PHYS 142/242 Lecture 04: Free Particle

Javier Duarte – January 13, 2025

- In quantum mechanics, the amplitude to go from A to B is the sum of contributions $\phi[(x(t))]$ from each path
 - K(B,A) = $\phi[x(t)]$

paths from A to B

- In quantum mechanics, the amplitude to go from A to B is the sum of contributions $\phi[(x(t))]$ from each path
 - K(B,A) = $\phi[x(t)]$

paths from A to B

- The contribution of a path has a phase proportional to the classical action S
 - $\phi[x(t)] = (\text{const})e^{(i/\hbar)S[x(t)]}$

- In quantum mechanics, the amplitude to go from A to B is the sum of contributions $\phi[(x(t))]$ from each path
 - $K(B,A) = \sum \phi[x(t)]$

paths from A to B

- The contribution of a path has a phase proportional to the classical action ${\cal S}$
 - $\phi[x(t)] = (\text{const})e^{(i/\hbar)S[x(t)]}$
- This is a generalization of the classical principle of least action, sometimes called the *quantum action principle*
 - Contains the classical principle in the limit $\hbar \to 0$ (or equivalently when $S \gg \hbar$

• First, choose a subset of all paths from (x_A, t_A) to (x_B, t_B) as follows

- First, choose a subset of all paths from (x_A, t_A) to (x_B, t_B) as follows
- Divide time into steps of width ϵ

- First, choose a subset of all paths first (x_B, t_B) as follows
- Divide time into steps of width ϵ
- At each time t_i , the path passes through some chosen point x_i

rom
$$(x_A, t_A)$$
 to

- First, choose a subset of all paths from (x_A, t_A) to (x_B, t_R) as follows
- Divide time into steps of width ϵ
- At each time t_i , the path passes through some chosen point x_i
- We construct a path by connecting all the points with t_A straight lines (i.e. constant velocity)

- First, choose a subset of all paths from (x_A, t_A) to (x_B, t_B) as follows
- Divide time into steps of width ϵ
- At each time t_i , the path passes through some chosen point x_i
- We construct a path by connecting all the points with t_A straight lines (i.e. constant velocity)

• Summary:

$$N\epsilon = t_B - t_A, \qquad \epsilon = t_{i+1} - t_i,$$

 $t_0 = t_A, \qquad t_N = t_B$ $x_0 = x_A, \qquad x_N = x_B$

• Path integral is $K(x_B, t_B; x_A, t_A) = \lim_{\epsilon \to \epsilon} \frac{1}{\epsilon}$

- So we need to calculate the action for each discretized path from $S[B,A] = \int_{t_A}^{t_B} L(x,\dot{x},t)dt$
- any path between A and B is
 - S[B, A] = S[B, C] + S[C, A]

$$\lim_{\to 0} \int \cdots \int dx_1 \cdots dx_{N-1} \left(\frac{2\pi i\hbar\epsilon}{m}\right)^{-\frac{N}{2}} e^{\frac{i}{\hbar}S[B]}$$

• Note: we can get the action for the full path by adding up the contribution from each component of the path, i.e. assuming $t_A < t_C < t_B$, then the action along

Putting this together with the result of Quiz 1, $S[i, i-1] = \frac{m}{2} \frac{(x_i - x_{i-1})^2}{\epsilon}$, and $S[B,A] = \sum_{i=1}^{N} S[i,i-1] = \sum_{i=1}^{N} \frac{m}{2} \frac{m}{2}$ So,

 $K(B,A) = \lim_{\epsilon \to 0} \left[\cdots \right] dx_1 \cdots dx_N \left(\frac{2\pi i}{n} \right)$

Note this is a **Gaussian integral**

$$\frac{(x_i - x_{i-1})^2}{\epsilon}$$

$$\left(\frac{i\hbar\epsilon}{m}\right)^{-\frac{N}{2}} \exp\left[\frac{im}{2\hbar\epsilon}\sum_{i=1}^{N}(x_i-x_{i-1})^2\right]$$

Gaussian integral: $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$

With complex arguments, $\int_{a}^{+\infty} e^{iax^{2}+ibx+c} = \sqrt{\frac{i\pi}{a}}e^{-ib^{2}/(4a)+c}$

Recursive pattern

Recursive pattern

A pattern emerges... After N-1 step $K(B,A) = \lim_{\epsilon \to 0} \left[\cdots \left[dx_1 \cdots dx_N \left(\frac{2\pi i k}{m} \right) \right] \right]$ $= \lim_{\epsilon \to 0} \left(\frac{m}{2\pi i\hbar(N\epsilon)} \right)^{1/2} \exp \left(\frac{1}{2\pi i\hbar(N\epsilon)} \right)^$ -1/2

$$= \left(\frac{-1}{2\pi i \hbar (t_B - t_A)} \right) \quad \exp(\frac{1}{2\pi i \hbar (t_B - t_A)} \right)$$

because $N\epsilon = t_B - t_A, x_0 = x_A, x_N = x_B$

$$\frac{i\hbar\epsilon}{n}\right)^{-\frac{N}{2}}\exp\left[\frac{im}{2\hbar\epsilon}\sum_{i=1}^{N}(x_i - x_{i-1})^2\right]$$

$$\begin{bmatrix} im \\ \frac{im}{2\hbar(N\epsilon)} (x_N - x_0)^2 \\ \frac{im(x_B - x_A)^2}{2\hbar(t_B - t_A)} \end{bmatrix}$$

7

The free particle propagator encodes a lot of *physics*

The free particle propagator encodes a lot of *physics* traveling from the origin to position x in time t

$$K(x,t;0,0) = \left(\frac{m}{2\pi i\hbar t}\right)^{1/2} \exp\left[\frac{im}{2i}\right]$$

For convenience, let's analyze it when A = (0,0) and B = (x, t); i.e. a particle is

The free particle propagator encodes a lot of *physics* traveling from the origin to position x in time t

$$K(x,t;0,0) = \left(\frac{m}{2\pi i\hbar t}\right)^{1/2} \exp\left[\frac{im}{2i}\right]^{1/2}$$

At fixed t, let's see what the propagator looks like as a function of position x

For convenience, let's analyze it when A = (0,0) and B = (x, t); i.e. a particle is

The free particle propagator encodes a lot of *physics* traveling from the origin to position x in time t

$$K(x,t;0,0) = \left(\frac{m}{2\pi i\hbar t}\right)^{1/2} \exp\left[\frac{im}{2i}\right]^{1/2}$$

At fixed t, let's see what the propagator looks like as a function of position x Then let's do the same at fixed x, for the propagator as a function of time t

For convenience, let's analyze it when A = (0,0) and B = (x, t); i.e. a particle is

hx^2

Reminder of plane waves

Reminder of plane waves

Plane wave solution to 1D Schrödinger equation

Reminder of plane waves

Plane wave solution to 1D Schrödinger equation

 $\psi(x,t) = C \exp[i(kx - \omega t)]$

means particle has momentum $p = \hbar k$ and energy $E = \hbar \omega$

Free particle behavior at large *x*

assuming $x \gg \lambda$

assuming $x \gg \lambda$

$$k = \frac{2\pi}{\lambda} = \frac{m(x/t)}{\hbar} \text{ and } p = \hbar k \,!$$

Compare to plane wave at (x = 5, t = 1)

Compare to plane wave at (x = 5, t = 1)

Free particle behavior at large t

$\Re e\{\sqrt{i}K_0\}$

Free particle behavior at large t

$\Re e\{\sqrt{i}K_0\}$

At large *t* (fixed *x*), $\Re[\sqrt{iK}]$ amplitude and period varies; Neglecting change in amplitude,

Free particle behavior at large t

$\Re e\{\sqrt{i}K_0\}$

At large *t* (fixed *x*), $\Re[\sqrt{iK}]$ amplitude and period varies; Neglecting change in amplitude,

$$2\pi = \frac{mx^2}{2\hbar t} - \frac{mx^2}{2\hbar (t+T)} = \frac{mx^2}{2\hbar t} \left(\frac{T}{1+T/t}\right)$$
$$\approx \frac{mT}{2\hbar} \left(\frac{x}{t}\right)^2 \Rightarrow T \approx \frac{\pi\hbar}{m(x/t)^2}$$
assuming $t \gg T$
$$\omega = \frac{2\pi}{T} = \frac{m}{2\hbar} \left(\frac{x}{t}\right)^2$$
 and $E = \hbar\omega$!

Compare to plane wave at (x = 5, t = 1)

Compare to plane wave at (x = 5, t = 1)

Energy and momentum and wave

Energy and momentum and wave

Concepts of momentum and energy are extended to quantum mechanics as expected

1. If the amplitude varies in space as e^{ikx} , we say that the particle has momentum $\hbar k$

2. If the amplitude varies in time as $e^{-i\omega t}$, we say that the particle has energy $\hbar\omega$

Wave functions and Schrödinger Equation

Wave functions and Schrödinger Equation

The propagator can tell us the probability amplitude to go from one state (described) by a wave function) to another

$$\psi(x',t') = \int_{-\infty}^{\infty} K(x',t';x,t)\psi_0(x,t)dx$$

In Quiz 2, you will show that the free propagator satisfies the Schrödinger equation! $-\frac{\hbar}{i}\frac{\partial K(B,A)}{\partial t_B} = \begin{bmatrix} -\frac{\hbar^2}{2m}\frac{\partial^2 K(B,A)}{\partial x_B^2} \end{bmatrix} \text{ for } t_B > t_A$

Chaining Propagators

1		
+	 	

Chaining Propagators

$$\widetilde{\psi}(x'',t'') = \int_{-\infty}^{\infty} K(x'',t'';x',t')\psi(x'',t'') = \int_{-\infty}^{\infty} K(x',t';x,t)\psi_0(x,t')$$
$$\Rightarrow \widetilde{\psi}(x'',t'') = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} K(x'',t'';x',t)$$

 $t')K(x', t'; x, t)\psi_0(x, t)dx'dx$

1		
┦	 	