
Javier Duarte — January 24, 2025

PHYS 142/242
Lecture 08: Unitarity and Propagator Trace (Continued)



Homework reminder
• Half of grade will be from turning in first “draft”


• Graded on effort and completeness (for all problems)


• Solution released shortly afterward


• Half of grade will be from turning in corrected solution


• Graded on effort and correctness (for all problems)


• Note: DO NOT just turn in solutions; CORRECT your own first attempt 

• Report (pdf file) uploaded to Gradescope


• Code (zip file) uploaded to Gradescope


• Assignment 1 correction due Wednesday 8pm!
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Path integral  Schrödinger equation→
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Starting from the path integral 


where , and using the fact that the 
propagator connects states  and 





We can “derive” the Schrödinger equation


K(xB, tB; xA, tA) = ∫ 𝒟x(t) exp [ i
ℏ

Scl[B, A]],

Scl[B, A] = ∫ tB
tA ( 1

2 m ·x2 − V(x, t)) dt
ψ(x, t) ψ(x′￼, t′￼)

ψ(x′￼, t′￼) = ∫
∞

−∞
K(x′￼, t′￼; x, t)ψ(x, t)dx

−
ℏ
i

∂ψ
∂t

= −
ℏ2

2m
∂2ψ
∂x2

+ V(x, t)ψ(x, t) ≡ Ĥψ(x, t)



Schrödinger equation and unitarity
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If  satisfies SE, its normalization (the total probability) is preserved (unitarity)





Equivalent to the fact that the Hamiltonian is a unitary operator 

ψ
d
dt (∫ ψ*ψdx) = 0

Ĥ†Ĥ = 1



Stationary states
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Given a Hamiltonian, there are a set of solutions to the eigenvalue problem

  

Solutions are stationary states of definite energy . 

They form an orthonormal and complete basis


  (orthonormal)    (complete)


Coefficients at any given time  can be computed 



Additional relation we found


Ĥϕn = Enϕn

En

∫
∞

−∞
ϕ*m(x)ϕn(x)dx = δnm ψ(x, t) = ∑

n

cne−(i/ℏ)Entϕn(x)

ψ(y, t1) = f(y)
an = ∫ ∞

−∞
ϕ*n (y)f(y)dy

∑
n

ϕ*n (y)ϕn(x) = δ(x − y)



Relation to the propagator (1)
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Evaluate  at a later time  and recall the definition of 





And we have  where 





ψ t2 an = cne−(i/ℏ)Ent1

ψ(x, t2) =
∞

∑
n=1

cne−(i/ℏ)Ent2ϕn(x) =
∞

∑
n=1

ane−(i/ℏ)En(t2−t1)ϕn(x)

an = ∫ ∞
−∞

ϕ*n (y)f(y)dy f(y) = ψ(y, t1)

ψ(x, t2) =
∞

∑
n=1 (∫

∞

−∞
ϕ*n (y)f(y)dy) e−(i/ℏ)En(t2−t1)ϕn(x)

= ∫
∞

−∞ (
∞

∑
n=1

ϕ*n (y)ϕn(x)e−(i/ℏ)En(t2−t1)) f(y)dy



Relation to the propagator (2)
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What is this equation intuitively? 





If  (just one stationary state), we can time evolve it from  to  by the phase factor





To get it at a different position from  to , we can apply the Dirac delta function





This equation picks out the component of  along each stationary state , and time evolves it 
separately (by applying the appropriate phase factor) and shifts to a new position!

ψ(x, t2) = ∫
∞

−∞ (∑
n

ϕ*n (y)ϕn(x)e−(i/ℏ)En(t2−t1)) ψ(y, t1)dy

ψ(x, t) ∝ ϕn(x) t1 t2
ψ(x, t2) = e−(i/ℏ)En(t2−t1)ψ(x, t1)

y x

ψ(x, t1) = ∫
∞

−∞
ϕ*n (y)ϕn(x)

δ(x−y)

ψ(y, t1)dy

ψ ϕn



Relation to the propagator (3)
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Time evolution by projecting onto stationary states





Time evolution using the propagator





These have to give the same answer so they must be the same!

ψ(x, t2) = ∫
∞

−∞ (∑
n

ϕ*n (y)ϕn(x)e−(i/ℏ)En(t2−t1)) ψ(y, t1)dy

ψ(x, t2) = ∫
∞

−∞
K(x, t2; y, t1)ψ(y, t1)dy



Propagator and trace
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So we have





We can compute the trace of the propagator just like a matrix. For a matrix , we 
sum the diagonal components . 


Here, we integrate over . We can also set  and .


K(x2, t2; x1, t1) = {∑n ϕ*n (x2)ϕn(x1)e−(i/ℏ)En(t2−t1) t2 > t1
0 t2 < t1

Kij
Tr(K) = ∑i Kii

x2 = x1 = x t1 = 0 t2 = t

Tr(K) = ∫
∞

−∞
dxK(x, t; x,0) = ∑

n
∫

∞

−∞
dxϕ*n (x)ϕn(x)

1

e−(i/ℏ)Ent = ∑
n

e−(i/ℏ)Ent



Propagator and trace: harmonic oscillator
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The Fourier transform of the propagator trace provides the “spectrum” (set of energy 
eigenvalues)!





For example, for HO,  
 

Tr(K) = ∑
n

e−(i/ℏ)Ent

En = (n + 1
2 ) ℏω

Tr(K) =
∞

∑
n=0

e−i(n+ 1
2 )ωt = e−iωt/2

∞

∑
n=0

(e−iωt)n

=
e−iωt/2

1 − e−iωt
=

1
eiωt/2 − e−iωt/2

=
1

2i sin(ωt/2)



Check for harmonic oscillator
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Can explicitly evaluate show that propagator trace for harmonic oscillator gives the same 
result





Recall Gaussian integral:  and half-angle formula 




Tr(K) = ∫
∞

−∞
K(x, t; x,0)dx = ∫

∞

−∞ ( mω
2πiℏ sin ωt )

1/2

exp ( imω(cos ωt − 1)
ℏ sin ωt

x2) dx

∫
∞

−∞
eiax2dx = ( iπ

a )
1/2

1 − cos(θ) = 2 sin2(θ/2)

Tr(K) = ( mω
2πiℏ sin ωt )

1/2

( iπℏ sin ωt
mω(cos ωt − 1) )

1/2

= ( 1
2(cos ωt − 1) )

1/2

=
1

2i sin(ωt/2)



Propagator and unitarity
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There is also a normalization condition





Discrete case:


1 = ∫
∞

−∞
dx′￼⟨x′￼|x⟩ = ∫

∞

−∞
dx′￼δ(x − x′￼) = ∫

∞

−∞ ∫
∞

−∞
dx′￼dx′￼′￼⟨x′￼|K† |x′￼′￼⟩⟨x′￼′￼|K |x⟩

= ∫
∞

−∞ ∫
∞

−∞
dx′￼dx′￼′￼(⟨x′￼′￼|K |x′￼⟩)*⟨x′￼′￼|K |x⟩

= ∫
∞

−∞ ∫
∞

−∞
K*(x′￼, t; x′￼′￼, t)K(x, t; x′￼′￼, t)dx′￼dx′￼′￼

1 =
ND

∑
i=0

ND

∑
j=0

(Δx)2K*ij (t)Kik(t)



Assignment 1: HO
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In Assignment 1, we initialize the wave function 

 where


(1) 


If we set

(2) 

Stationary state!

Ψ0(x) = ( α
π )

1/4
exp (− α

2 (x − xstart)2)
α = 2, xstart = 0.75

α = 1, xstart = 0



Propagator  is a matrix. Let’s visualize it over time K(x, t; x′￼,0)

Assignment 1: Propagator

14


