
Computational Physics II UCSD PHYS 142/242
Final Projects Presentations: Monday, March 10 - Friday, March 14, 2025

Report and code due: Friday, March 21, 2025, 8:00pm

Instructions
• You will be assigned to a group of 3–4 students and part of the project is to learn how to collaborate

effectively. So, meet with your group members to discuss the project and divide the work.

• The project will be graded based on the quality of the report and code, the correctness of the results,
and the depth of the analysis.

• The projects outlined here are designed to be open-ended, and give you the freedom to explore addi-
tional topics that we may not have covered in class.

• The presentation should be about 20 minutes and different group members should deliver different
parts of it.

• The presentation/report should include an introduction to the problem, a description of the methods
used (and why), and a discussion of the results.

• You should submit all code as a public GitHub repository with a README that explains how to run
it. You are also encouraged to use GitHub to collaborate with your group members.

• The report should be about 4 pages, including figures and tables, but excluding references. It should
be double column using the Phys. Rev. Lett. template.

• Please submit your report as a single .pdf file to Gradescope under “Final Project Report”. The report
should include a link to your public GitHub repository. The .zip file should contain all of your source
code files.

• Fill out your project preferences here: https://forms.gle/exB5BEtVddbvmGDr7
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1 Double Well Potential with MCMC
Consider the double well potential,

V(x) = αx4 − 2x2 +
1
α

(1)

where x is the position of the particle, and we set m = h̄ = 1 and α = 0.4. See Refs. [1, 2] for discussions of
similar problems.

Use the path integral formulation with imaginary time τ,

Z =
∫
Dx(τ) exp

[
−1

h̄

∮ τb

0
LE(x(τ))dτ

]
] (2)

= lim
δτ→0

∫
· · ·

∫
dx0 · · · dxN−1

(
2πh̄δτ

m

)− N
2

exp

[
−1

h̄

(
N

∑
i=1

m(xi − xi−1)
2

2δτ
+ δτV

(
xi−1 + xi

2

))]
(3)

where LE(x(τ)) = m
2

(
dx
dτ

)2
+ V(x(τ)) is the Euclidean Lagrangian, imaginary time is discretized with N

increments, τa = 0, and τb = Nδτ = h̄β. So the probability of a given path (x0, x1, . . . , xN−1) is

p(x0, . . . , xN−1) ∝ exp

[
−1

h̄

(
N

∑
i=1

m(xi − xi−1)
2

2δτ
+ δτV

(
xi−1 + xi

2

))]
(4)

Problem A : Evaluate the ground state energy and probability distribution of the particle using Markov
chain Monte Carlo with the Metropolis-Hastings algorithm in the large-τb (imaginary time) limit. Describe
your strategy for determining τb, the initial configuration, burn-in steps, hit size, number of sweeps, and
thinning (if any).

Problem B: Plot the ground state probability distribution and compare it with the expected form.

Problem C : Calculate the energy and probability distribution of the particle from the same simulation
code for a smaller value of τb. What is the expected probability distribution in this case? What does this
correspond to in terms of a statistical mechanics interpretation?
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2 2D Ising Model with MCMC
Consider the 2D Ising model in a square lattice Λ with 100× 100 sites and periodic boundary conditions
in the presence of an external magnetic field B. The energy of the system for a given spin configuration
σ = {σi}i∈Λ is

E(σ) = −J ∑
〈ij〉

σiσj − B ∑
i∈Λ

σi, (5)

where 〈ij〉 denotes two adjacent sites (with no double counting), J is the spin-spin interaction, and σi ∈
{−1,+1} is the spin at site i.

The magnetization of the system is

M(σ) =
1
|Λ| ∑

i∈Λ
σi. (6)

Problem A: Use Markov chain Monte Carlo and the Metropolis-Hastings algorithm to simulate the 2D Ising
model at different temperatures T and magnetic field strengths B. Discuss your strategy for determining
the initial configuration, burn-in steps, total number of steps, and thinning (if any).

Problem B : Plot 1D scans of the magnetization M versus T for fixed B at three different values: B < 0,
B = 0, and B > 0. Plot 1D scans of the magnetization M versus B for fixed T at three different values:
T < TC, T = TC, and T > TC, where TC = 2

ln(1+
√

2)
≈ 2.269.

Problem C: Putting this all together, draw/describe the phase diagram in B versus T of the 2D Ising model,
where the magnetization M is the order parameter. Consider discussing first-order phase transitions and
critical exponents, hysteresis and metastable states, and/or specific heat and susceptibility. See Refs. [3, 4]
for relevant discussions.
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3 Drell–Yan Event Generator with VEGAS
Consider the Drell–Yan production process at an electron-positron collider, in which an electron and positron
collide to produce a virtual photon or a Z boson that then decays into a muon-antimuon pair, e+e− →
Z/γ→ µ+µ−.

q

µ− (k)

µ+ (k′)e− (p)

e+ (p′)

θ

k = (E,k)

p′ = (E, −Eẑ)

k′ = (E, −k)

p = (E, Eẑ)

As described in lecture and in Ref. [5], the differential cross section for center-of-mass energy ECM =
√

ŝ
and scattering angle θ is given by

dσ

dΩ
(ŝ, cos θ) =

α2

4ŝ

[
A0(ŝ)(1 + cos2 θ) + A1(ŝ) cos θ

]
, (7)

where A0 and A1 are given by

A0(ŝ) = Q2
e − 2QeVµVe χ1(ŝ) + (A2

µ + V2
µ )(A2

e + V2
e ) χ2(ŝ) ,

A1(ŝ) = −4Qe Aµ Ae χ1(ŝ) + 8AµVµ AeVe χ2(ŝ) , (8)

and the χ1 and χ2 are given by

χ1(ŝ) = κŝ(ŝ−M2
Z)/((ŝ−M2

Z)
2 + Γ2

Z M2
Z) ,

χ2(ŝ) = κ2 ŝ2/((ŝ−M2
Z)

2 + Γ2
Z M2

Z) ,

κ =
√

2GF M2
Z/(4πα) . (9)

Useful constants are given in the tables below.

Fermions Q f Vf A f

u, c, t + 2
3 (+ 1

2 − 4
3 sin2 θW) + 1

2
d, s, b − 1

3 (− 1
2 − 2

3 sin2 θW) − 1
2

νe, νµ, ντ 0 1
2 + 1

2
e, µ, τ −1 (− 1

2 + 2 sin2 θW) − 1
2
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Variable Symbol Value
conversion factor GeV−2 ↔pb 3.894× 108 pb = 1 GeV−2

Z boson mass MZ 91.188 GeV
Z boson width ΓZ 2.4414 GeV
QED running coupling α 1

132.507
Fermi constant GF 1.16639× 10−5 GeV−2.
Weinberg angle sin2 θW 0.222246

Problem A : Use standard acceptance-rejection Monte Carlo to generate events (ECM, cos θ) for the Drell–
Yan process in a range ECM ∈ [10, 200]GeV and cos θ ∈ [−1, 1]. Note, usually ECM is fixed in an electron-
positron collider, but we will consider a range of energies, which is similar to the situation at a hadron
collider where the partonic center-of-mass energy is not known exactly.

Problem B : Use the VEGAS Monte Carlo method [6, 7] to generate events (ECM, cos θ) for the Drell–Yan
process in a range ECM ∈ [10, 200]GeV and cos θ ∈ [−1, 1]. Compare how many function evaluations are
needed to arrive at the same number of samples, e.g. 10,000. Discuss the settings you use for the VEGAS
algorithm, i.e. how many iterations, what kind of damping factor, and how many bins, etc.
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