PHYS 142/242 Lecture 01: Introduction

Javier Duarte – January 6, 2025

Welcome to PHYS 142/242

- Fill out the pre-course survey: <u>https://forms.gle/7n7L81ptCvqWX7pVA</u>
- Let's review the syllabus
- appt.
- Learning outcomes:
 - harmonic oscillator using the Feynman path integral approach
 - Consider multiple approaches and compare their computational performance, accuracy, and fidelity to physical laws

 - Visualize the solutions
 - Collaborate with peers to tackle complex, realistic problems
 - Present findings

• Instructor: Javier Duarte (iduarte@ucsd.edu), Office hours after lecture M or by

TA: Anthony Aportela (<u>aaportel@ucsd.edu</u>), Office hours during/after lab TuTh

• Design computer programs to numerically solve physics problems, like the

• Find and choose the best tool or programming language for the task

Assignment breakdown

- 30% Homework
- 15% Quizzes
- 10% Participation and attendance
- 20% Midterm project
- 25% Final project

Attendance

- Lecture attendance (5%)
 - To record your attendance, write your name on the whiteboard or chalkboard either at the beginning or end of lecture.
 - The full 5% will be awarded for attending 80% of the lectures.
- Lab attendance (5%)
 - Similar to lecture, write your name on the whiteboard or chalkboard either at the beginning or end of lab.
 - The full 5% will be awarded for attending 80% of the labs.

Homework

- Half of grade will be from turning in first "draft"
 - Graded on effort and completeness (for all problems)
 - Solution released shortly afterward
- Half of grade will be from turning in corrected solution
 - Graded on effort and correctness (for all problems)
- Report (pdf file) uploaded to Gradescope
- Code (zip file) uploaded to Gradescope
- First homework will be released later this week (due in Week 3)

Note: DO NOT just turn in solutions; CORRECT your own first attempt

Exit tickets

- Exit tickets: <u>https://forms.gle/opY7EFZJiRBgkMsAA</u>
 - Designed to see how you felt about the lecture, what you took away, whether you have any further questions or feedback
 - Filling it out will go toward the 5% participation score

PHYS 142/242 Exit Ticket
Sign in to Google to save your progress. Learn more
* Indicates required question
Email * Your email
UCSD PID * Your answer
Which lecture is this exit ticket for? * Date mm/dd/yyyy

DataHub

- We will use DataHub for inclass hands-on portions
 - Recommend to use it for homework, final project, etc.
- Address: <u>datahub.ucsd.edu</u>
- Similar to public, free services Google Colab, but with access to better CPUs and GPUs and run by UCSD
- Provides a "Jupyter notebook" interface (Python-based but interactive coding like MATLAB/Mathematica)

DATA SCIENCE / MACHINE LEARNING PLATFORM

UC San Diego

Help - FAQ

Information Technology Services - Academic Technology Services

UC San Diego Jupyterhub (Data Science) Platform

If you are unable to log in: Please try opening a private/incognito window in your browser | FAQ

Student Resources

- Datahub/DSMLP Cluster Status
- Independent Study Access Request
- Data Science Resources
- Datahub/DSMLP Knowledge Base
 - Launching Containers from the Command Line
 - Configuring Your Container Launch
 - Building Your Own Custom Image

Transforring Eiles and Date

Instructor Resources

- Request Datahub/DSMLP Instructional Technology Request (CINFO)
- Instructor Guidance for Datahub/DSMLP
- Educational Technology Services Instructional Github

Suno applicamento and gradoo with your Conve

- Blink Documentation
- Datahub Grading Tools
 - nbgrader

Discord

- Join the Discord for the course: <u>https://discord.gg/WnDCU6xsGk</u>
- 360045138571-Beginner-s-Guide-to-Discord
- Feel free to create channels to collaborate with others, etc.

Beginner's Guide to Discord: <u>https://support.discord.com/hc/en-us/articles/</u>

Course overview

- Course overview, preview of double-slit experiments
- Lagrangian mechanics, principle of least action
- Recap of quantum mechanics
- Feynman path integral
- Free particle
- Harmonic oscillator
- Schrodinger equation
- Double well potential
- Recap of statistical mecahnics
- Markov chain Monte Carlo, Metropolis algorithm
- 2D Ising model
- MCMC for Feynman path integral
- VEGAS algorithm
- MC in particle physics; Compton scattering

Computer modeling

- Computer modeling plays a very important role in science today
- Physical sciences are characterized by an interplay between experiment and theory
 - Experiment: a system is subjected to measurements, and results, expressed in numeric form, are obtained
 - Theory: a model of the system is constructed, usually in the form of a set of mathematical equations
- Modeling and simulation live at the intersection between (and supplement) theory and experiment
 - But are not a substitute for real-world experimentation

Experimentation Scientific Understanding Theory

Three components to modeling

- 1. The physical problem and its theoretical model
 - Necessary to understand the underlying physics of the problem
 - Only ask the computer to do the things which cannot be done otherwise (e.g. analytically).
 - Development of computer experiments has altered substantially the relationship between theory and experiment, allowing "thought experiments" and more realistic, complex models
 - Creativity is an important component!

Three components to modeling

- 2. Algorithm and software implementation
 - The advent of high speed computers and "high-level" programming languages, starting with Fortran (1957), C (1972), C++ (1980), Python (1990), Rust (2010), Julia (2012), ... made modeling & simulation much more accessible to scientists

Three components to modeling

- 3. Analysis and visualization
 - Analysis: physical interpretation of the data generated by the computer simulation
 - Visualization tools are indispensable in the interpretation of the results

For illustration we will discuss solving quantum mechanical and statistical

mechanical problems using a variety of approaches, including Feynman Path Integral with Markov chain MC, numerical solutions of Schrödinger Equation, etc.

Double slit: darts

- Classical (macroscopic) behavior, e.g. a Nerf gun

- (a) • What is the probability distribution $P_{12}(x)$ if both holes are open?
- Each dart that travels from the Nerf gun to the backstop must go through either hole 1 or 2
- hole 1, plus $P_2(x)$, the probability of arrival passing through hole 2

(b)

• The probability of arrival at x is the sum of two parts: $P_1(x)$ the probability of arrival passing through

Double slit: electrons

• How do individual electrons behave?

(a)

? $P_{12} =$

(b)

(c)

Double slit: 1 electron at a time

• Roger Bach et al., "Controlled double-slit electron diffraction", New J. Phys. 15 033018 (2013)

Double slit: electrons

How do individual electrons behave?

- (a) • If we perform the experiment, we observe the following pattern
- Probability amplitude $\phi_i(x)$ for each hole *i*, and the probability amplitudes sum

(b) (c)

 $\phi_{12}(x) = \phi_1(x) + \phi_2(x)$; interpret *intensity* as probability $P_{12}(x) = |\phi_{12}(x)|^2$

Double slit: waves

• This is a familiar phenomenon! Electrons behave like waves

18

Double slit: meaning

- What does this mean?
 - either one hole or the other
 - Instead the two alternatives "interfere"

When both holes are open, it is not true that the electron goes through

Double slit: effect of observation

- What if we put some kind of detector to tell for sure which hole the electron passes through?
- It destroys the interference pattern! Left with the classical behavior
- Just by watching the electrons, we change the probability that they arrive at *x*
- How is this possible?
 - Detection implies interaction with the electron, e.g. scattering with a photon, which alters its motion and its probability of arrival at *x*

