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Feynman path integral

* |n quantum mechanics, the amplitude to go from A to
B is the sum of contributions @[(x(7)]| from each path

CKkB.A= ) pl)]
paths from A to B

 The contribution of a path has a phase proportional
to the classical action S

. @[x(¢)] = (const)e VWD

* This Is a generalization of the classical principle of
least action, sometimes called the quantum action
principle

» Contains the classical principle in the limit 7 — 0O
(or equivalently when § > h
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Defining the path integral

First, choose a subset of all paths from (x4, #,) to '
(xp, tp) as follows

Divide time into steps of width €

At each time 7;, the path passes through some
chosen point x;

We construct a path by connecting all the points with 74
straight lines (i.e. constant velocity)

Summary:
Ne =15 — Iy, € =1lit1 — I lo = Iy In = Ip
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Path integral for a free particle
: Zﬂlhe _% g

. Path integral is K(xp, t5; x4, 14) = 11m[--- del...de_l ( ) oo BA]
e—0 m

e SO we need ’go calculate the action for each discretized path from
B

S[B,A] = J L(x, x, t)dt

Lo
* Note: we can get the action for the full path by adding up the contribution from
each component of the path, i.e. assuming 7, < 7~ < I, then the action along

any path between A and B is
e SIB,A| =35|B,C|+ 5[C, Al
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Path integral for a free particle

Putting this together with the result of Quiz 1,
2
m (x; —x;_1)
Sli,i — 1] = —ll, and

2 €
. )2
S|B,A] = 25[11—1]— ]Z%
=1

N

So,

| 2rihe -7 im
K(B,A) = llmJ--- jdxl---de( ) exp [—

c—() m

Note this is a Gaussian integral
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Gaussian integrals

+00
" " —xz
Gaussian mtegral:[ e dx = \/;Z'
— QOO0

+00
2 T 52
More generally, J p~ax“tbxtc — 7 ,b/(4a)+c
oo a

+00 .
S ¥/ )
With complex arguments, J plax Fibx+c — : | e~ ib/(4a)+c
a
— QOO
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Recursive pattern

A pattern emerges... After N — 1 steps, we get

e—() m

| onihe\ 2 | im & :
K(B,A) =1lm | --- | dx;---dxy exp —Z (X —x;_1)

, m /= im
=lm | —— exp
e—0 ( 2min(Ne) ) [2h(N€)

(Xy — xo)z]

1/2 : o)
( m ) [zm(xB — X,) ]
=(——— ] exp|——
Zﬂlh(tB — tA) Zh(tB — tA)

because Ne = 1 — 14, Xy = X4, Xy = Xp
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Free particle behavior

The free particle propagator encodes a lot of physics

For convenience, let’s analyze it when A = (0,0) and B = (x, ); i.e. a particle is
traveling from the origin to position x in time ¢

1/2 : o
ILIMX
) exp

2nt

Kx,£,0.0) = (2m'hz

At fixed 7, let’s see what the propagator looks like as a function of position x

Then let’s do the same at fixed x, for the propagator as a function of time ¢
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Reminder of plane waves

Plane wave solution to 1D Schrodinger equation
w(x,t) = Cexpli(kx — wi)]

means particle has momentum p = Ak and energy £ = hw
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Free particle behavior at large x
%6{\/7:.[(0}

\AA TN AN

J\/ VL

At large x (fixed 1), ER[\/_ K] oscillates with slowly varying wavelength A

m(x + /1)2 mx>  mxA  mA? 2rh
2T = = + > A X
2Nt 2Nt ht 2Nt m(x/t)
assuming x > A
2 m(x/t)
k = = and p = hk'!

A h
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Compare to planewave at (x =5,r= 1)
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Free particle behavior at large 1

%6{\/:&:}{0}

# At large 7 (fixed Xx), SR[\/;K] amplitude
and period varies; Neglecting change in
amplitude,

m , mx?’ mx”’ mx”’ T
n=— =
[ 2ht 2n(+T) 21 \1+ 1/t
s AJ\ L mT [ x\° rh
\/ ~— | -] =21
2h \ t m(x/1)?

ARV assuming r > 1

f )

; 2 m [ X

| w=—=—|—] and £ = 1w

T 2h \ t
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Compare to planewave at (x =5,r= 1)
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Energy and momentum and wave

Concepts of momentum and energy are extended to quantum mechanics as
expected

kx

1. If the amplitude varies in space as e’ , we say that the particle has momentum

hk

2. If the amplitude varies in time as e ~'®!, we say that the particle has energy A
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Wave functions and Schrodinger Equation

The propagator can tell us the probability amplitude to go from one state (described
by a wave function) to another

w(x',t) = J K(x', t'; x, Dy (x, )dx

In Quiz 2, you will show that the free propagator satisfies the Schrodinger equation!
h 0K(B,A) [ n2 *K(B,A)

forftp, >t
i Oty ] B

2m  0xj
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Chaining Propagators

u bey <
7 XK
~
I

770/4/q"[(o( l/c'Je g.efje{" (o

FU/\/J(X”, t//) — J' K(X”, t”; X,, t')l//(x', t/)dx/

w(x', 1) = J K(x', t'; x, Hyy(x, )dx

o0

= w1t = J [ K", t"; x', t)K(X', t'; x, )y (x, )dx'dx
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