
Javier Duarte — January 27, 2025

PHYS 142/242
Lecture 09: Double Well and Tunneling



Homework reminder
• Half of grade will be from turning in first “draft”


• Graded on effort and completeness (for all problems)


• Solution released shortly afterward


• Half of grade will be from turning in corrected solution


• Graded on effort and correctness (for all problems)


• Note: DO NOT just turn in solutions; CORRECT your own first attempt 

• Report (pdf file) uploaded to Gradescope


• Code (zip file) uploaded to Gradescope


• Assignment 1 correction due Wednesday 8pm!
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Quantum tunneling
• Quantum tunneling is the phenomenon in which a particle passes through 

a potential energy barrier that, according to classical mechanics, should not be 
passable because it doesn’t have sufficient energy to surmount the barrier


• We will analyze this phenomena in Assignment 2 using the double well potential 

• In particular, we are interested in finding the tunneling time
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Double well potential
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Consider the double well potential 




Two minima separated by a 
potential barrier 


Barrier height: 


Minima:


V(x) = αx4 − 2x2 +
1
α

V(0) =
1
α

V′ (xmin) = 4αx3
min − 4xmin = 0

⇒ xmin = ± 1

α
1

α
−

1

α

1
α

Plotting α = 0.4



Double well potential
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Near the minima, we approximate 
the potential using quadratic 
harmonic oscillator potentials








Equivalent to 

V′ ′ (xmin) = 12αx2
min − 4

= 12α ( 1
α ) − 4

= 8

V+(x) = 4(x − xmin)2

V−(x) = 4(x + xmin)2

m = 1, ω = 2 2



Double well potential
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Typically, we solve the eigenvalue 
equation





But we already know the solutions 
for the HO


− 1
2

∂2ψn(x)
∂x2 + V(x)ψn(x) = Enψn(x)

ψ+(x) = ( mω
πℏ )

1/4

exp (−
mω
2ℏ

(x − xmin)2)
ψ−(x) = ( mω

πℏ )
1/4

exp (−
mω
2ℏ

(x + xmin)2)



Double well potential
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The ground state  and first 
excited state  of the full 
potential should be symmetric 

 and antisymmetric 
, respectively


We can approximate them with





ψ0(x)
ψ1(x)

ψ0(x) = ψ0(−x)
ψ1(x) = − ψ1(−x)

ψ0(x) ≈ ψS(x) =
1

2
(ψ+(x) + ψ−(x))

ψ1(x) ≈ ψA(x) =
1

2
(ψ+(x) − ψ−(x))



Double well potential
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The two lowest energy eigenvalues 
 and  are nearly degenerate




If we know the energy eigenvalues, 
we can time evolve





E0 E1
ΔE ≡ E1 − E0 ≪ 1

2 (E0 + E1)

ψS(x, t) = e−iE0tψS(x,0)
ψA(x, t) = e−iE1tψA(x,0) E0

E1



Tunneling time
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Let’s say we start in the right well 





Define the tunneling time  as 
the time it takes for the particle to 
fully tunnel into the left well


ψ(x,0) = ψ+(x)

ttunnel

ψ(x, ttunnel) ∝ ψ−(x)



Tunneling time
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Note: 



Time evolving it we get





We want 



So the sign has to flip 
 or 

ψ(x,0) = 1

2
(ψS(x,0) + ψA(x,0)) = ψ+(x)

ψ(x, t) = 1

2
(e−iE0tψS(x,0) + e−iE1tψA(x,0))

= 1

2
e−iE0t (ψS(x,0) + e−iΔEtψA(x,0))

ψ(x, ttunnel) ∝ ψ−(x) = 1

2
(ψS(x,0) − ψA(x,0))

e−iΔEttunnel = − 1 ttunnel = π/ΔE



Numerical results
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&p —1 normalization the determinants up to any
even order may be obtained successively from the
recursion (3); for odd orders the initial conditions
are bo —0, 6& —1. The zeros of &„(E)are ob-
tained numerically by Newton's method which re-
quires both 6 (E) and &'(E); the latter is obtained
by differentiating the recursion (3) with respect to
E and computing recursively. Both the recursions
are numerically stable and the zeros of 4~(E)
stabilize for large m to the required eigenvalues. '
The eigenvalues obtained by Newton's method were
checked and in the process upper and lower bound-
ed by computing a sufficiently large-order deter-
minant 6„(E)from the recursion (3) for two neigh-
boring E values. Opposite signs of &u(E) for the
neighboring E values indicates that an eigenvalue
lies in between. The appropriate value of the
scaling parameter n is & in the (small n, small
A) regime since in this regime the eigenvalue spec-
trum may be understood as the splitting of nearly
harmonic levels. The lowest four eigenvalues of
H(1, X) for various values of A, are given in Table
I. All significant figures quoted are claimed to
be accurate. Eigenvalues of such accuracy are
computed for the first time in this work.
Eigenvalues in any regime of values of (n, X),

the corresponding eigenfunctions and the trans-
ition moments~ of high accuracy may be obtained

by this method. The results will be reported in
due course.

III. WKB APPROXIMATION

For any symmetrical two-well oscillator let
E„bean energy level in one of the wells assuming
no tunneling. Then for a smaIl probability of tun-
neling the splitting of this level in the %KB approx-
imation is given by'

(4)

where +x(} and +x, are the four classical turning
points. Expressing the above integrals in closed
forms in terms of the elliptic integrals" we obtain
from Eq. (4) the WKB formula

a'"[2(1+u)]'"
fc(q)

W2 u'~'
&& exp (1+u)'~2[E(t}—ujf'(t}] ~,3 i

(5)

where t=[(l —u)/(1+u)]' ', q =[2u/(1+u)]' ', u
=[4&~'„(&)]''/k, e'„(k)= E'„+(k'/4X), K(s) and E(s)

TABLE I. Eigenvalues of the two-well oscillator in the small-X regime. &„(A)are the com-
puted exact eigenvalues of the energy-shifted operator H(1, X) + (1/4X), which is positive def-
inite.

fp

0.01

0.02

0.03

0.04

0.05

0.07

0.10

0.15

0.17

0.20

1.404
1.404
1.393
1.393
1.382
1.382
1.371
1.371
1.358
1.360
1.323
1.343
1.234
1.346
1.062
1.421
1.007
1.464
0.941
1.535

048 605
048 605
527 585
527 587
601 444
605 783
122 236
308 461
422 103
133 597
374 074
365 616
507 162
940 868
499 247
086 890
165 158
225 132
750 342
530 204

297 7
297 7
044 2
151 0
053 8
831 4
557 5
612 9
747 8
773 3
208 5
287 4
786 0
922 5
956 5
539 3
778 7
421 2
076 9
085 8

4.170 193 605 999 3
4.170 193 605 999 3
4.092 028 112 820 5
4.092 028 608 428 7
4.006 049 199 465 7
4.006 655 466 749 5
3.901 359 951 813 1
3.918 263 337 997 1
3.746 917 080 727 9
3.848 838 300 057 4
3.342 216 720 258 7
3.833 129 937 607 9
3.009 488 545 436 2
4.043 546 039 767 6
3.033 667 276 570 6
4.589 838 495 543 4
3.118 337 642 119 7
4.816 923 221 196 9
3.270 377 801 715 3
5.148 274 740 096 0

Since near the minima the potentail function 2x + O(A. x ), cp W2 {ground-state energy
in a potential 2x ) as A, G. We find &p(A, = 0.001)=1.413211965792.

K. Banerjee and S. P. Bhatnagar, 
“Two-well oscillator”, Phys. Rev. 
D 18, 4767 (also uploaded to 
Canvas) numerically calculate the 
ground state and first excited state 
energy eigenvalues


Note: different convention  
so  corresponds to 


So for , we have 
, , and 



4λ = α
λ = 0.1 α = 0.4

α = 0.4
E0 = 1.2345 E1 = 1.3469
ΔE = 0.1124

ttunnel = π/ΔE = 27.94

http://doi.org/10.1103/PhysRevD.18.4767
http://doi.org/10.1103/PhysRevD.18.4767
http://doi.org/10.1103/PhysRevD.18.4767


Quantum tunneling
• 


• Assignment 2 is to show this with Feynman path integral approach

ttunnel = π/ΔE = 27.94
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