PHYS 142/242 Lecture 02: Feynman Path Integral (Continued)

Javier Duarte – January 12, 2024

- In quantum mechanics, the amplitude to go from A to B is the sum of contributions $\phi[(x(t))]$ from each path
 - K(B,A) = $\phi[x(t)]$

paths from A to B

- In quantum mechanics, the amplitude to go from A to B is the sum of contributions $\phi[(x(t))]$ from each path
 - K(B,A) = $\phi[x(t)]$

paths from A to B

- The contribution of a path has a phase proportional to the classical action $S = \int Ldt$
 - $\phi[x(t)] = (\text{const})e^{(i/\hbar)S[x(t)]}$

• In quantum mechanics, the amplitude to go from A to B is the sum of contributions $\phi[(x(t))]$ from each path

$$K(B,A) = \sum \phi[x(t)$$

paths from A to B

• The contribution of a path has a phase proportional to the classical action $S = \int Ldt$

• $\phi[x(t)] = (\text{const})e^{(i/\hbar)S[x(t)]}$

- This is a generalization of the classical principle of least action, sometimes called the *quantum action principle*
 - Contains the classical principle in the limit $\hbar \to 0$ (or equivalently when $S \gg \hbar$

- The phase of each contribution is $e^{iS/\hbar} = \cos(S/\hbar) + i\sin(S/\hbar)$
 - Reminder: $\hbar = 6.6261 \times 10^{-27} \text{ cm}^2 \text{ g/s}$ (tiny!)

- The phase of each contribution is $e^{iS/\hbar} = \cos(S/\hbar) + i\sin(S/\hbar)$
 - Reminder: $\hbar = 6.6261 \times 10^{-27} \text{ cm}^2 \text{ g/s}$ (tiny!)
- Near the classical path $\overline{x}(t)$, S varies very little
 - e.g. 1 and 2 contribute with the same phase and constructively interfere
- cm² g/s (tiny!) s very little ame phase and

- The phase of each contribution is $e^{iS/\hbar} = \cos(S/\hbar) + i\sin(S/\hbar)$
 - Reminder: $\hbar = 6.6261 \times 10^{-27} \text{ cm}^2 \text{ g/s}$ (tiny!)
- Near the classical path $\overline{x}(t)$, S varies very little
 - e.g. 1 and 2 contribute with the same phase and constructively interfere
- Far from the classical path, S varies a lot in units of \hbar
 - e.g. 3 and 4 contribute with different phases and destructively interfere

- cm² g/s (tiny!) s very little ame phase and
- a lot in units of \hbar ent phases and

- The phase of each contribution is $e^{iS/\hbar} = \cos(S/\hbar) + i\sin(S/\hbar)$
 - Reminder: $\hbar = 6.6261 \times 10^{-27} \text{ cm}^2 \text{ g/s}$ (tiny!)
- Near the classical path $\overline{x}(t)$, S varies very little
 - e.g. 1 and 2 contribute with the same phase and constructively interfere
- Far from the classical path, S varies a lot in units of \hbar
 - e.g. 3 and 4 contribute with different phases and destructively interfere
- Only paths in the vicinity of $\overline{x}(t)$ have important contributions (that don't cancel), and in the classical limit we only need to consider this trajectory
 - Classical laws of motion arise from the quantum laws!

- How do we construct the path integral/sum? $K(x_B, t_B; x_A, t_A) = (\text{const})$ all paths
 - Note the probability amplitude for the particle to travel from position x_A at time t_A to position x_B at time t_B is sometimes called the **kernel** or the propagator

$$e^{rac{i}{\hbar}S_{\mathrm{path}}}$$

- How do we construct the path integral/sum? $K(x_B, t_B; x_A, t_A) = (\text{const})$ all paths
 - propagator
- By analogy with the Riemann integral/sum

$$e^{\frac{i}{\hbar}S_{\text{path}}}$$

• Note the probability amplitude for the particle to travel from position x_A at time t_A to position x_B at time t_B is sometimes called the **kernel** or the

Riemann sum

Riemann sum

- Define N equally spaced x coordinates (separation h) as a representative subset of all coordinates
- Area under the curve A is the sum of all function values evaluated at each x_i , multiplied by an overall normalization factor h, N-1

$$A = \lim_{h \to 0, N \to \infty} h \sum_{i=0}^{\infty} f(x_i)$$

• First, choose a subset of all paths from (x_A, t_A) to (x_B, t_B) as follows

- First, choose a subset of all paths from (x_A, t_A) to (x_B, t_B) as follows
- Divide time into steps of width ϵ

- First, choose a subset of all paths first (x_B, t_B) as follows
- Divide time into steps of width ϵ
- At each time t_i , the path passes through some chosen point x_i

rom
$$(x_A, t_A)$$
 to

- First, choose a subset of all paths from (x_A, t_A) to (x_B, t_R) as follows
- Divide time into steps of width ϵ
- At each time t_i , the path passes through some chosen point x_i
- We construct a path by connecting all the points with t_A straight lines (i.e. constant velocity)

- First, choose a subset of all paths from (x_A, t_A) to (x_B, t_B) as follows
- Divide time into steps of width ϵ
- At each time t_i , the path passes through some chosen point x_i
- We construct a path by connecting all the points with t_A straight lines (i.e. constant velocity)

• Summary:

$$N\epsilon = t_B - t_A, \qquad \epsilon = t_{i+1} - t_i,$$

 $t_0 = t_A, \qquad t_N = t_B$ $x_0 = x_A, \qquad x_N = x_B$

Define the sum over all such paths by taking a multiple integral over all x_i coordinate choices

•
$$K(x_B, t_B; x_A, t_A) \sim \int \cdots \int \int e^{\frac{i}{\hbar}S[B,A]} dx_1 dx_2 \cdots dx_{N-1}$$

Note: to get the limit to exist we need to know the normalization factor

Define the sum over all such paths by taking a multiple integral over all x_i \bullet coordinate choices

•
$$K(x_B, t_B; x_A, t_A) \sim \int \cdots \int \int e^{\frac{i}{\hbar}S[B,A]} dx_1 dx_2 \cdots dx_{N-1}$$

- Note: to get the limit to exist we need to know the normalization factor

• For now, we'll take the factor for granted, but we will show how it's derived later

Define the sum over all such paths by taking a multiple integral over all x_i coordinate choices

$$K(x_B, t_B; x_A, t_A) \sim \int \cdots \int \int e^{\frac{i}{\hbar}S[B,A]} dx_1 dx_2 \cdots dx_{N-1}$$

- Note: to get the limit to exist we need to know the normalization factor

•
$$K(x_B, t_B; x_A, t_A) = \lim_{\epsilon \to 0, N \to \infty} \frac{1}{C} \int \cdots$$

•
$$C = \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{\frac{1}{2}}$$
; Overall normaliz
• $S[B, A] = \int_{t_A}^{t_B} L(x, \dot{x}, t) dt$

• For now, we'll take the factor for granted, but we will show how it's derived later $\frac{1}{C} \left[\cdots \left[\int e^{\frac{i}{\hbar} S[B,A]} \frac{dx_1}{C} \frac{dx_2}{C} \cdots \frac{dx_{N-1}}{C} \right] \right]$

izing factor is C^{-N}

Considerations and notation

Considerations and notation

- Note that for the given the path we've defined, the velocities are discontinuous, and therefore the acceleration \dot{x}_i is formally infinite at each time step t_i !
 - A workaround is to define the acc average over three neighboring p

celeration as
$$\ddot{x}_i = \frac{1}{\epsilon}(x_{i+1} - 2x_i + x_{i-1})$$
, i.e. points

Considerations and notation

- Note that for the given the path we've defined, the velocities are discontinuous, and therefore the acceleration \dot{x}_i is formally infinite at each time step t_i !
 - A workaround is to define the acceleration as $\dot{x}_i = \frac{1}{\epsilon}(x_{i+1} 2x_i + x_{i-1})$, i.e. average over three neighboring points
- Finally, we can use a shorthand to denote the path integral • $K[B,A] = \int_{A}^{B} \mathscr{D}x(t)e^{\frac{i}{\hbar}S[B,A]}$

• Path integral is $K(x_B, t_B; x_A, t_A) = \lim_{\epsilon \to \epsilon} \frac{1}{\epsilon}$

- So we need to calculate the action for each discretized path from $S[B,A] = \int_{t_A}^{t_B} L(x,\dot{x},t)dt$
- any path between A and B is
 - S[B, A] = S[B, C] + S[C, A]

$$\lim_{\to 0} \int \cdots \int dx_1 \cdots dx_{N-1} \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{-\frac{N}{2}} e^{\frac{i}{\hbar}S[B]}$$

• Note: we can get the action for the full path by adding up the contribution from each component of the path, i.e. assuming $t_A < t_C < t_B$, then the action along

Putting this together with the result of Quiz 1, $S[i, i-1] = \frac{m}{2} \frac{(x_i - x_{i-1})^2}{\epsilon}$, and $S[B,A] = \sum_{i=1}^{N} S[i,i-1] = \sum_{i=1}^{N} \frac{m}{2} \frac{m}{2}$ So,

 $K(B,A) = \lim_{K \to 0} \int \cdots \int dx_1 \cdots dx_N \left(\frac{2\pi i}{n}\right)$

Note this is a **Gaussian integral**

$$\frac{(x_i - x_{i-1})^2}{\epsilon}$$

$$\left(\frac{i\hbar\epsilon}{m}\right)^{-\frac{N}{2}} \exp\left[\frac{im}{2\hbar\epsilon}\sum_{i=1}^{N}(x_i-x_{i-1})^2\right]$$

Gaussian integrals

Gaussian integrals

With complex arguments, $\int_{a}^{+\infty} e^{iax^2 + ibx} = \sqrt{\frac{i\pi}{a}} e^{-ib^2/(4a)}$

Gaussian integral proof

Gaussian integral proof

$$\left[\int_{-\infty}^{+\infty} e^{-x^2} dx\right]^2 = \left[\int_{-\infty}^{+\infty} e^{-x^2} dx\right] \left[.$$
$$= \int_{-\infty}^{+\infty} e^{-(x^2 + y^2)} dx dy$$
$$= \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\theta$$
$$= 2\pi \int_{0}^{\infty} e^{-r^2} r dr$$
$$= \pi \int_{0}^{\infty} e^{-s} ds = -\pi e^{-s} ds$$

 $\int_{-\infty}^{+\infty} e^{-y^2} dy$

 $(s = r^2)$

 $\pi e^{-s} \Big|_{0}^{\infty} = -\pi (0-1) = \pi$

Back to the path integral

Back to the path integral

We have terms like this we need to integrate: $\left(\frac{m}{2\pi i\hbar\epsilon}\right) \int \exp\left[\frac{im}{2\hbar\epsilon}[(x_2 - x_1)^2\right]\right]$

$$\int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_2^2 + 2x_1^2 + x_0^2 - 2x_0x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{2\hbar\epsilon}(x_1^2 - 2x_1x_1 - 2x_1x_2)\right] dx_1 = \int_{-\infty}^{\infty} \exp\left[\frac{im}{$$

$$(x_1 - x_0)^2 dx_1$$

