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• The CBE describes the evolution of the distribution function  
 




• Gravitational potential is given self-consistently by Poisson’s equation 
 

 
 

•  along a star’s orbit 

f(r, v, t)

∂f
∂t

+ (∇r f ) ⋅ v − (∇v f ) ⋅ (∇Φ) = 0

∇2Φ(r, t) = 4πGρ(r, t)

df/dt = 0 (r(t), v(t))

Recap
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• Say  is an integral of motion that is conserved along any orbit 




• e.g.  and  are integrals of motion


• We can show that  is a steady state solution of the CBE: 
 

 

• Theorem: (1) Any steady-state solution of the CBE depends on the phase-
space coordinates only through integrals of motion in the galactic potential, 
and (2) any function of the integrals yields a steady-state solution of the CBE.

I[r(t), v(t)]
d
dt

I[r(t), v(t)] = 0

E =
1
2

v2 + Φ(r) J

I[r(t), v(t)]

d
dt

I[r(t), v(t)] = 0 = ∇rI
dr
dt

+ ∇vI
dv
dt

= ∇rIv − ∇vI ⋅ ∇Φ

Jeans’ Theorem
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• Reiterating (2), any function  
 

  
 
is guaranteed to be a solution of the CBE 

• We can use this fact to construct equilibrium models of stellar systems, e.g. 
Plummer model

F(r, v) = F(I1(r, v), I2(r, v), …)

Jeans’ Theorem
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• Simplest use of Jeans’ theorem is the construction of isotropic models of 
spherical galaxies


• Distribution function  is only a  
function of the energy


• Self-consistent Poisson equation in  
spherical coordinates 
 
 

 

• Typical to set boundary condition  as 


• Escape energy is 0 and stars at radius  have energies 

f(r, v) = f(E)

1
r2

d
dr (r2 dΦ

dr ) = 4πGρ(r)

Φ → 0 r → ∞
r Φ(r) < E < 0

Isotropic models
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• Mass density is integral of  over all velocities; velocity distribution is isotropic 
so 




• Where escape velocity is 

f

ρ = ∫ d3vf(r, v) = 4π∫
ve

0
dv v2f ( 1

2 v2 + Φ(r))
ve = −2Φ(r)
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Isotropic models: From  to f ρ



• Choose 
 

 

 

• What is  for this model? 
 

 

f = {F(−E)7/2 if E < 0
0 if E ≥ 0

ρ

ρ = 4π∫
ve

0
dv v2f ( 1

2 v2 + Φ)
= 4πF∫

−2Φ

0
dv v2 (− 1

2 v2 − Φ)
7/2

Plummer Model
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• First we can relate  and 


• If we make the substitution  
 

 

ρ Φ
v2 = − 2Φ cos2 θ, dv = −2Φ sin θdθ

ρ = 4πF∫
−2Φ

0
dv v2 (− 1

2 v2 − Φ)
7/2

= 4πF∫
0

π/2
(−2Φ)1/2sin θdθ(−2Φ cos2 θ)(Φ cos2 θ − Φ)7/2

= 27/2πF(−Φ)5 ∫
π/2

0
dθ sin θ cos2 θ (1 − cos2 θ)7/2 = cp(−Φ)5

Plummer Model
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Important:  rises as 5th power of  
when  and is zero otherwise

ρ −Φ
−Φ > 0



• Now we can solve for  from Poisson’s equation 
 

 

• Defining  and  is useful 

• Solution is given by 
 

Φ(r)

1
r2

d
dr (r2 dΦ

dr ) = 4πGcp(−Φ)5

a = ((4/3)πGcpΦ4
0)

−1/2 Φ0 = Φ(0)

Φ(r) =
Φ0

1 + r2/a2

Solving for Potential
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 is called the Plummer radiusa



• Thus, the Plummer density is  




• Nonzero density everywhere! Total mass is finite:  


• In terms of the total mass: 
 

   

ρ(r) = cp(−Φ)5 = cpΦ5
0 (1 +

r2

a2 )
−5/2

M = −
Φ0a
G

ρ(r) =
3M

4πa3 (1 +
r2

a2 )
−5/2

Φ(r) = −
GM

r2 + a2

Corresponding density
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r/a = 1



• This model was originally 
devised to describe 
observations of star clusters


• Actually not a very good 
model for elliptical galaxies


• Most of the mass lies within 
a nearly-constant-density 
core, and at large  the 
density falls as 

• Steeper than the density 

profiles of elliptical 
galaxies

r
r5

Realism?
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• But it is still quite useful!

• In isolation, it is “stationary,”

• That is, we can evolve it 

forward in time and while 
points move around, the 
distribution is the same

Stationary solution
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Family of solutions
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7.4. AXISYMMETRIC POTENTIALS 49

A singular isothermal sphere with density profile #(r) = #0(r/r0)−2 has the potential

"(r) = 4$G#0r
2
0 ln(r/r0) . (7.11)

The circular velocity vc =
√
4$G#0r

2
0 is constant with radius. This potential is often used to approx-

imate the potentials of galaxies with flat rotation curves, but some outer cut-off must be imposed to

obtain a finite total mass.

7.3.2 Potential-Density Pairs

Pairs of functions related by Poisson’s equation provide convenient building-blocks for galaxy mod-

els. Three such functions often used in the literature are listed here; all describemodels characterized

by a total mass M and a length scale a:

Name #(r) "(r)

Plummer
3M

4$a3

(
1+

r2

a2

)−5/2 −GM√
r2+a2

Hernquist
M

2$

a

r(r+a)3
−GM
r+a

Jaffe
M

4$

a

r2(r+a)2
GM

a
ln

(
a

r+a

)

Gamma
(3− &)M
4$a3

a4

r& (r+a)4−&
GM

a

{
1

&−2

[
1−

(
r

r+a
)2−&]

, & #= 2

ln
(

r
r+a

)
, & = 2

The Plummer (1911) density profile has a finite-density core and falls off as r −5 at large radii; this

is a steeper fall-off than is generally seen in galaxies. Hernquist (1990) and Jaffe (1983) models, on

the other hand, both decline like r−4 at large radii; this power law has a sound theoretical basis in the

mechanics of violent relaxation. The Hernquist model has a gentle power-law cusp at small radii,

while the Jaffe model has a steeper cusp. Gamma models (Dehnen 1993; Tremaine et al. 1994)

include both Hernquist (& = 1) and Jaffe (& = 2) models as special cases; the best approximation to

the de Vaucouleurs profile has & = 3/2.

7.4 Axisymmetric Potentials

If the mass distribution is a function of two variables, cylindrical radius R and height z, the problem

of calculating the potential becomes a good deal harder. A general expression exists for infinitely

thin disks, but only special cases are known for systems with finite thickness.

7.4.1 Thin disks

An axisymmetric disk is described by a surface mass density '(R). Potential-surface density expres-
sions for several important cases are collected here:

Name '(R) "(R,z)

Kuzmin
aM

2$(R2+a2)3/2
−GM√

R2+(a+ |z|)2

Toomre

(
d

da2

)n−1
'Kuzmin

(
d

da2

)n−1
"Kuzmin

Bessel
k

2$G
J0(kR) exp(−k|z|)J0(kR)



“Hypervirial” 
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• https://arxiv.org/abs/astro-ph/0501091  
 
Distribution functions 
 
f ∝ Lp−2E(3p+1)/2

https://arxiv.org/pdf/astro-ph/0501091.pdf

