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Homework reminder

» Half of grade will be from turning in first “draft”
 Graded on effort and completeness (for all problems)
» Solution released shortly afterward
» Half of grade will be from turning in corrected solution
e Graded on effort and correctness (for all problems)
 Note: DO NOT just turn in solutions; CORRECT your own first attempt
* Report (pdf file) uploaded to Gradescope
* Code (zip file) uploaded to Gradescope

 Assignment 1 correction due Wednesday 8pm!
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Path integral — Schrodinger equation

h

where S| B, A| = LtB (%mx2 — V(x, t)) dt, and using the fact that the
A

propagator connects states y(x, r) and y(x’, t')

w(x',t') = J K(x',t'; x, Hy(x, H)dx

l
Starting from the path integral K(xp, f5; X4, 14) = J@x(t) eXp [—SCI[B,A]] :

We can “derive” the Schrodinger equation

h OV v et = A
. . = T T I X, X, = X,
i ot 2m o2 W #



Schrodinger equation and unitarity

If y satisfies SE, its normalization (the total probability) is preserved (unitarity)
’ j “pdx ) = 0

—_— X p—

n Yy

Equivalent to the fact that the Hamiltonian is a unitary operator H'H=1



Stationary states

Given a Hamiltonian, there are a set of solutions to the eigenvalue problem
Solutions are stationary states of definite energy £, .
They form an orthonormal and complete basis

J G ()P, (x)dx = o, (orthonormal) y(x,1) = z cne_(i/ h>En’¢n(x) (complete)

n

Coefficients at any given time y/(y, t;) = f(y) can be computed
a, = |_ $FEOy)dy

Additional relation we found

2 @y (V)P (x) = o(x —y)



Relation to the propagator (1)

Evaluate y at a later time 7, and recall the definition of a, = Cne_(i/ WE,
O o
) = Y e @Eng () = Y g e IVEGG ()

And we have a, = [~ $(y)f(y)dy where f(y) = y(y, ;)

p(x, 1) = i (J

( D BP0 h)E"““l))f(y)dy

— OO0

cb;f(y)f(y)dy) e~ "MELT g (x)

n=1



Relation to the propagator (2)

What is this equation intuitively?

w(x, 1) = J D GO, (0 IMELT )y (y, 1))dy

n

If w(x, ) x ¢, (x) (just one stationary state), we can time evolve it from ¢, to ¢, by the phase factor

To get it at a different position from y to x, we can apply the Dirac delta function

l//(x’ tl) — J ¢;Iz<(y)§bn(x)‘//(y9 tl)dy

5(x—y)
This equation picks out the component of y along each stationary state ¢, , and time evolves it
separately (by applying the appropriate phase factor) and shifts to a new position!




Relation to the propagator (3)

Time evolution by projecting onto stationary states

WX, 1) = J ( 2 b ()’)an(x)e(ﬂh)E”(tztl)) w(y, t)dy

Time evolution using the propagator

W(xa t2) — [ K(X, t29 Y, tl)W(ya tl)dy

These have to give the same answer so they must be the same!



Propagator and trace

So we have

zn ¢;ll<(x2)¢n(xl)e_(i/h)En(tz_tl) t, > 1,

0 1, <t

We can compute the trace of the propagator just like a matrix. For a matrix Klj, we

sum the diagonal components Tr(K) = ) K

Here, we integrate over x, = x; = x. Wecan alsosetf, =0 and ¢, = 1.

1Tr(K) = [ dxK(x,t;x,0) = Z J dx¢,j<(x)qbn(x)e‘(i/h)Enf — Z o —IME,1

) - - 4
=

1




Propagator and trace: harmonic oscillator

The Fourier transform of the propagator trace provides the “spectrum” (set of energy
eigenvalues)!

TI'( K) — Z e—(i/h)Ent

n
i T , N =
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Check for harmonic oscillator

Can explicitly evaluate show that propagator trace for harmonic oscillator gives the same
result

> > mw /2 imw(coswt — 1)
Tr(K) = K(x, t; x,0)dx = exp X | dx

2mih s1in wt h s1in wt

— QOO0

00 : 1/2
) ¥/8
Recall Gaussian integral: [ e'™ dx = (—) and half-angle formula

oo d
1 — cos(89) = 2 sin*(6/2)

1/2 P 1/2 1/2
TH(K) maw i17th sin wt 1
r - | —4m8M— . e [
27ih sin wt maw(cos wt — 1) 2(cos wt — 1)

1
 2isin(wt/2)
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Propagator and unitarity

There Is also a normalization condition

1 = J' dx'(x'| x) = J dx'o(x — x') = J [ dx'dx"{(x'| K| x"}{x"| K| x)
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Assignment 1: HO

In Assignment 1, we initialize the wave function

1/4
Vy(x) = (;) exp (—E(X — xstart)z) where

1.00

N a=2, x,,,=0.75
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O 3 0.00

@ a=1, x =
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Stationary state!
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Assignment 1: Propagator




