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Lecture 02: Feynman Path Integral



• Classical (macroscopic) behavior, e.g. a Nerf gun


•  is the probability a dart hits position  on the screen if only hole  is open


• What is the probability distribution  if both holes are open?

• Each dart that travels from the Nerf gun to the backstop must go through either hole 1 or 2


• The probability of arrival at  is the sum of two parts:  the probability of arrival passing through 
hole 1, plus , the probability of arrival passing through hole 2
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Double slit: darts
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Double slit: electrons
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?

• How do individual electrons behave?


• If we perform the experiment, we observe the following pattern


• Probability amplitude  for each hole , and the probability amplitudes sum 
; interpret intensity as probability 

ϕi(x) i
ϕ12(x) = ϕ1(x) + ϕ2(x) P12(x) = |ϕ12(x) |2



• This is a familiar phenomenon! Electrons behave like waves

Double slit: waves
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• What does this mean? 

• When both holes are open, it is not true that the electron goes through 

either one hole or the other  
• Instead the two alternatives “interfere”

Double slit: meaning
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• What if we put some kind of detector to tell 
for sure which hole the electron passes 
through?


• It destroys the interference pattern! Left 
with the classical behavior


• Just by watching the electrons, we change 
the probability that they arrive at 


• How is this possible?

• Detection implies interaction with the 

electron, e.g. scattering with a photon, 
which alters its motion and its probability 
of arrival at 

x

x

Double slit: effect of observation
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From double slit to Feynman path integral
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• Consider adding screens E and D with several holes

• For each route, there is an amplitude

• When all the holes are open we must sum all these amplitudes, one for each 

possible path



From double slit to Feynman path integral
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• More and more holes are cut in the screens at E and D until eventually, the 
electron has a continuous range of positions it can pass through


• The sum becomes a double integral over  and xE xD



Feynman path integral
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• In quantum mechanics, the amplitude to go from A to 
B is the sum of contributions  from each path 


• 


• But what does each contribution look like?

ϕ[(x(t)]
K(B, A) = ∑

paths from A to B

ϕ[x(t)]



• Define the Lagrangian 


• Example: free particle, , 


• Example: harmonic oscillator, , 


• Action 


• The principle of least action (PLA): The classical path  
is that for which  is an extremum;  is unchanged (to first 
order) if the path  is modified slightly


• If we vary  by a small amount 


• Boundary condition: 


•  (to first order in )

L(x, ·x, t) ≡ K(x, ·x) − V(x, t)
K = 1

2 m ·x2 V = 0

K = 1
2 m ·x2 V = 1

2 mω2x2

S = ∫ tb
ta

L(x, ·x, t)dt

x(t)
S S
x(t)

x(t) δx(t)
δx(ta) = δx(tb) = 0

δS = S[x + δx] − S[x] = 0 δx

Lagrangian mechanics reminder 
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Using integration by parts,

 

S[x + δx] = ∫
tb

ta

L( ·x + δ ·x, x + δx, t)dt = ∫
tb

ta
[L( ·x, x, t) + δ ·x

∂L
∂ ·x

+ δx
∂L
∂x ] dt

= S[x] + ∫
tb

ta
[δ ·x

∂L
∂ ·x

+ δx
∂L
∂x ] dt

δS = 0 = ∫
tb

ta
[δ ·x

∂L
∂ ·x

+δx
d
dt ( ∂L

∂ ·x ) − δx
d
dt ( ∂L

∂ ·x )+δx
∂L
∂x ] dt

= ∫
tb

ta
[ d

dt (δx
∂L
∂ ·x ) − δx

d
dt ( ∂L

∂ ·x ) + δx
∂L
∂x ] = [δx

∂L
∂ ·x ]

tb

ta

=0

− ∫
tb

ta

δx [ d
dt ( ∂L

∂ ·x ) −
∂L
∂x ]

=0

dt

Lagrangian mechanics reminder 
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Euler-Lagrange equations

because δx(ta) = δx(tb) = 0



Example: 


 


Equivalent to Newton’s 2nd law of motion


 

L = 1
2 m ·x2 − V(x)

d
dt ( ∂L

∂ ·x ) =
∂L
∂x

d
dt

(m ·x) = m··x = −
dV
dx

F ≡ −
dV
dx

= ma

Euler-Lagrange and Newton
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Classical vs. Quantum
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• In classical mechanics, the form of the action integral  is interesting, 
moreso than the extreme value 


• Leads to the Euler-Lagrange equations 


• Solving these determines the path of least action

• In quantum mechanics, both the form of the integral and the extreme value 

are important

• All paths contribute (not just the extremal path)

S = ∫ Ldt
Scl

d
dt ( ∂L

∂ ·x ) =
∂L
∂x



Example: Classical action for free particle
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• In Quiz 1, you will show the classical action for a free particle of mass  is 

 


• What are the units?


• cgs: 


• Particle physics units: 

m

S =
m
2

(xb − xa)2

tb − ta

cm2 g/s
MeV s



Feynman path integral
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• In quantum mechanics, the amplitude to go from A to 
B is the sum of contributions  from each path 


• 


• The contribution of a path has a phase proportional 
to the classical action  


• 

• This is a generalization of the classical principle of 

least action, sometimes called the quantum action 
principle 

• Contains the classical principle in the limit  
(or equivalently when 

ϕ[(x(t)]
K(B, A) = ∑

paths from A to B

ϕ[x(t)]

S
ϕ[x(t)] = (const)e(i/ℏ)S[x(t)]

ℏ → 0
S ≫ ℏ



Classical limit
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• The phase of each contribution is 



• Reminder:  (tiny!)


• Near the classical path ,  varies very little

• e.g. 1 and 2 contribute with the same phase and 

constructively interfere 

• Far from the classical path,  varies a lot in units of 

• e.g. 3 and 4 contribute with different phases and 

destructively interfere


• Only paths in the vicinity of  have important contributions 
(that don’t cancel), and in the classical limit we only need to 
consider this trajectory

• Classical laws of motion arise from the quantum laws!

eiS/ℏ = cos(S/ℏ) + i sin(S/ℏ)
ℏ = 6.6261 × 10−27 cm2 g/s

x(t) S

S ℏ

x(t)



Defining the path integral
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• How do we construct the path integral/sum? 


• 


• Note the probability amplitude for the particle to travel from position  at 
time  to position  at time  is sometimes called the kernel or the 
propagator 

• By analogy with the Riemann integral/sum

K(xB, tB; xA, tA) = (const) ∑
all paths

e
i
ℏ Spath

xA
tA xB tB



Riemann sum
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• Define  equally spaced  coordinates (separation ) as a 
representative subset of all coordinates


• Area under the curve  is the sum of all function values evaluated at 
each , multiplied by an overall normalization factor , 

N x h

A
xi h

A = lim
h→0,N→∞

h
N−1

∑
i=0

f(xi)



Defining the path integral
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• First, choose a subset of all paths from  to 
 as follows


• Divide time into steps of width 


• At each time , the path passes through some 
chosen point 


• We construct a path by connecting all the points with 
straight lines (i.e. constant velocity)


• Summary:

(xA, tA)
(xB, tB)

ϵ
ti
xi

Nϵ = tB − tA, ϵ = ti+1 − ti, t0 = tA, tN = tB
x0 = xA, xN = xB

xA

tA

tB

xBxi

ti



Defining the path integral
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• Define the sum over all such paths by taking a multiple integral over all  
coordinate choices


• 


• Note: to get the limit to exist we need to know the normalization factor 

• For now, we’ll take the factor for granted, but we will show how it’s derived later


• 


• ; Overall normalizing factor is 


•

xi

K(xB, tB; xA, tA) ∼ ∫ ⋯∫ ∫ e
i
ℏ S[B,A]dx1dx2⋯dxN−1

K(xB, tB; xA, tA) = lim
ϵ→0, N→∞

1
C ∫ ⋯∫ ∫ e

i
ℏ S[B,A] dx1

C
dx2

C
⋯

dxN−1

C

C = ( 2πℏϵ
m )

1
2

C−N

S[B, A] = ∫
tB

tA

L(x, ·x, t)dt


