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Recap: Plummer Model

 Distribution function

f= F(_E)7/2 it £ <0 ™ ‘
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Quiz 2

. W also found p = cp(—CID)5 where

/2
c, = 22 nF J d0 sin 0 cos* 0 (1 — CcOos? «9)7/2

0
710
. Quiz 2: Solve this integral that ¢, = = P2 p’F N using
2 7 (2m— 1)!!

sin® @ + cos?6@ = 1 and [ sin?" 0dO =
0 2 (2m)!!



Steady-state solution e

 The Plummer sphere is a steady-state solution

t=0.x10"" Years
Stable Plummer Sphere
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https://portfolium.com/entry/plummer-collapse
https://portfolium.com/entry/plummer-collapse
https://portfolium.com/entry/plummer-collapse

https://portfolium.com/
O a pse entry/plummer-collapse

* Note if change the initial conditions, you can simulate other behaviors

(e.g. collapse!)

t=0.x 10"" Years
Collapsing Plummer Sphere
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https://portfolium.com/entry/plummer-collapse
https://portfolium.com/entry/plummer-collapse
https://portfolium.com/entry/plummer-collapse
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Recap: Virial theorem

» For a system in equilibrium 2(K) + (U) = 0
» Because E = K+ U,wehave (K) = —E, (U)=2E

« For an N-body system of total mass M and total energy E < 0 (meaning it’s
gravitationally bound), we can define characteristic virial velocity V.. and

length scales R, ;. by assuming the

1
_MV\%ir = <K>
2
GM?
= (U
—— =(U)

VIT

. These give V.. =+/2|E|/M and R,.,. = GM*/(2E)

14



“Hypervirial” Models

* Hypervirial models [arXiv:astro-ph/0501091] are models that obey the virial
theorem at each and every point!

» Distribution functions f [P2EGCPTD2

» Plummer model (p = 2) is one example



https://arxiv.org/pdf/astro-ph/0501091.pdf

How to initialize a Plummer sphere?

Monte Carlo method!
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Monte Carlo Methods

Assume function f(x), ()
studied range xmin < < Tmax,

where f(x) > 0 everywhere

(in practice x is multidimensional)

Two standard tasks: 0

. . Lmin Tmax
1) Calculate (approximatively)

[ aef

L'min

2) Select x at random according to f(x)
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Monte Carlo Methods

Selection of x according to f(x)
IS equivalent to uniform selection of (x, v) in the area

Tmin < T < Tmax, 0 <y < f(x)

Yy
since P(x) fof(x) 1dy = f(x)
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Monte Carlo Methods

Method 1: Analytical solution
If know primitive function F'(z) and know inverse F—1(y) then

F(x) — F(xmin) R (F'(xmax) — F(xmin)) = R Atot
— F_l(F(fEmin) + R Atot)



Monte Carlo Methods

Method 2: Hit-and-miss J
. JSmax

If f(z) < fmax N zmin < £ < Tmax

use interpretation as an area 72

1) select x = xin + R (xmax — Tmin)

2) select y = R fmax (hew R!) Y1

3) while y > f(x) cycle to 1) 0

Integral as by-product:
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Generate a Plummer sphere with MC

e Take unitswhere G = 1,a =1, and M = 1 for convenience
» Consider N equal mass starsm = 1/N

» We can find out what the mass M(r) within a sphere of radius r is in the
Plummer model

r 3 o
, r

M) = | 4nr?dro(r) = — 8 — .

( ) L) p( ) (,/-2 4 12)3/2 06

0.4

0.8 |

« How do we generate points according to this
distribution?

0.2 |

0.10 1 10 100
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Generate a Plummer sphere with MC

« Assume we have a way to get random numbers X € [0, 1]

 Simply generate X, then equate M(r) = X, to solve

— X1—2/3 - 1)—1/2
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Generate a Plummer sphere with MC

top view side view

 Next, we need to find the actual position (x, y, 2)
should be selected on the sphere of radius r

 Careful! Can’t just uniformly sample € € [0,x] and
¢ € [0,27] because d€2 = sin Od¢pdO = dgpd(cos 0)
but we can uniformly sample cos8 € [—1,1]

¢ See: httpS// mathworld.wolfram.com/ incorrectly distributed points
SpherePointPicking.html

top view side view

» Two random numbers X, = cos @ and X; = ¢/(2r)
can be interpreted as angles

z=(1-=-2X)r, x=(r*-2z%)"*cos(27X;)

— (42 2\1/2;
Yy = (1" — < ) Slﬂ(2ﬂ’X3) correctly distributed points
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https://mathworld.wolfram.com/SpherePointPicking.html
https://mathworld.wolfram.com/SpherePointPicking.html
https://mathworld.wolfram.com/SpherePointPicking.html

Generate velocities

Maximum value of v at distance r is the escape

velocity

v, =V —2® =231 + r»)~1"

Writing g = v/v,, the probability distribution is

given by

[d3rf(r, V)  g(q) = qg*(1 — g*)""*

Now this is hard to analytically integrate, so let’s
use hit-and-miss! Note g € [0,1] and

g(g) € [0,0.1]

Two random numbers X, and X5

e 1f 0.1Xs < g(X,), hit! Keep g = X,

* Else, miss! Generate again
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We consider a convenient “model problem” defined as
follows. At time t=0 the space density g(r,t) of the
cluster conforms to Plummer’s model, i.e. a polytrope
of index 5:

o(r, 0)=(3/4m) MR™>[1 +(r/R)*] >, (1)

where M i1s the total mass of the cluster, and R is a
parameter which determines the dimensions of the
cluster. The gravitational potential is then

U(r,0)=—GMR ™ '[1+(r/R)*]"1/? (2)
and the potential energy of the cluster is
W=—(3n/32) GM*R™!. (3)

Initially the system is assumed to be in a steady state,
with a velocity distribution everywhere isotropic. This

implies that the initial distribution function is given
by

f(r, V0 @
_ [(24)/2/77*)G"*M~*R*—E)’"* for E<O,
10 for E>0.

Here f(r,V,t)dr dV is the total mass of the stars with
position r and velocity V, at time ¢, and E is the energy
per unit mass of a star:

E=U+V?2. (5)
The total energy of the system is then
E=W/2=—-(3n/64) GM*R™!. (6)

Lecture and Lab note on
Plummer’s model

Instructions to construct the phase space
distribution are given in the Appendix

Virial Theorem?

18



Appendix: Generation of Initial Coordinates

Plummer’s model was found to be convenient for a
comparison of methods, and might be adopted as a
standard model for such comparisons. Therefore we
think 1t useful to give here a detailed prescription for
the construction of initial positions and velocities.
There must be available a subroutine which generates
normalized random numbers X, with uniform pro-
bability distribution between 0 and 1. We consider the
system as defined by (1), (2) and (4), taking G =1,
M =1, R=1 for convenience. In the equal-mass case,
each star then has a mass m=1/N. From (1), the mass
inside a sphere of radius r is

M@)=r3(1+r?~32, (A1)

In order to select a value of r for a star, we simply
generate a random number X, and equate M(r) to X ,,
so that r 1s given by

r=(X723—1)"12, (A2)

The actual position (x, y, z) of the star should now be
selected on the sphere of radius r, with uniform
probability. This is done by the usual trick: we generate

two normalized random numbers X, and X; and
compute

z=(1-2X,)r, x=(*-2z*)"?cos2nXj;, (A3)
y=(r*—2z*)"?sin2nX;.

Next, we compute the velocity modulus for the same

star. The maximum value of V at distance r from the
centre is the escape velocity

V,=(=2U0)"2=2Y2(1 4?14, (A4)

We write V/V,=q. Then (4) shows that the probability
distribution of g is proportional to

g(q@)=q°(1—q*)"">. (AS)

A convenient way to sample g according to this
distribution is provided by von Neumann’s rejection
technique. Possible values of g range from O to 1,
and g(q) is always less than 0.1. Therefore we generate
two normalized random numbers X, and Xs; if
0.1 X5 <g(X,), we adopt g= X,; if not, a new pair of
random numbers is tried, until one is found which
satisfies the inequality. The velocity modulus is then
obtained, using (A4). Since the velocity distribution is
isotropic, the three velocity coordinates u, v, w are
computed from V in the same way as the three

space coordinates from r, using two new random
numbers X and X :

w=(1-2XgV, u=(V*-w?)?cos2nXj,,

A6
v=(V?-w)?sin2nX,. (A6)

The whole procedure is repeated for each of the
N stars. Finally, the values of m, x, y, z, u, v, w may be
scaled to suit the numerical scheme used. If a cluster
with mass M and energy & is desired, while keeping
G =1, then masses should be multiplied by M, lengths
by (3n/64) M?|&|~ !, and velocities by (64/37)|8|'/?
M~12,



