# PHYS 142/242 Lecture 09: Double Well and Tunneling

Javier Duarte – January 27, 2025





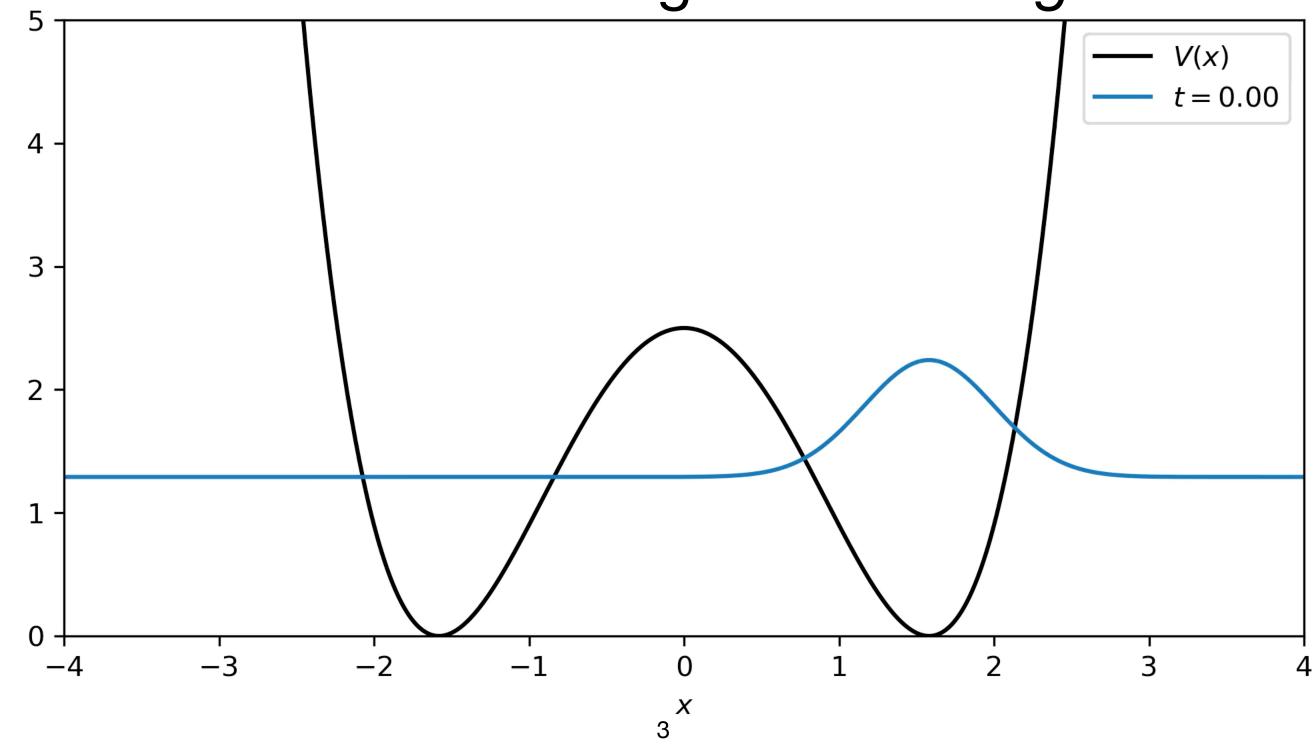
## Homework reminder

- Half of grade will be from turning in first "draft"
  - Graded on effort and completeness (for all problems)
  - Solution released shortly afterward
- Half of grade will be from turning in corrected solution
  - Graded on effort and correctness (for all problems)
- Report (pdf file) uploaded to Gradescope
- Code (zip file) uploaded to Gradescope
- Assignment 1 correction due Wednesday 8pm!

#### Note: DO NOT just turn in solutions; CORRECT your own first attempt

## Quantum tunneling

- In particular, we are interested in finding the *tunneling time*



Quantum tunneling is the phenomenon in which a particle passes through a potential energy barrier that, according to classical mechanics, should not be passable because it doesn't have sufficient energy to surmount the barrier

We will analyze this phenomena in Assignment 2 using the double well potential



Consider the double well potential  $V(x) = \alpha x^4 - 2x^2 + \frac{1}{\alpha}$ 

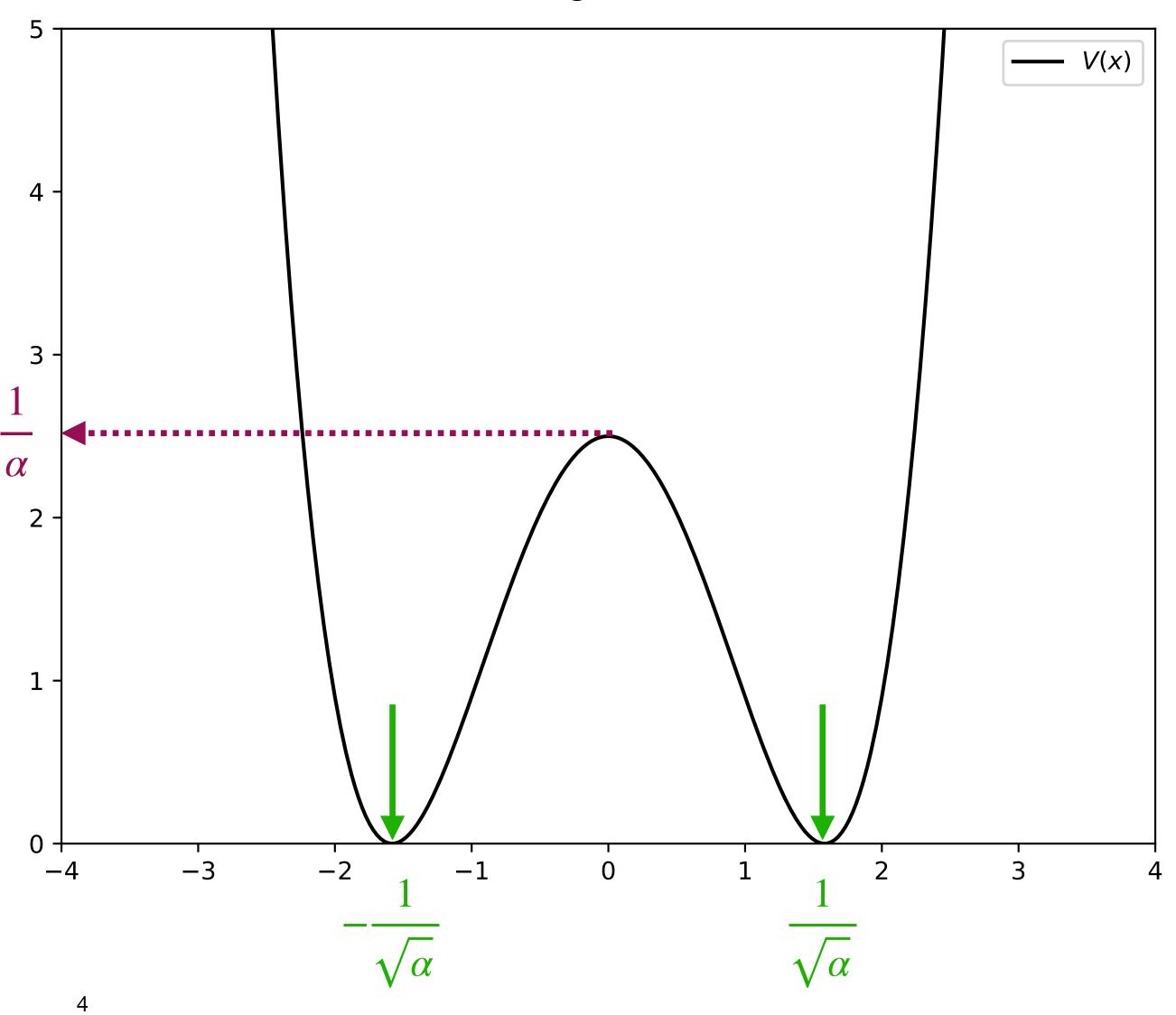
Two minima separated by a potential barrier

Barrier height: 
$$V(0) = -\frac{1}{\alpha}$$

Minima:

$$V'(x_{\min}) = 4\alpha x_{\min}^3 - 4x_{\min} = 0$$
$$\Rightarrow x_{\min} = \pm \frac{1}{\sqrt{\alpha}}$$

#### Plotting $\alpha = 0.4$

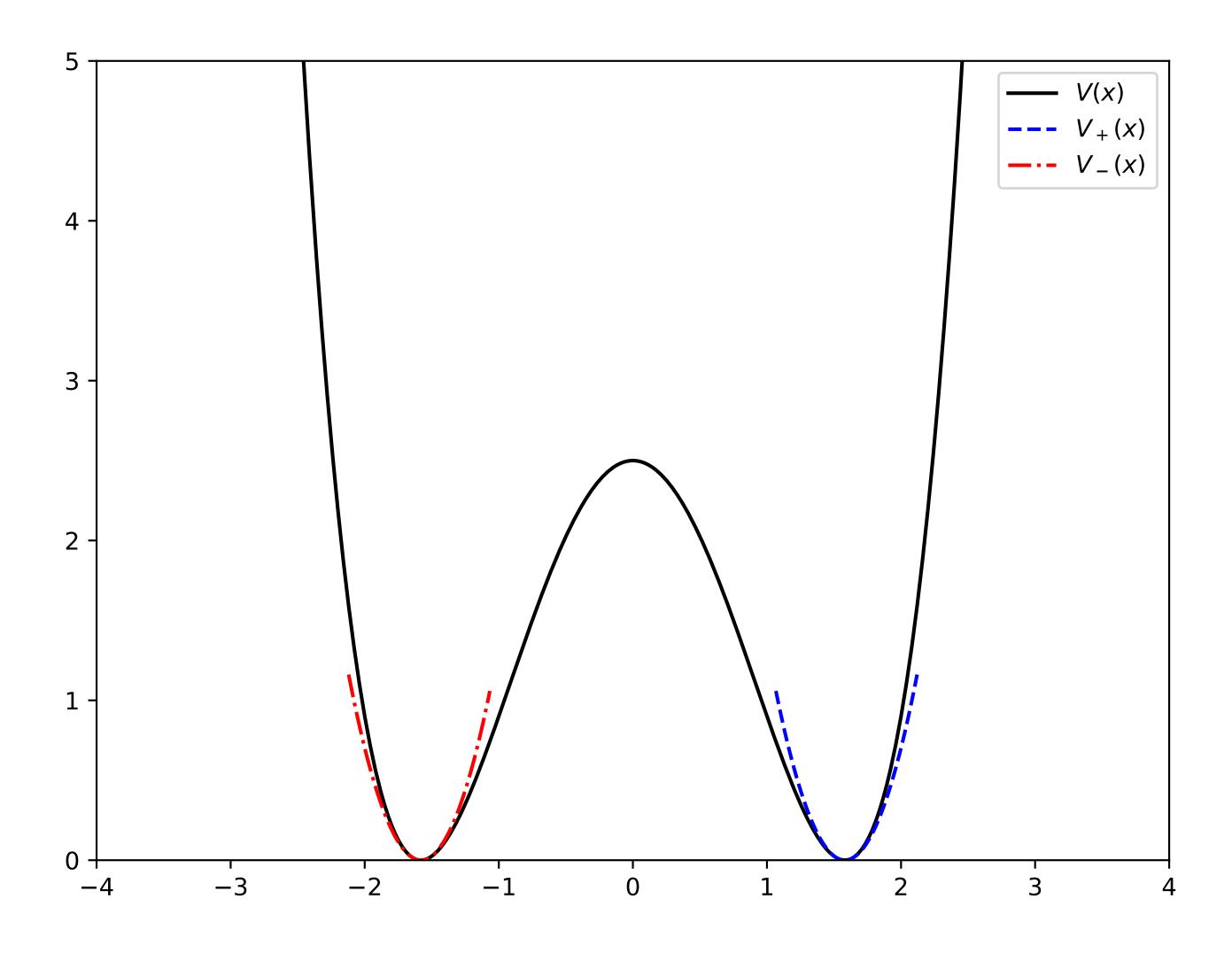


Near the minima, we approximate the potential using quadratic harmonic oscillator potentials

$$V''(x_{\min}) = 12\alpha x_{\min}^2 - 4$$
$$= 12\alpha \left(\frac{1}{\alpha}\right) - 4$$
$$= 8$$

$$V_{+}(x) = 4(x - x_{\min})^{2}$$
$$V_{-}(x) = 4(x + x_{\min})^{2}$$

Equivalent to m = 1,  $\omega = 2\sqrt{2}$ 

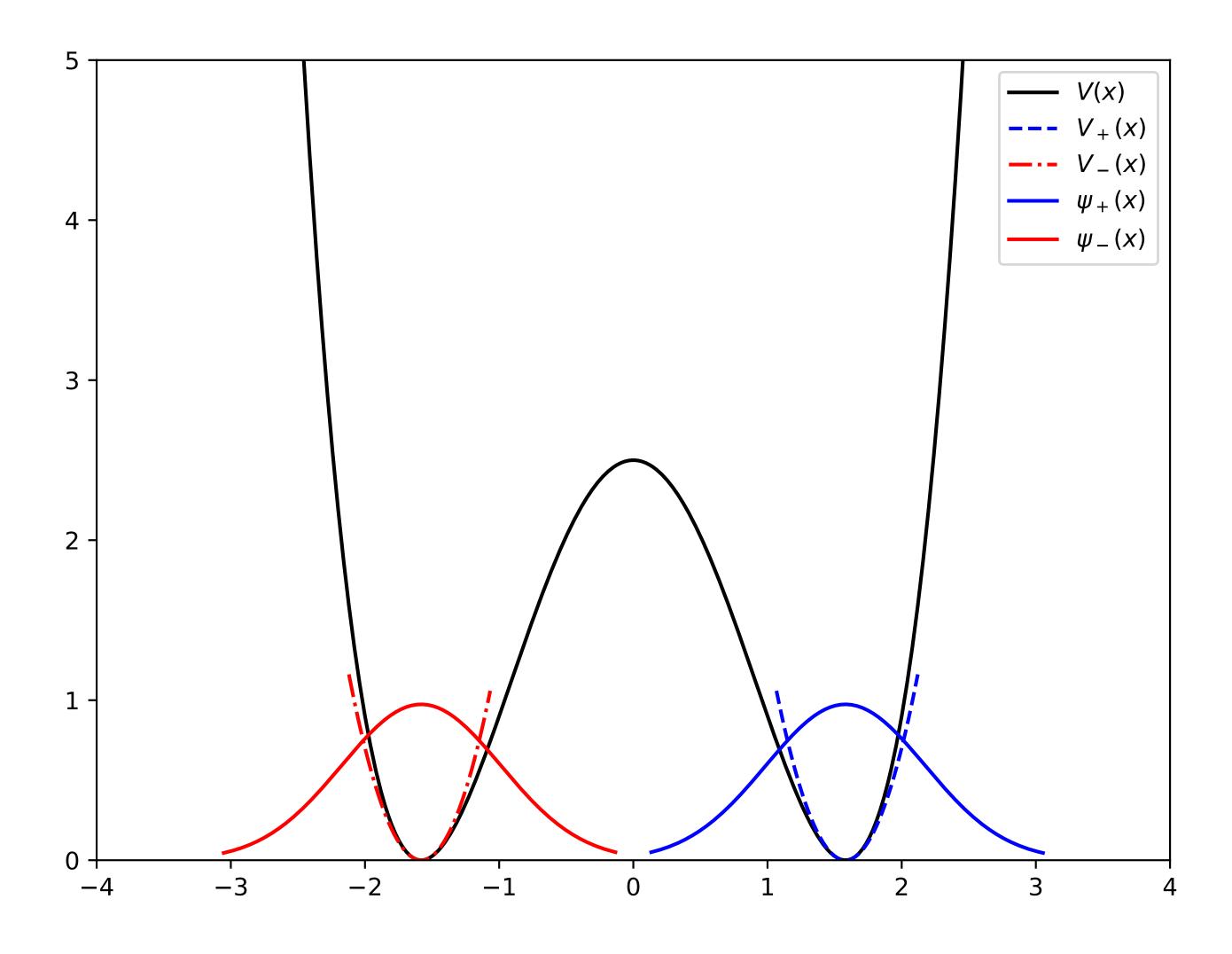


Typically, we solve the eigenvalue equation

$$-\frac{1}{2}\frac{\partial^2 \psi_n(x)}{\partial x^2} + V(x)\psi_n(x) = E_n \psi_n(x)$$

But we already know the solutions for the HO

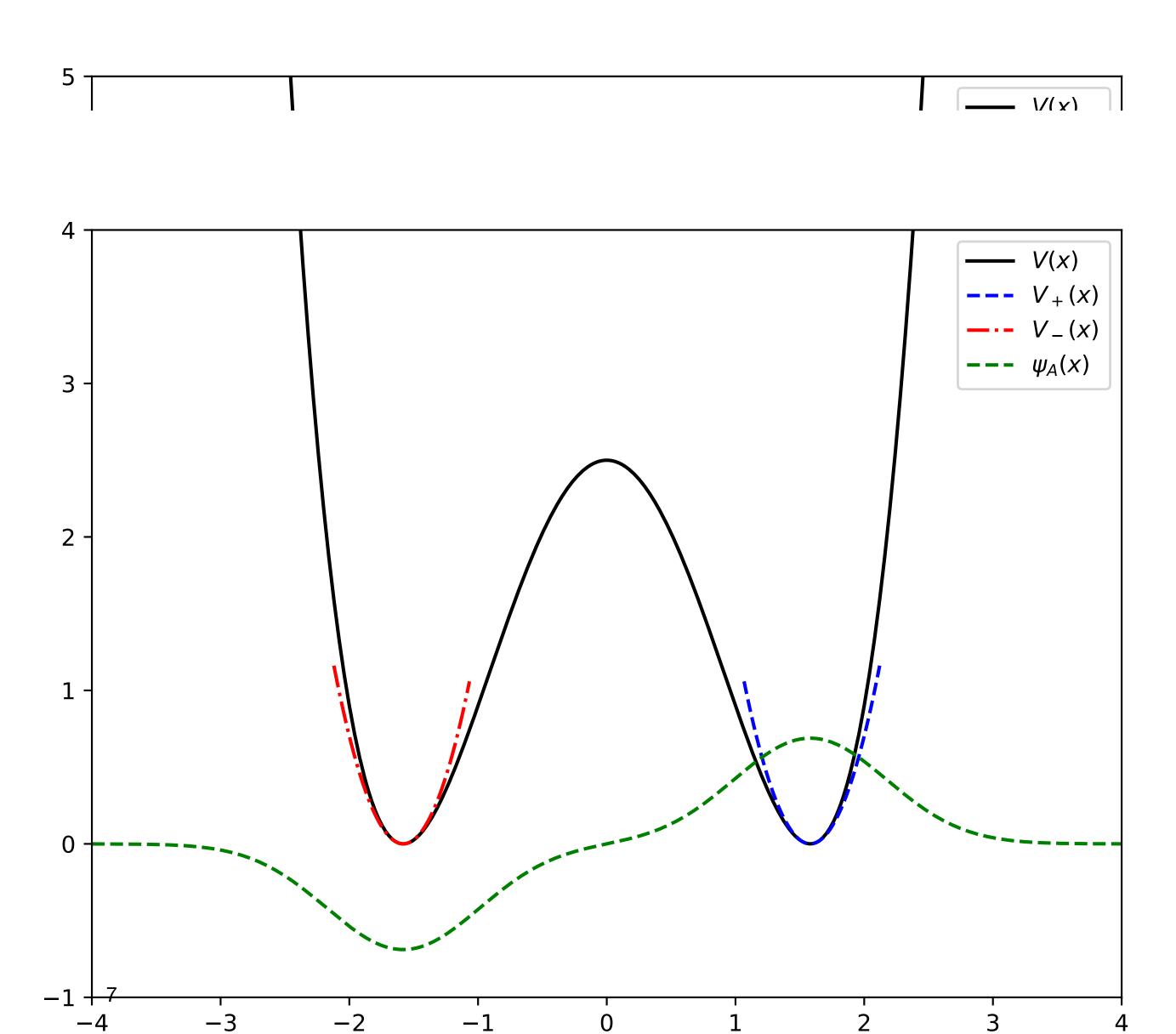
$$\psi_{+}(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega}{2\hbar}(x-x_{\min})^{2}\right)$$
$$\psi_{-}(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\frac{m\omega}{2\hbar}(x+x_{\min})^{2}\right)$$



The ground state  $\psi_0(x)$  and first excited state  $\psi_1(x)$  of the full potential should be *symmetric*  $\psi_0(x) = \psi_0(-x)$  and *antisymmetric*  $\psi_1(x) = -\psi_1(-x)$ , respectively

We can approximate them with

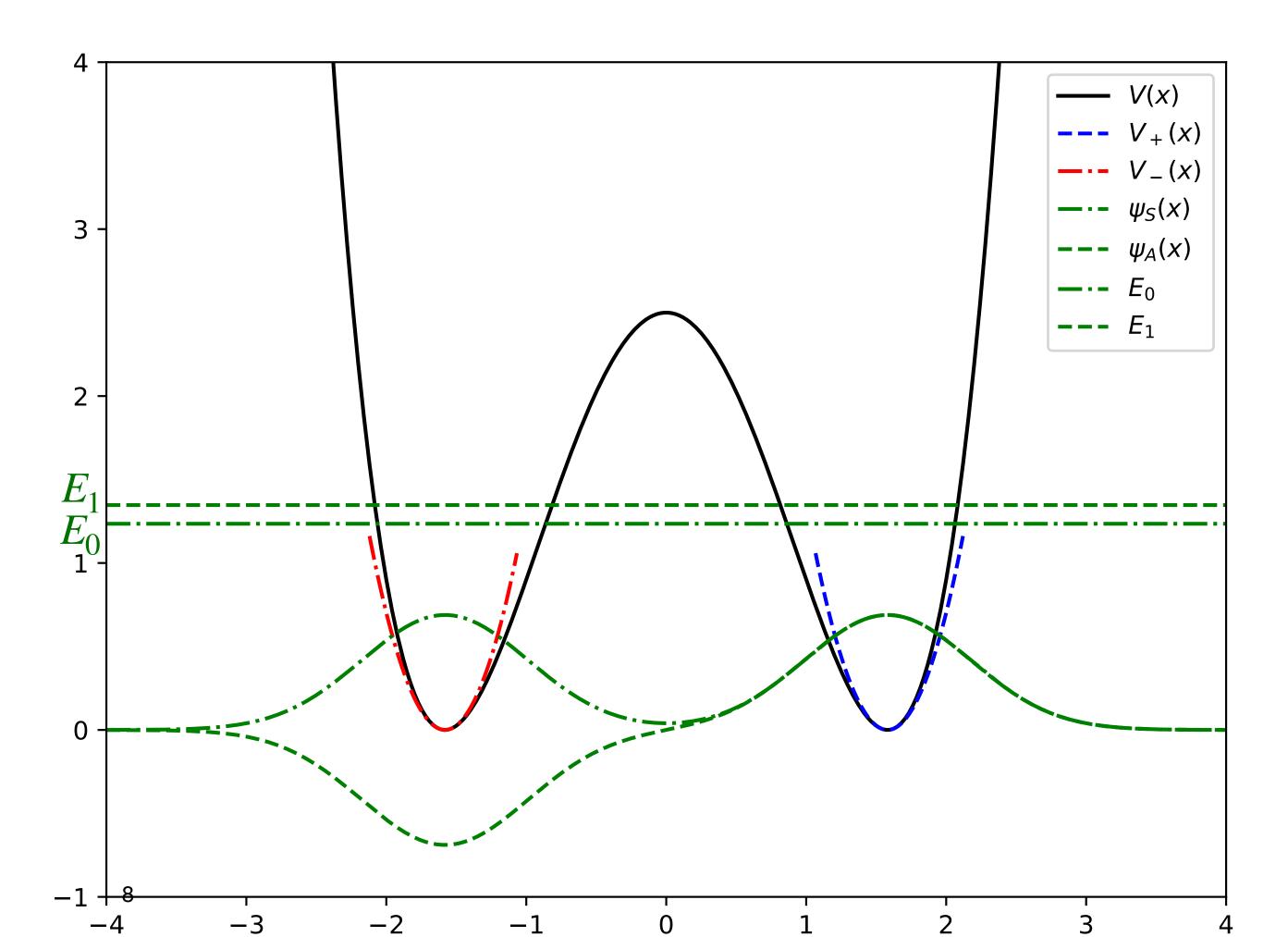
$$\psi_0(x) \approx \psi_{\mathrm{S}}(x) = \frac{1}{\sqrt{2}} \left( \psi_+(x) + \psi_-(x) \right)$$
$$\psi_1(x) \approx \psi_{\mathrm{A}}(x) = \frac{1}{\sqrt{2}} \left( \psi_+(x) - \psi_-(x) \right)$$



The two lowest energy eigenvalues  $E_0$  and  $E_1$  are nearly degenerate  $\Delta E \equiv E_1 - E_0 \ll \frac{1}{2}(E_0 + E_1)$ 

If we know the energy eigenvalues, we can time evolve

$$\psi_{\mathrm{S}}(x,t) = e^{-iE_0t}\psi_{\mathrm{S}}(x,0)$$
$$\psi_{\mathrm{A}}(x,t) = e^{-iE_1t}\psi_{\mathrm{A}}(x,0)$$

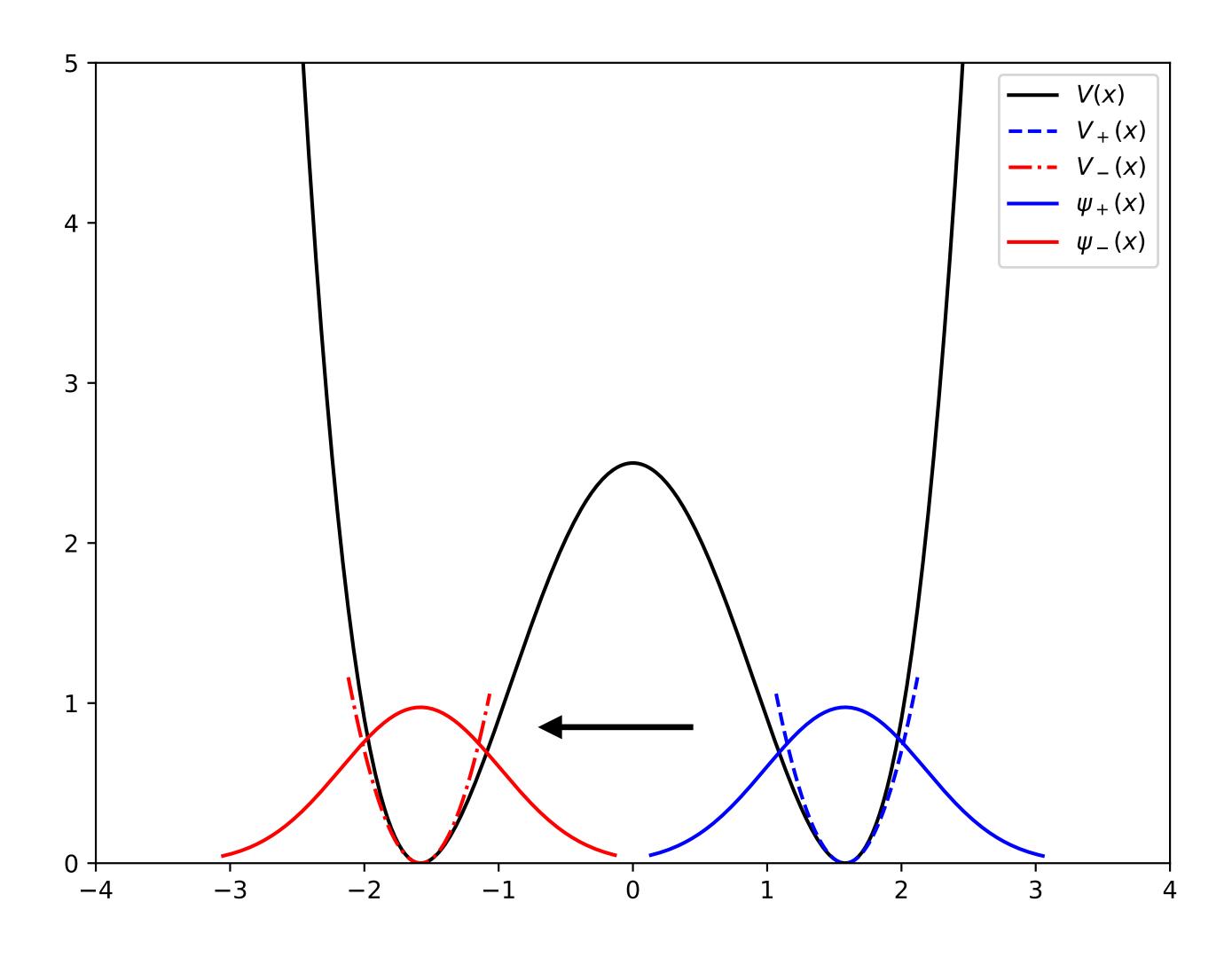


### **Tunneling time**

Let's say we start in the right well  $\psi(x,0) = \psi_+(x)$ 

Define the tunneling time  $t_{\text{tunnel}}$  as the time it takes for the particle to fully tunnel into the left well

 $\psi(x, t_{\text{tunnel}}) \propto \psi_{-}(x)$ 



### **Tunneling time**

Note:  

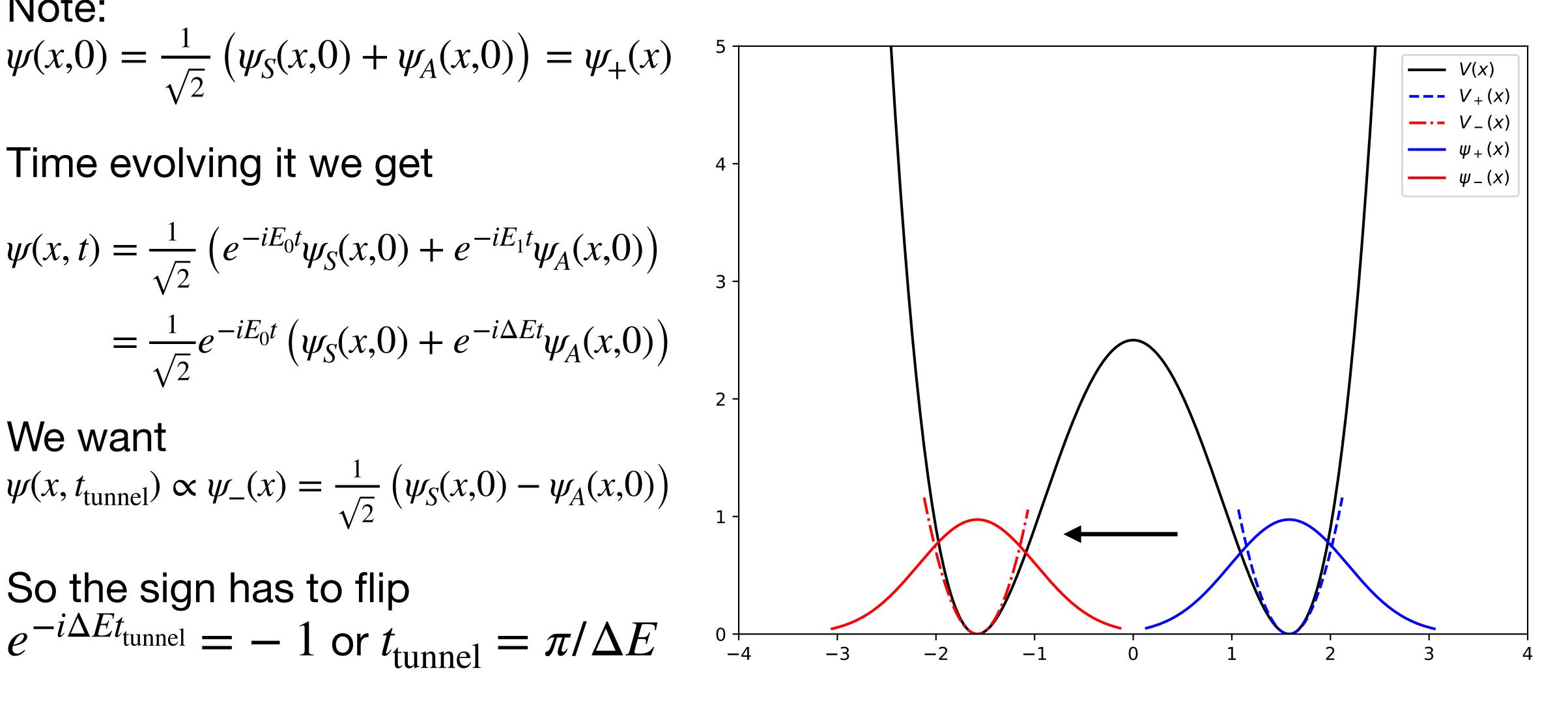
$$\psi(x,0) = \frac{1}{\sqrt{2}} \left( \psi_S(x,0) + \psi_A(x,0) \right) = \psi_+(x)$$

Time evolving it we get

$$\psi(x,t) = \frac{1}{\sqrt{2}} \left( e^{-iE_0 t} \psi_S(x,0) + e^{-iE_1 t} \psi_A(x,0) \right)$$
$$= \frac{1}{\sqrt{2}} e^{-iE_0 t} \left( \psi_S(x,0) + e^{-i\Delta E t} \psi_A(x,0) \right)$$

We want  $\psi(x, t_{\text{tunnel}}) \propto \psi_{-}(x) = \frac{1}{\sqrt{2}} \left( \psi_{S}(x, 0) - \psi_{A}(x, 0) \right)$ 

So the sign has to flip



### Numerical results

K. Banerjee and S. P. Bhatnagar, "Two-well oscillator", Phys. Rev. D 18, 4767 (also uploaded to Canvas) numerically calculate the ground state and first excited state energy eigenvalues

Note: different convention  $4\lambda = \alpha$ so  $\lambda = 0.1$  corresponds to  $\alpha = 0.4$ 

So for  $\alpha = 0.4$ , we have  $E_0 = 1.2345, E_1 = 1.3469$ , and  $\Delta E = 0.1124$ 

 $t_{\rm tunnel} = \pi/\Delta E = 27.94$ 

TABLE I. Eigenvalues of the two-well oscillator in the small- $\lambda$  regime.  $\epsilon_n(\lambda)$  are the computed exact eigenvalues of the energy-shifted operator  $H(1, \lambda) + (1/4\lambda)$ , which is positive definite.

| λ    | $\epsilon_0 \\ \epsilon_1$                           | $\epsilon_2 \\ \epsilon_3$                           |
|------|------------------------------------------------------|------------------------------------------------------|
| 0.01 | 1.404 048 605 297 7 <sup>a</sup>                     | 4.170 193 605 999 3                                  |
|      | 1.404 048 605 297 7                                  | 4.170 193 605 999 3                                  |
| 0.02 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| 0.03 | $1.382 \ 601 \ 444 \ 053 \ 8$                        | 4.006 049 199 465 7                                  |
|      | $1.382 \ 605 \ 783 \ 831 \ 4$                        | 4.006 655 466 749 5                                  |
| 0.04 | $1.371 \ 122 \ 236 \ 557 \ 5$                        | $3.901 \ 359 \ 951 \ 813 \ 1$                        |
|      | 1.371 308 461 612 9                                  | 3.918 263 337 997 1                                  |
| 0.05 | 1.358 422 103 747 8                                  | 3.746 917 080 727 9                                  |
|      | 1.360 133 597 773 3                                  | 3.848 838 300 057 4                                  |
| 0.07 | 1.323 374 074 208 5                                  | $3.342 \ 216 \ 720 \ 258 \ 7$                        |
| 0.10 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3.833 129 937 607 9<br>3.009 488 545 436 2           |
|      | $1.346 \ 940 \ 868 \ 922 \ 5$                        | 4.043 546 039 767 6                                  |
| 0.15 | $1.062 \ 499 \ 247 \ 956 \ 5$                        | 3.033 667 276 570 6                                  |
|      | 1.421 086 890 539 3                                  | 4.589 838 495 543 4                                  |
| 0.17 | 1.007 165 158 778 7                                  | 3.118 337 642 119 7                                  |
|      | $1.464 \ 225 \ 132 \ 421 \ 2$                        | 4.816 923 221 196 9                                  |
| 0.20 | 0.941 750 342 076 9                                  | 3.270 377 801 715 3                                  |
|      | 1.535 530 204 085 8                                  | 5.148 274 740 096 0                                  |

<sup>a</sup> Since near the minima the potential function  $\sim 2x^2 + O(\lambda^{1/2}x^3)$ ,  $\epsilon_0 \rightarrow \sqrt{2}$  (ground-state energy in a potential  $2x^2$ ) as  $\lambda \rightarrow 0$ . We find  $\epsilon_0(\lambda = 0.001) = 1.413211965792$ .



#### Quantum tunneling

- $t_{\text{tunnel}} = \pi/\Delta E = 27.94$
- Assignment 2 is to show this with Feynman path integral approach

