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PHYS 142/242
Lecture 02: Feynman Path Integral (Continued)
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• In quantum mechanics, the amplitude to go from A to 
B is the sum of contributions  from each path 


•

ϕ[(x(t)]
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paths from A to B

ϕ[x(t)]
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• In quantum mechanics, the amplitude to go from A to 
B is the sum of contributions  from each path 


•

ϕ[(x(t)]
K(B, A) = ∑

paths from A to B

ϕ[x(t)]

• The contribution of a path has a phase proportional 
to the classical action  


•
S = ∫ Ldt

ϕ[x(t)] = (const)e(i/ℏ)S[x(t)]

• This is a generalization of the classical principle of 
least action, sometimes called the quantum action 
principle 

• Contains the classical principle in the limit  
(or equivalently when 

ℏ → 0
S ≫ ℏ
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• Reminder:  (tiny!)
eiS/ℏ = cos(S/ℏ) + i sin(S/ℏ)

ℏ = 6.6261 × 10−27 cm2 g/s
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• The phase of each contribution is 



• Reminder:  (tiny!)
eiS/ℏ = cos(S/ℏ) + i sin(S/ℏ)

ℏ = 6.6261 × 10−27 cm2 g/s
• Near the classical path ,  varies very little

• e.g. 1 and 2 contribute with the same phase and 

constructively interfere

x(t) S

• Far from the classical path,  varies a lot in units of 

• e.g. 3 and 4 contribute with different phases and 

destructively interfere

S ℏ

• Only paths in the vicinity of  have important contributions 
(that don’t cancel), and in the classical limit we only need to 
consider this trajectory

• Classical laws of motion arise from the quantum laws!

x(t)
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• How do we construct the path integral/sum? 


• 


• Note the probability amplitude for the particle to travel from position  at 
time  to position  at time  is sometimes called the kernel or the 
propagator

K(xB, tB; xA, tA) = (const) ∑
all paths

e
i
ℏ Spath

xA
tA xB tB
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• How do we construct the path integral/sum? 
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• Note the probability amplitude for the particle to travel from position  at 
time  to position  at time  is sometimes called the kernel or the 
propagator

K(xB, tB; xA, tA) = (const) ∑
all paths

e
i
ℏ Spath
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• By analogy with the Riemann integral/sum
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• Define  equally spaced  coordinates (separation ) as a 
representative subset of all coordinates

N x h

• Area under the curve  is the sum of all function values evaluated at 
each , multiplied by an overall normalization factor , 

A
xi h

A = lim
h→0,N→∞

h
N−1

∑
i=0

f(xi)
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• First, choose a subset of all paths from  to 
 as follows

(xA, tA)
(xB, tB)

• Divide time into steps of width ϵ
• At each time , the path passes through some 

chosen point 
ti
xi

• We construct a path by connecting all the points with 
straight lines (i.e. constant velocity)

• Summary:
Nϵ = tB − tA, ϵ = ti+1 − ti, t0 = tA, tN = tB

x0 = xA, xN = xB

xA

tA

tB

xBxi

ti
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• Define the sum over all such paths by taking a multiple integral over all  
coordinate choices


• 


• Note: to get the limit to exist we need to know the normalization factor 

xi

K(xB, tB; xA, tA) ∼ ∫ ⋯∫ ∫ e
i
ℏ S[B,A]dx1dx2⋯dxN−1
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• Define the sum over all such paths by taking a multiple integral over all  
coordinate choices


• 


• Note: to get the limit to exist we need to know the normalization factor 

xi

K(xB, tB; xA, tA) ∼ ∫ ⋯∫ ∫ e
i
ℏ S[B,A]dx1dx2⋯dxN−1

• For now, we’ll take the factor for granted, but we will show how it’s derived later

• 


• ; Overall normalizing factor is 


•

K(xB, tB; xA, tA) = lim
ϵ→0, N→∞

1
C ∫ ⋯∫ ∫ e

i
ℏ S[B,A] dx1

C
dx2

C
⋯

dxN−1

C

C = ( 2πiℏϵ
m )

1
2

C−N

S[B, A] = ∫
tB

tA

L(x, ·x, t)dt
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• Note that for the given the path we’ve defined, the velocities are discontinuous, 
and therefore the acceleration  is formally infinite at each time step !


• A workaround is to define the acceleration as , i.e. 
average over three neighboring points

··xi ti
··xi =

1
ϵ

(xi+1 − 2xi + xi−1)
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• Note that for the given the path we’ve defined, the velocities are discontinuous, 
and therefore the acceleration  is formally infinite at each time step !


• A workaround is to define the acceleration as , i.e. 
average over three neighboring points

··xi ti
··xi =

1
ϵ

(xi+1 − 2xi + xi−1)

• Finally, we can use a shorthand to denote the path integral


• K[B, A] = ∫
B

A
𝒟x(t)e i

ℏ S[B,A]
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• Path integral is  K(xB, tB; xA, tA) = lim
ϵ→0 ∫ ⋯∫ dx1⋯dxN−1 ( 2πiℏϵ

m )
− N

2

e
i
ℏ S[B,A]

• So we need to calculate the action for each discretized path from

S[B, A] = ∫
tB

tA

L(x, ·x, t)dt

• Note: we can get the action for the full path by adding up the contribution from 
each component of the path, i.e. assuming , then the action along 
any path between  and  is


•

tA < tC < tB
A B

S[B, A] = S[B, C] + S[C, A]
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Putting this together with the result of Quiz 1,


, and
S[i, i − 1] =
m
2

(xi − xi−1)2

ϵ

S[B, A] =
N

∑
i=1

S[i, i − 1] =
N

∑
i=1

m
2

(xi − xi−1)2

ϵ
So,

 


Note this is a Gaussian integral

K(B, A) = lim
ϵ→0 ∫ ⋯∫ dx1⋯dxN ( 2πiℏϵ

m )
− N

2

exp [ im
2ℏϵ

N

∑
i=1

(xi − xi−1)2]
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Gaussian integral:∫
+∞

−∞
e−x2dx = π

More generally, ∫
+∞

−∞
e−ax2+bx =

π
a

eb2/(4a)

With complex arguments, ∫
+∞

−∞
eiax2+ibx =

iπ
a

e−ib2/(4a)
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[∫
+∞

−∞
e−x2dx]

2

= [∫
+∞

−∞
e−x2dx] [∫

+∞

−∞
e−y2dy]

= ∫
+∞

−∞
e−(x2+y2)dxdy

= ∫
2π

0 ∫
∞

0
e−r2rdrdθ

= 2π∫
∞

0
e−r2rdr (s = r2)

= π∫
∞

0
e−sds = − πe−s ∞

0
= − π(0 − 1) = π
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We have terms like this we need to integrate:

( m
2πiℏϵ )∫

∞

−∞
exp [ im

2ℏϵ
[(x2 − x1)2 + (x1 − x0)2]] dx1

Let’s apply our Gaussian integral formula ∫
+∞

−∞
eiax2+ibx =

iπ
a

e−ib2/(4a)

∫
∞

−∞
exp [ im

2ℏϵ
(x2

2 + 2x2
1 + x2

0 − 2x0x1 − 2x1x2)] dx1 = ∫
∞

−∞
exp [ im

2ℏϵ
(x2

2 + 2x2
1 + x2

0 − 2x0x1 − 2x1x2)] dx1


