PHYS 1427224

Lecture-02: Fevnnie

Javier Duarte — January 8, 2025



Double slit: darts

» Classical (macroscopic) behavior, e.g. a Nerf gun

 P(x) is the probability a dart hits position x on the screen if only hole i is open
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(a) (b)
« What is the probability distribution P,(x) if both holes are open?

 Each dart that travels from the Nerf gun to the backstop must go through either hole 1 or 2

e The probability of arrival at x is the sum of two parts: P;(x) the probability of arrival passing through
hole 1, plus P,(x), the probability of arrival passing through hole 2



Double slit: electrons

e How do individual electrons behave?
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(a) (b) (c)
e |f we perform the experiment, we observe the following pattern

» Probability amplitude ¢,(x) for each hole 7, and the probability amplitudes sum
P1,(x) = ¢(x) + P,(x); interpret mtens:ty as probability P;,(x) = | ¢;,(x) \



Double slit: waves

 This is a familiar phenomenon! Electrons behave like waves
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Double slit: meaning

« WWhat does this mean?

 \When both holes are open, it is not true that the electron goes through
either one hole or the other

e Instead the two alternatives “interfere”



Double slit: effect of observation

 What if we put some kind of detector to tell
for sure which hole the electron passes
through??

* |t destroys the interference pattern! Left
with the classical behavior

» Just by watching the electrons, we change
the probabillity that they arrive at x

 How is this possible?

* Detection implies interaction with the
electron, e.g. scattering with a photon,
which alters its motion and its probability

of arrival at x




From double slit to Feynman path integral

 Consider adding screens E and D with several holes
 For each route, there is an amplitude

 \When all the holes are open we must sum all these amplitudes, one for each
possible path
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From double slit to Feynman path integral

 More and more holes are cut in the screens at E and D until eventually, the
electron has a continuous range of positions it can pass through

» [he sum becomes a double integral over x, and x




Feynman path integral

* |n quantum mechanics, the amplitude to go from A to
B is the sum of contributions @[(x(7)]| from each path

CKkB.A= ) pl)]
paths from A to B
« But what does each contribution look like?




Lagrangian mechanics reminder

» Define the Lagrangian L(x, X, t) = K(x,x) — V(x, 1)
1

« Example: free particle, K = Em)'cz, V=0

. . 1 . 1
« Example: harmonic oscillator, K = mez, V = Ema)z)c2
v

. Action § = Ltb L(x, x, t)dt

« The principle of least action (PLA): The classical path x(?)
is that for which § is an extremum; S is unchanged (to first
order) if the path X(7) is modified slightly

« If we vary X(¢) by a small amount ox(7)
» Boundary condition: 0x(¢,) = ox(#,) = 0
e 08 = S[x + ox] — S[x] = O (to first order in Ox)
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Lagrangian mechanics reminder

' fb[ oL oL

L(x,x,t) + ox— + ox—| dt

S|X + ox] = [ " n

[

a

L(x + ox,x + ox, )dt = J

[

a

l,

=S[x]+J

[

a

ox ox

oL oL
OX— + 5x—] dt

Using integration by parts,

[ oL d (oL d (oL oL
05 =0 = OX—+ox— | — | —0x— | — |+ox—| dt
’ 0X dt \ ox dt \ ox 0x Euler-Lagrange equations

b [ d oL d (oL oL oL1" (% [d /oL oL
= —(ox— ) —0x— | — ]| +ox— | =|ox—]| —| ox|—|— dt
. dt o0xX dr \ ox ox o0x t : dr \ ox ox

because 6x(t,) = 6x(t,) = 0 ) 0 =0




Euler-Lagrange and Newton

Example: L = %mxz — V(x)

d (oL\ oL
dt \ ox ] ox
d dv

— (mx) =mx = — —

dt dx

Equivalent to Newton’s 2nd law of motion



Classical vs. Quantum

« In classical mechanics, the form of the action integral S = det IS Interesting,
moreso than the extreme value S

d (oL oL
, Leads to the Euler-Lagrange equations — | — | = —
dr \ ox 0X

* Solving these determines the path of least action

* |n quantum mechanics, both the form of the integral and the extreme value
are important

* All paths contribute (not just the extremal path)
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Example: Classical action for free particle

* In Quiz 1, you wili show the classical action for a free particle of mass m Is
m (x, — X,
¢_—_ b “al
P
 What are the units? t
. cgs: cm” g/s

 Particle physics units: MeV s
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Feynman path integral

* |n quantum mechanics, the amplitude to go from A to
B is the sum of contributions @[(x(7)]| from each path

CKkB.A= ) pl)]
paths from A to B

 The contribution of a path has a phase proportional
to the classical action S

. @[x(¢)] = (const)e VWD

* This Is a generalization of the classical principle of
least action, sometimes called the quantum action
principle

» Contains the classical principle in the limit 7 — 0O
(or equivalently when § > h
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Classical Iimit

* The phase of each contribution is

e = cos(S/h) + isin(S/h)
. Reminder: i = 6.6261 X 1072’ cm? g/s (tiny!)

« Near the classical path X(?), S varies very little i

* e.g. 1 and 2 contribute with the same phase and
constructively interfere

» Far from the classical path, S varies a lot in units of 7

e e.g. 3 and 4 contribute with different phases and
destructively interfere

» Only paths in the vicinity of X(#) have important contributions
(that don’t cancel), and in the classical limit we only need to
consider this trajectory

* Classical laws of motion arise from the quantum laws!



Defining the path integral

 How do we construct the path integral/sum?

K(xBa tBa an tA) —_ (COIlSt) Z eh path
all paths

» Note the probability amplitude for the particle to travel from position x, at

time 7, to position xp at time 75 iIs sometimes called the kernel or the
propagator

* By analogy with the Riemann integral/sum

o “\\ f(z)

Lo L1 Lo L Lipq
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Riemann sum

« Define N equally spaced x coordinates (separation /) as a
representative subset of all coordinates

e Area under the curve A is the sum of all function values evaluated at
each x;, multiplied by an overall normalization factor h,

N—1
A= lim &) fx)
1=0

h—0,N— oo

- . J(x)

Lo L1 Lo L Lipq
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Defining the path integral

First, choose a subset of all paths from (x4, #,) to '
(xp, tp) as follows

Divide time into steps of width €

At each time 7;, the path passes through some
chosen point x;

We construct a path by connecting all the points with 74
straight lines (i.e. constant velocity)

Summary:
Ne =15 — Iy, € =1lit1 — I lo = Iy In = Ip
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Defining the path integral

 Define the sum over all such paths by taking a multiple integral over all x;
coordinate choices

. K(xp, tg; x4, 84) ~ J JJe%S[B’A]dxldxz---de_l

* Note: to get the limit to exist we need to know the normalization factor

 For now, we’ll take the factor for granted, but we will show how it’s derived later

dx, dx, dxy_,

1 |
. K(Xp, tr X4, 14) = Im —|--- e%S[B’A]
it = _Jim | [ eR9Td T2

1

2rhe \ 2 o N

C = . Overall normalizing factor is C
m

 S[B,A] = JBL(X, %, 1)dt

IA
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