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PHYS 142/242
Lecture 04: Free Particle
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• In quantum mechanics, the amplitude to go from A to 
B is the sum of contributions  from each path 


•

ϕ[(x(t)]
K(B, A) = ∑

paths from A to B

ϕ[x(t)]

• The contribution of a path has a phase proportional 
to the classical action  


•
S

ϕ[x(t)] = (const)e(i/ℏ)S[x(t)]

• This is a generalization of the classical principle of 
least action, sometimes called the quantum action 
principle 

• Contains the classical principle in the limit  
(or equivalently when 

ℏ → 0
S ≫ ℏ
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Defining the path integral

3

• First, choose a subset of all paths from  to 
 as follows

(xA, tA)
(xB, tB)

• Divide time into steps of width ϵ
• At each time , the path passes through some 

chosen point 
ti
xi

• We construct a path by connecting all the points with 
straight lines (i.e. constant velocity)

• Summary:
Nϵ = tB − tA, ϵ = ti+1 − ti, t0 = tA, tN = tB

x0 = xA, xN = xB
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• Path integral is  K(xB, tB; xA, tA) = lim
ϵ→0 ∫ ⋯∫ dx1⋯dxN−1 ( 2πiℏϵ

m )
− N

2

e
i
ℏ S[B,A]

• So we need to calculate the action for each discretized path from

S[B, A] = ∫
tB

tA

L(x, ·x, t)dt

• Note: we can get the action for the full path by adding up the contribution from 
each component of the path, i.e. assuming , then the action along 
any path between  and  is


•

tA < tC < tB
A B

S[B, A] = S[B, C] + S[C, A]
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Putting this together with the result of Quiz 1,


, and
S[i, i − 1] =
m
2

(xi − xi−1)2

ϵ

S[B, A] =
N

∑
i=1

S[i, i − 1] =
N

∑
i=1

m
2

(xi − xi−1)2

ϵ
So,

 


Note this is a Gaussian integral

K(B, A) = lim
ϵ→0 ∫ ⋯∫ dx1⋯dxN ( 2πiℏϵ

m )
− N

2

exp [ im
2ℏϵ

N

∑
i=1

(xi − xi−1)2]
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Gaussian integral:∫
+∞

−∞
e−x2dx = π

More generally, ∫
+∞

−∞
e−ax2+bx+c =

π
a

eb2/(4a)+c

With complex arguments, ∫
+∞

−∞
eiax2+ibx+c =

iπ
a

e−ib2/(4a)+c
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A pattern emerges… After  steps, we getN − 1

K(B, A) = lim
ϵ→0 ∫ ⋯∫ dx1⋯dxN ( 2πiℏϵ

m )
− N

2

exp [ im
2ℏϵ

N

∑
i=1

(xi − xi−1)2]
= lim

ϵ→0 ( m
2πiℏ(Nϵ) )

1/2

exp [ im
2ℏ(Nϵ)

(xN − x0)2]
= ( m

2πiℏ(tB − tA) )
1/2

exp [ im(xB − xA)2

2ℏ(tB − tA) ]
because Nϵ = tB − tA, x0 = xA, xN = xB
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The free particle propagator encodes a lot of physics 
For convenience, let’s analyze it when  and ; i.e. a particle is 
traveling from the origin to position  in time 

A = (0,0) B = (x, t)
x t

K(x, t; 0,0) = ( m
2πiℏt )

1/2

exp [ imx2

2ℏt ]
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The free particle propagator encodes a lot of physics 
For convenience, let’s analyze it when  and ; i.e. a particle is 
traveling from the origin to position  in time 

A = (0,0) B = (x, t)
x t

K(x, t; 0,0) = ( m
2πiℏt )

1/2

exp [ imx2

2ℏt ]
At fixed , let’s see what the propagator looks like as a function of position t x
Then let’s do the same at fixed , for the propagator as a function of time x t
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Plane wave solution to 1D Schrödinger equation

ψ(x, t) = C exp[i(kx − ωt)]

means particle has momentum  and energy p = ℏk E = ℏω
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At large  (fixed ),  oscillates with slowly varying wavelength 

  

x t ℜ[ iK] λ

2π =
m(x + λ)2

2ℏt
−

mx2

2ℏt
=

mxλ
ℏt

+
mλ2

2ℏt
⇒ λ ≈

2πℏ
m(x/t)

assuming x ≫ λ
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At large  (fixed ),  oscillates with slowly varying wavelength 

  

x t ℜ[ iK] λ

2π =
m(x + λ)2

2ℏt
−

mx2

2ℏt
=

mxλ
ℏt

+
mλ2

2ℏt
⇒ λ ≈

2πℏ
m(x/t)

assuming x ≫ λ

 and  !k =
2π
λ

=
m(x/t)

ℏ
p = ℏk



Compare to plane wave at (x = 5,t = 1)

11



Compare to plane wave at (x = 5,t = 1)

11



Free particle behavior at large t

12



Free particle behavior at large t

12

At large  (fixed ),  amplitude 
and period varies; Neglecting change in 
amplitude,

t x ℜ[ iK]

  
2π =

mx2

2ℏt
−

mx2

2ℏ(t + T)
=

mx2

2ℏt ( T
1 + T/t )

≈
mT
2ℏ ( x

t )
2

⇒ T ≈
πℏ

m(x/t)2

assuming  t ≫ T
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At large  (fixed ),  amplitude 
and period varies; Neglecting change in 
amplitude,

t x ℜ[ iK]

  
2π =

mx2

2ℏt
−

mx2

2ℏ(t + T)
=

mx2

2ℏt ( T
1 + T/t )

≈
mT
2ℏ ( x

t )
2

⇒ T ≈
πℏ

m(x/t)2

assuming  t ≫ T

 and  !ω =
2π
T

=
m
2ℏ ( x

t )
2

E = ℏω
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Concepts of momentum and energy are extended to quantum mechanics as 
expected
1. If the amplitude varies in space as , we say that the particle has momentum eikx

ℏk
2. If the amplitude varies in time as , we say that the particle has energy e−iωt ℏω
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The propagator can tell us the probability amplitude to go from one state (described 
by a wave function) to another

ψ(x′ , t′ ) = ∫
∞

−∞
K(x′ , t′ ; x, t)ψ0(x, t)dx

In Quiz 2, you will show that the free propagator satisfies the Schrödinger equation!

 for −
ℏ
i

∂K(B, A)
∂tB

= [−
ℏ2

2m
∂2K(B, A)

∂x2
B ] tB > tA
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ψ̃ (x′ ′ , t′ ′ ) = ∫
∞

−∞
K(x′ ′ , t′ ′ ; x′ , t′ )ψ(x′ , t′ )dx′ 

ψ(x′ , t′ ) = ∫
∞

−∞
K(x′ , t′ ; x, t)ψ0(x, t)dx

⇒ ψ̃ (x′ ′ , t′ ′ ) = ∫
∞

−∞ ∫
∞

−∞
K(x′ ′ , t′ ′ ; x′ , t′ )K(x′ , t′ ; x, t)ψ0(x, t)dx′ dx
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