•

Conservation of phase space density

- the star's orbit?
- Let's find the total time derivative

$$\frac{df}{dt} = \frac{\partial f}{\partial t} + (\nabla_r f) \cdot \dot{r} + (\nabla_v f) \cdot \dot{v}$$
$$\frac{df}{dt} = \frac{\partial f}{\partial t} + (\nabla_r f) \cdot v - (\nabla_v f) \cdot \nabla_v f$$

- Zero by the CBE!
- Phase space density is conserved along every orbit

• Let $(\mathbf{r}(t), \mathbf{v}(t))$ be the orbit of a star. What is the rate of change of $f(\mathbf{r}, \mathbf{v}, t)$ along

$\Phi' = 0$

Jeans Theorem

• Next time...

•