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Feynman path integral

* |n quantum mechanics, the amplitude to go from A to
B is the sum of contributions @[(x(7)]| from each path

CKkB.A= ) pl)]

paths from A to B

 The contribution of a path has a phase proportional
to the classical action § = JLdt

. d[x(?)] = (const)e W]

* This Is a generalization of the classical principle of
least action, sometimes called the quantum action
principle

» Contains the classical principle in the limit 7 — 0O
(or equivalently when § > h
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Classical Iimit

* The phase of each contribution is

e = cos(S/h) + isin(S/h)
. Reminder: i = 6.6261 X 1072’ cm? g/s (tiny!)

« Near the classical path X(?), S varies very little i

* e.g. 1 and 2 contribute with the same phase and
constructively interfere

» Far from the classical path, S varies a lot in units of 7

e e.g. 3 and 4 contribute with different phases and
destructively interfere

» Only paths in the vicinity of X(#) have important contributions
(that don’t cancel), and in the classical limit we only need to
consider this trajectory

* Classical laws of motion arise from the quantum laws!
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all paths

» Note the probability amplitude for the particle to travel from position x, at
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propagator



Defining the path integral

 How do we construct the path integral/sum?

K(xBa tBa an tA) — (COIlSt) Z eh path
all paths

» Note the probability amplitude for the particle to travel from position x, at

time 7, to position xp at time 75 iIs sometimes called the kernel or the
propagator

* By analogy with the Riemann integral/sum

o “\\ f(z)
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Riemann sum
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Riemann sum

« Define N equally spaced x coordinates (separation /) as a
representative subset of all coordinates

e Area under the curve A is the sum of all function values evaluated at
each x;, multiplied by an overall normalization factor h,

N—1
A= lim &) fx)
1=0

h—0,N— oo

- . J(x)

Lo L1 Lo L Lipq
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Defining the path integral

First, choose a subset of all paths from (x4, #,) to '
(xp, tp) as follows

Divide time into steps of width €

At each time 7;, the path passes through some
chosen point x;

We construct a path by connecting all the points with 74
straight lines (i.e. constant velocity)

Summary:
Ne =15 — Iy, € =1lit1 — I lo = Iy In = Ip
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coordinate choices
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Defining the path integral

 Define the sum over all such paths by taking a multiple integral over all x;
coordinate choices

. K(xp, tg; x4, 84) ~ J JJe%S[B’A]dxldxz---de_l

* Note: to get the limit to exist we need to know the normalization factor

 For now, we’ll take the factor for granted, but we will show how it’s derived later

dx, dx, dxy_,

1 |
. K(Xp, tr X4, 14) = Im —|--- e%S[B’A]
it = _Jim | | R

1

2rihe \ ? . Y
C = . Overall normalizing factor is C

m
t

 S[B,A] = JBL(X, %, 1)dt

I
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* Note that for the given the path we’ve defined, the velocities are discontinuous,
and therefore the acceleration X; is formally infinite at each time step !

1
. A workaround is to define the acceleration as X; = —(x;, ;| — 2x; + x;_{), i.e.
€

average over three neighboring points



Considerations and notation

* Note that for the given the path we’ve defined, the velocities are discontinuous,
and therefore the acceleration X; is formally infinite at each time step !

1
. A workaround is to define the acceleration as X; = —(x;, ;| — 2x; + x;_{), i.e.
€

average over three neighboring points

* Finally, we can use a shorthand to denote the path integral
B

. K[B,A] — J 9X(t)€%S[B’A]
A
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Path integral for a free particle
: Zﬂlhe _% g

. Path integral is K(xp, t5; x4, 14) = 11m[--- del...de_l ( ) oo BA]
e—0 m

e SO we need ’go calculate the action for each discretized path from
B

S[B,A] = J L(x, x, t)dt

Lo
* Note: we can get the action for the full path by adding up the contribution from
each component of the path, i.e. assuming 7, < 7~ < I, then the action along

any path between A and B is
e SIB,A| =35|B,C|+ 5[C, Al
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Path integral for a free particle

Putting this together with the result of Quiz 1,

)
X, — X;
PTT T | LA Bk = VA
2 €

SIB,A| = ZS[I 1 — 1] =

So,

N 2

2 €
=1

| 2rihe -7 im
K(B,A) = llmJ--- jdxl---de( ) exp [—

c—() m

Note this is a Gaussian integral
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Gaussian integrals

+00
" " —xz
Gaussian mtegral:[ e dx = \/;Z'
— QOO0

+ 00
P, V[,
More generally, J paxtbx — [~ pb7/(4a)
oo da

+00 .
2 Lt )
With complex arguments, J !X Fibx — . | — e~ ib7/(da)
a
— QOO0
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Gaussian integral proof

+ 00 , 2 + 00 , + 00
J e tdx]| = [ e dx J
+ 00 o
= [ e~V dxdy

2T 00 i
= [ [ e " rdrd@
0 J0

= 27:[ e~ rdr
0

o0
= 71'[ e ’ds = — me™
0

e’ 2aly]

;O=—7t(()—1)=7z
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Back to the path integral

We have terms like this we need to integrate:

e J'OO exp ﬂ[(x — x)% + (x; — x)?]| dx
2mihe ) )_ dhe 2 ! b0 :

+00 :
: : S ¥/ T,
Let’s apply our Gaussian integral formula J pldx Fibx — | [ p=ib/(4a)
a

— OO0

im
2he

J eXp [ - (x5 + 2x7 + xg — XX — 2x1x2)] dx; = J exp [

2he (xzz T 23612 T xg — 2XpX) — 2x1x2)] dx,
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